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INFLATION-DRIVEN STRING INSTABILITIES ...
... AND THE OTHER WAY AROUND
G. Veneziano
Theory Division, CERN,1211 Geneva 23, Switzerland

We review recent work showing that inflation can drive Jeans-like string instabili-

ties, while it is not so easy for such strings to drive inflation.

1. Introduction

I ought to start this talk by a short explanation of the title:

The “instabilities” that we shall be dealing with have nothing to do with the usual
break-up and decay of excited strings, a typical quantum, string-loop effect. Rather,
we shall be dealing with a classical instability (of the Jeans type) caused by a period

of fast, accelerated expansion of the Universe.

The “other way around” part of the talk will address the following question: is it
possible that the equation of state of a fluid made of unstable strings (in the above sense)
will sustain inflation, thus dispensing us from the need of a cosmological constant? Can
we have, in short, a “self-sustained inflation” of the kind proposed [1,2] a few years

ago?

For the sake of establishing notations and of being self-contained I will now recall a

few known facts about homogeneous, isotropic cosmologies. The Friedmann-Robertson-
Walker (FRW)-like element (k = 0, for simplicity)

ds? = dt? — R (t)dz? (c=1)

satisfies Einstein’s equations provided (in D = 4)

(R/RY =52 .
(B/R) = -T2 (o + 3p)

where dot denotes (in this section) derivative w.r.t. cosmic time ¢ and the energy

density and pressure of the (supposedly) perfect fluid are defined in terms of its energy
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momentum tensor T}, by:

T =p; T =—8jp (12)

]

Ordinary matter satisfies

0<p<p/3 (1.3)

where the two extreme cases are reached by a non-relativistic and ultra-relativistic

fluid, respectively.
By contrast, a cosmological constant term corresponds to T}, o 4, i.e., to p = —p.

If ordinary matter dominates we have a standard cosmology with R < 0. This
yields notorious problems - which we shall not review here - and which are (at least
partly) solved by assuming that, in the past, the Universe has undergone a long period
of inflation, i.e., a period during which R > 0. It follows from (1.1) that p < —p/3 < 0
is needed for inflation. A cosmological constant (p = —p) is perfectly suited, but by no

means a necessity.

The kind of inflation brought by a cosmological constant is exponential since p = —p
implies through (1.1):

(R/R)* = (R/R) = R =exp(Ht), H®= 8”3(; £

=A/3 (1.4)

Another kind of inflation which has been considered in the literature is the so-called

power inflation:

R(t)~tT (y>1) (1.5)
It is characterized by R > 0, H = 4 (R/R) < 0. Finally one talks about super (or
pole) inflation when H>0. An example is given by

R(t)~(-t)7" (v>0) (1.6)

The scale factor reaches an infinite value at a finite cosmic time (here taken to be
t=0).

As a final reminder we recall that it is useful sometime to work with conformal

time n defined by
dt = Rdny = ds* = R*(n)(dn? — di*) (1.7)

One finds immediately that in terms of 5 the three kinds of inflation described above
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all correspond to scale factors of the type
R(n)=(-m)" a>0 (18)

where 0 < a < 1 gives superinflation, a = 1 gives exponential (or de Sitter) inflation

and a > 1 gives power inflation. Notice that, in all cases, R — oo for n — 0.

2. Points and strings in FRW cosmologies

Let us compare the classical equations of motion of a relativistic (massless) point
with those of a string. For a generic metric g,, the trajectory X*#(r) described by the

point is given by the solution of the geodesic-like equations:

X#4+T8 XX =0 (2.1a)
prug:w =0 (2.1b)
where
1
Fﬁp = 5 - [Bug;»\ T apgu)« - aAgvp] (2.2)
Similarly, the surface swept by the string X*(o,7) is given by the geodesic-surface
equations
X#— X" 4 T8 (XY +X") (XP - X"")=0 (2.3a)
gu(XPXY + XM X") =0 (2.3b)
gut/X”X“l =0 (2.36)

In the above equations, dots and primes represent, as usual, derivatives w.r.t. 7
and o, respectively. Actually, Eqs. (2.1a) and (2.3a) represent the equations of motion
while (2.1b) and (2.3b,c) represent the constraints following from 7 reparametrization

and o — T reparametrization invariance respectively.

In a FRW metric, Eq. (2.3a) splits into a space and a time equation

.

