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Monte Carlo Simulation of the One-Dimensional -/-J° Model

Matthias Troyer
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and Institut fiir theoretische Physik
ETH Ziirich, Switzerland

(19. IV. 1991)
Abstract

I present a new and efficient disconnected cluster decomposition to perform Monte Carlo
Simulations based on the Trotter-Suzuki method for 1-d quantum systems. As opposed to
the normal checkerboard world line algorithm this mapping allows one to simulate models
with interactions up to next nearest neighbours or even one-dimensional double layers. I
have used this cluster decomposition to simulate the one-dimensional :—/-J° model at
a = J’/J = 0.5 and have investigated the sign problem in this model. At half band filling the
system is dimerised into singlet spin pairs when a = 0.5 due to frustration. I believe that
the spin gap is no longer present around quarter band filling. Instead the system shows a 2k
spin density wave and a 4k; charge density wave for low values of J/z. At higher values of
J/t the system is phase separated but there is a region where there are still holes in the parti-
cle rich phase. At large values of J/r the system will be separated into a dimerised Heisen-
berg chain and a sea of holes.
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I Introduction

The discovery of high-T, superconductors by Bednorz and Miiller [1] has probably been the
most surprising event in solid state physics in the last decade. The mechanism producing
superconductivity in these system is not yet understood. All these newly discovered su-
perconductors have one structure element in common. There are two-dimensional planes
of CuO,. They consist of four-fold coordinated Cu ions surrounded by four two-fold coor-
dinated O ijons. In undoped materials there is one hole on each of the Cu sites. Doping
introduces extra holes that reside primarily on the O sites. However hybridisation binds
the hole strongly to the central Cu®t ion, forming a local singlet together with the hole al-
ready on the Cu ion [2]. An important questions is which microscopic Hamiltonian correctly
describes the various states of these materials.

Anderson (3] proposed a Hamiltonian with strong on-site Coulomb interactions among
the electrons in the partially filled band of Cu 3d levels. A simplification of this Hamiltonian
leads to the single band Hubbard model. The one-dimensional Hubbard model was solved
exactly some time ago [4,5]. Some simulations have been done on small two-dimensional
systems. In the limit U/t — oo the Hubbard model becomes the low J/t¢ limit of the ¢t — J
model [6]. Zhang and Rice [2] have also derived the t — J model as an effective Hamiltonian
of a two band Hubbard model. But the ¢ — J model is interesting not only in the limit J — 0
where it is the large U limit of the Hubbard model but at other values of J/t as well.

At J/t = 0 the one-dimensional ¢ — J model can be solved exactly since in that case it
is the large U limit of the Hubbard model. At J/t = 2 the ¢ — J model can also be solved
exactly by a Bethe Ansatz [7]. At other values of J/t one has to use numerical methods
[8,9].

Although the copper oxide planes are two-dimensional systems much work has been done
on one-dimensional systems. They are easier to calculate than two-dimensional systems and
show a very rich phase diagram [8,9]. It is expected that two-dimensional systems should
share some properties of the one-dimensional systems. As it is difficult to simulate two-
dimensional systems an intermediary step can be taken and a next nearest neighbour inter-

action added to a one-dimensional system. This introduces some effects of two-dimensional



702 Troyer H.P A

systems, e.g. a next nearest neighbour antiferromagnetic interaction frustrates a Heisenberg
antiferromagnet. Frustration is a typical phenomena in higher dimensional systems.

Many of the models investigated are single band models. There one uses a lattice with
one site per Cu ion. This lattice is partially filled with spin-1 fermions (the holes in the
Cu 3d band). In the undoped case this band is half filled (on average one particle per site).
Doping reduces the number of particles since, as mentioned above, some of the holes in
the Cu 3d band form local singlets with holes introduced by doping. I have considered the

one-dimensional ¢ — J — J'-model on a chain of length L, where L is a multiple of four:

L
H = —t3 Y bl hio+hee. (1)
i=1 o=241/2
g 1 - - 1
+J Z(S:'S:'H = Znini+1) +aJ Z(Si5i+2 — anin)-
1=1 i=1

Here L+1=1,L+2=2, S is the spin operator and n; the particle number operator at

the site 1. hi » 1s the pseudo fermion creation operator

hio = (1—17,,-‘_%,)6Jf

1,0

where n; _, is the number of particles at the site ¢ with z-component of spin —o. ci » creates
a particle on site ¢ with z-component of spin o. Due to the projector in h;, double occupancy
is prohibited. The particles on the lattice are allowed to hop between adjacent sites. They
are submitted to a nearest neighbour Heisenberg interaction with strength J and a next
nearest neighbour Heisenberg interaction with strength J' = aJ. In the limit a = 0 the
model reduces to the ¢ — J model and at half band filling to a Heisenberg linear chain with
next nearest neighbour interaction.