X' - X" =2H(X""X" - X°X") (2.4a)

XO _ XHO - RZ " H Z[(Xri)z . (Xz)z] (2.46)

where H = R~1dR/dX° = R~1dR/dt.
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The constraints (2.3b,c) become:

(X°)? +(X")* = R? ) [(X")? + (X)) (2.5a)

X"0X0 = RZXiX" (2.5b)

Equations (2.4a,b), (2.5a,b) are a system of non-linear partial differential equations

which, as such, does not look particularly easy to deal with.

Exact solutions appear out of question for any non-trivial R(¢). The only hope

appears to be finding a small parameter in which to expand the exact solution.

A few years ago, De Vega and Sdnchez [DS] 3] proposed an expansion around the
point (massive in general) particle motion. The latter is obtained by solving a system

of ordinary differential equations. It is exactly known in the implicit form:

()
a'r= [ arRy) (m + RV
n(0) (2.6)

r

#(r) = 2(0)+ o'50) [ dr' R (n(r")
0

where n(7) is the conformal time defined in (1.7) and m is the point-particle mass.
Equations (2.6) represent indeed a general solution since they contain the correct
number (2(D — 1)) of arbitrary constants (z*(0), p(0)).

A simplification occurs at large R, since p/R — 0 (red shift!):

n(r)
a'r = 1 / dn'- R(n') = —T};(t —1p) (2.7)

m
n(0)

where (1.7) has been used. At large R, world sheet and cosmic times become propor-
tional.

Coming to the string, one can try the expansion [3]:
X¥o, 1) =2#(r) +Y#*(0,7) (2.8)

treating Y# as a perturbation. The physical idea behind this expansion is that a
small-enough string (in a sense to be specified) should follow closely the point-particle

geodetic.
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It is not too hard to study the problem up to second order in Y#. For the compo-

nents Y orthogonal to z' the equations are particularly simple:

Y —Y" 4+ 2HY =0 (2.9)

Introducing x* = RY* = 3, x.€'™ one easily gets:
% = [-n* + R/Rlx;, (2.10)

For decelerated (i.e., non-inflationary) expansions the behaviour of X’ is oscillatory
with constant amplitude and frequencies approaching +n for R — oo (R/R — 0).Thus,
for non-inflationary metrics, the following physical picture holds: the string’s motion
is close to the point motion with a proper oscillation amplitude ¥y = RX remaining
constant as R grows. In other words, if we consider two non-interacting strings evolving
in this class of FRW metrics, their distance grows like R while each one’s size stays
fixed: each string “sees” an expansion of the Universe if it measures distances in its

own size’s units. We shall refer to regimes of this kind as “stable” regimes.

Let us now change the sign of R from negative to positive, corresponding to an

inflationary situation. Recalling (2.7) we find:

d’R

- 2 2 p—1
Xn = [-n" + (a'm)* R —]xn (2.11)
The crucial parameter is obviously
d’R
2 — ! 2p-1
v°(t) = (e@m)°R 0z (2.12)

where we recognize in a'm the size of the string and in R_I%-fi the curvature of the FRW
metric (up to some factor). If the string size is small compared to the curvature radius
the ensuing regime is again of the stable kind. However, if the string size becomes
of the same order or larger than the curvature radius (H~! for de Sitter inflation),
imaginary frequencies develop [3] which have to be interpreted [4] as the outset of

Jeans-like instabilities.

Indeed, by introducing a Jeans frequency

d’R
ny=v9= (a'm) g (Iz_l'm‘)_}—ll2 (2.13)

we see that, for n < nj, x, starts to grow exponentially. The DS expansion can
be shown to break down in this case, while an analysis of higher (i.e., second) order
corrections strongly suggests [4] that the instability ... is contagious, i.e., it propagates

from the low frequencies to all frequencies.
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This latter feature can be understood as follows. If 1 < n; < 2, the n = 1 mode is
unstable and the associated amplitude x; grows. Through the constraints (2.5a,b) this
entails [4] a growth in m (so that m ceases to be a fixed parameter for the geodetic).
According to (2.13), ny grows as well (take for simplicity de Sitter inflation for which
R71d’R/dt? is a constant) and eventually becomes larger than 2. Now x; becomes
unstable giving an extra boost to m (and to ny) and making x3 unstable at a later
time, and so on, till all modes have become unstable. The situation is sketched in Fig. 1
where the qualitative behaviour of (t) is shown as a function of ¢. If () < 1, no
instability occurs (this distinguishes strings from other systems which have a continuous
spectrum of frequencies and which inevitably have instabilities in the lowest modes).
If v(t) > 1 at some initial time then, most likely, v will grow with ¢ faster and faster.
Thus strings which were not so different in size at some initial time may evolve along

completely different patterns at late times (chaos, bifurcation?).

A quantitative study of this unstable regime looks prohibitive at first sight. Fortu-
nately, however, a nice simplification occurs in the “extremely unstable” limit, n € nj.

In this case, Eq. (2.11) gives simply
xn = const.R ie, Y = R7'y = const. (2.14)

In this regime string sizes grow as fast as the expansion rate of the Universe! Equation
(2.14) gives the crucial clue to the construction of a new expansion. If X’ — const.,
then X* < X"". Why not try to see what happens if we neglect X' relative to X"?
Equations (2.4b) and (2.5a) become:

X0—Xx"=RH) (X" (2.15a)
1

1

Let us try further the ansatz X' < X°. In this case we obtain

X°=HX", X"=PR) (x") (2.16)

L]

whose solution is

X’=R L(o); L¥o)=) (X" (2.17)
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i.e., recalling (1.7)
n=L{o)r; L*o)= Z(X’*)2 (2.18)

Thus in the regime of extreme instability world sheet and conformal (rather than
cosmic) time become proportional. Given the fact that, for inflationary metrics, n — 0~
for R — oo, the large R limit becomes the 7 — 0 limit and equations of motion and
constraints can be solved in the form of a small 7 expansion [5]. The leading terms of
the expansion were given in Ref. [5] while a number of sub-leading corrections have

been computed since [6]. One finds the following expansions to hold:

X g + ‘T'ZAi + T4A§
8 B(’:}T2Q+l 4 BiT2a+3
0 ; . (2.19)
n= noT+m7 +n27" +...
+ Agr2ot? 4o\ r2ett g

+C0T4a+1 k-

where the parameter a characterizes the metric as in Eq. (1.8) and Ai(o), Bi(c) are

arbitrary (periodic) functions of o subject to the constraint

Al Bi =0 (2.20)

All other coefficients appearing in (2.19) are determined in terms of the above

L, Bi. At this point the solution (2.19) would appear to depend upon (2D — 3)
arbitrary functions, which is one too many (as we know from free strings). The point
is that we have not yet fully exploited o-representation invariance which allows us to

add one further constraint, e.g.,
no = (AN AH)/? = const., ie., AFAN =0 (2.21)

In this special “gauge” the coefficients defined in (2.19) are given in Table 1 (taken
from Ref. [6]). In Table 2 (from Ref. [5]), we give instead the regimes (“stable” or
“unstable”) allowed by various FRW metrics (expressed in terms of conformal or cosmic
time). Perhaps the most interesting feature of the table is that (while decelerating or
superinflationary cosmology are only consistent with one kind of regime) intermediate

inflationary metrics can allow both regimes.
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Consider for instance power-law inflation, assuming an initial value for v (see Eq.
(2.12)) v(to) > 1. In these metrics R‘l%ﬂ is a decreasing function of time and thus
pulls down « while the instability pushes 4 up by increasing m.The morale is that some
strings make it (in the sense of becoming unstable and blowing up) and some do not

(they remain small for ever). We thus understand better the meaning of Fig 1.

3. The other way around
We shall now try to answer the following question: are highly unstable strings a
suitable source for inflation?

In order to answer this question we have first to find the equation of state obeyed by
a fluid made up of unstable strings. This is easy to do in the perfect-fluid approximation
(non-interacting strings). The energy momentum tensor of such a system is given, in
general, by the variation of the action with respect to the external metric and, in

analogy with point particles, reads:
= e
/=gT"(z) = ) 3 / dodr §(z — Xk(o,7)) (X4 Xk — XFXE (3.1)
T
K=1

where K labels the strings. Using the properties of the limit of high instability, X>
X" X" > X' we find
T% ~ const. /(X0)2
) o 3:2)
T* ~ const. Z(X"X") (-1)

with the same proportionality constant and a (crucial!) minus sign coming from the
relative minus sign appearing on the right-hand side of (3.1). However, the constraint
(2.5a) reads:

(X0)2 oy RZ(XI:')2 (33)
so that

(D-1p=-T} =RT"=-T) = —p (3:4)

Inserting the more precise solution of Table 1, one finds:
p+ (D —1)p = O(max(r%,74*)) > 0 (3.5)

In other words, p approaches the limiting value —p/(D — 1) from above.
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In D space-time dimensions, the Einstein equations read:

(0 -nr Lt = - S (0 -5 +(D-1p) (36)
Inserting (3.5) we obtain
(D-1)(D- 2)}2-1‘-;2—}2I = —8xGp(D — 4) (3.7)

which clearly yields d*R/dt?* < 0 for D > 4.

The (unfortunate) conclusion is that unstable strings are not able to self-sustain

inflation in the perfect-fluid approximation!

Before giving up on the interesting idea of self-sustained inflation, we should men-
tion two possible ways out. The first one [2] adds to the perfect fluid equation a state, a
viscosity term, supposedly representing quantum-string-creation in a background hav-
ing a finite Hawking temperature. As discussed by Barrow [7] everything becomes now

possible, but there is a lot of arbitrariness.

A second, more appealing possibility has been investigated recently [8]. Here one
gives up complete isotropy of the FRW metric and looks instead for a self-consistent

scenario in which three dimensions undergo inflation while n others contract.

It was shown in Ref. [8] that, for n > 10, solutions of both string and Einstein
equations exist and that they correspond to superinflation of three spacial dimensions.
Since we know that string theory likes to live in many (10, 26) dimensions this scenario
looks appealing. The initial conditions needed in order to achieve a sufficient amount
of inflation turn out to be rather stringent but not, perhaps, completely unreasonable.

Certainly the idea of a string-driven “Compactflation” should be pursued.

Incidentally, in this asymptotic scenario, the scale factor, for the internal dimensions
shrinks to zero at late times so that our R — oo solutions have to be (and have been)
generalized (8] to the R — 0 case.

In so doing, one uncovers an amusing “duality-relation” between soltuions for a
FRW scale factor R and the dual scale factor R™!. This scale factor duality (SFD)
appears as an interesting extension of the usual R — A%/R duality where R stands

now for a compactification radius and
As = V2a'h (3.8)

in the fundamental quantum length parameter of string theory. It can be shown,

however [9], that, in order to preserve SFD at the level of Einstein’s equations, these
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have to be modified by additional dilaton-dependent terms in the way prescribed by
the string’s effective action.

To conclude, the game of strings and inflation is still wide-open: there are certainly
many indications that a lot of challenging questions are lying ahead. But, mostly, I have
found the topic of stfings in inflation and of inflation with strings particularly amusing
and thus suitable for wishing Henri and Raoul of many more years of productive and

amusing research.



Vol. 64, 1991 Veneziano

Ao

A1

A=

Ay =

B; =

“2L(a+2)

TABLE 1
Explicit results for the first few coefficients of the expansion (2.19)

Ay, By arbitrary subject to AjAy = AhBy =0

A By
‘IT a+1)(2a—1

" [(A}B] + A} B}) +2(2a +3) (41B1) + 4(2a + 1) (42 B0)
- ﬁ(a + 1) 71 Ao]

=)

i |5 — st [(AbAl) Af — G0 |

1 2a% (2a + 1) o (AyBy) Ay

o | (5400 50~ )
202

“(a+1)(2a-1

)( ) Ap + L2B"]

[W (A9BY) Bo + ragistizzay (BoBo) AY —rzaqy (BoBo) AO]

887
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TABLE 2
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H.P.A.

A classification of spatially flat FRW backgrounds, according to their asymptotic com-
patibility with stable and unstable string configurations.

x'm(R/R)"/?

:‘6:

n,

R(n) R(t) Allowed Regimes
flat const const stable
standard | %, a>0| t#, 0<pB<1 stable
linear exp(Kn) Kt, KL<1 stable
power-law | ™% a >1 tf, B>1 stable and unstable
de Sitter | —(Hn)"! |eft, a/MH < 1|stable and unstable
de Sitter | —(Hp)™! |e#t, wMH >1 unstable
super |n7% a<1 t8, B>0 unstable

g

Unstable Strings 1

\.;j _‘\--5 -4—— Stable Strings
1.

“Bifurcation” in the evolution of strings in an inflationary epoch (with H < 0). “Un-

stable” strings manage to stay above 4 = 1 all the time and blow up. “Stable” strings
fall below v = 1 and then stay small forever.
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