Many of the interesting strongly correlated quantum mechanical systems cannot be solved
exactly. As they contain strong interactions perturbation theory cannot be used either.
Therefore numerical methods have to be used. It is well known since more than twenty
years how classical systems can be simulated. Most of the methods used are based on the
Metropolis algorithm [10]. Simulating quantum mechanical systems is a more difficult task.
One problem is that the Metropolis algorithm requires the calculation of the weight of a
configuration. In a classical system the weight of a configuration in the canonical ensemble

is simply given by e P where 3 is the inverse temperature and FE is the energy of the
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configuration. In a quantum mechanical system however the weight of a state |¥) is given
by (¥|e~P#|W¥), where H is the Hamiltonian of the system. Direct evaluation of this weight
requires a diagonalisation of the system. And this is exactly what one wants to avoid by
using the Monte Carlo method. One way to calculate properties of quantum mechanical
systems is of course exact diagonalisation (e.g. by Lanczos algorithm [9]). By this method
the energy of the ground state and of the first few excited states can be calculated exactly.
The method is restricted to systems with a small number of states and there is no direct
method to calculate the spin and charge structures from these energies. To calculate the
spin and charge structure factors one has to be able to make further assumption, e.g. that
the model scales to a Tomonaga-Luttinger liquid. Only then the critical exponents and the
spin and charge structure factors can be calculated.

Other methods are based on the Trotter-Suzuki theorem [11,12]. Using the Trotter
formula one can map the d-dimensional quantum mechanical system onto a d+ 1-dimensional
classical system. Then a transfer matrix method or the world line algorithm [13] can be used
to simulate the system. A disadvantage of the method which can be seen immediately is thal
the dimension of the system has increased. To get information on a one (two)-dimensional
quantum mechanical system one has to simulate a two (three)-dimensional classical one. This
method can be used for much larger systems and the correlations and structure factors can
be calculated directly. However as the algorithm works at finite temperatures it is necessary
to extrapolate to B — oo to get the ground state properties. There can be numerical
difficulties due to a sign problem if there are fermionic degrees of freedom. This problem is
serious at low temperatures and for large lattices. A combination of both methods can be
very helpful. This was done in investigations of the ¢ — J model [8,9]. The decompositions
of the Hamiltonian that have previously been used with the transfer matrix method or the
world line algorithm are restricted to nearest neighbour interactions. In order to simulate the
t—J—J' model or other models with next nearest neighbour interactions a new decomposition
of the Hamiltonian has to be found and the algorithms have to be adapted. The algorithm
developed can then be used to simulate one-dimensional systems with arbitrary next nearest
neighbour interactions. There are also some advantages when simulating models with nearest

neighbour interactions only.
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II Path Integral Formulation and World Lines

The world line algorithm I have used to simulate the system relies on a decomposition of
the Hamiltonian into two sums H; and H,, each of which consists of a sum of commuting

terms. I used the relation

e€(A+B) _ c(A/24B+A/2) _ (eA[2,eB eA/2 | O(€®)

and Suzuki’s generalisation of the Trotter formula [11,12] to calculate the partition function:
Z = Tr (e_'aH) = Tg ((e'AT(H‘+H2))M) =

Tr ((e_(AT,I?)Hle—ATHze—(A'T/2)H1 n O(AT;}))M) _

Tr ((e—A'rH]e—ATHz)M) i O(ATZ) -

> (alUliam){ianm|Uslians—1) - - - (13| Urliz){i2|Uslin) + O(AT?), (2)
i1z
where [ is the inverse temperature (imaginary time) and Ar = (/M. The |i;) are a

complete orthonormal system of the states in real space,
U, = e A7 and U, = e 878z,

The decomposition thus leads to a systematic error of order (A7)2. The state |¢;) evolves
in imaginary time (inverse temperature, called Trotter direction) according to the time evolu-
tion operators U; and U,. Since H, and H, are sums of commuting terms the time evolution
operator breaks up into a product of small cluster operators. The evaluation of the matrix

elements (z|U; |") reduces to solving this finite cluster problem.

A The Cluster Decomposition

The simplest decomposition of the Hamiltonian is the checkerboard decomposition (discon-
nected bonds). There the Hamiltonian is split into two sums, each consisting of two-particle
terms (figure la). However this decomposition cannot be used for models with next nearest
neighbour interactions. Here I present a decomposition for one-dimensional quantum chains

with hopping and spin interactions between nearest neighbours and next nearest neighbours.
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a) Checkerboard decomposition

1 2 3 4 5=1 1 2 3 4 5=1 1 2 3 4 5=1
0---0---0---0---0 = (Qeecg O----0 +

b) Decomposition for a model with next neighbour interactions:
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Figure 1. Decomposition of the Hamiltonian. Next nenghbour interactions are denoted by dashed
lines,next nearest neighbour interactions by wiggled lines. The+ besides an interaction indicates, that
only half of the interaction is contained in this term,
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Figure 2. Examples of the moves used to upgrade a world line configuration.
Circles denote the sites that are affected by the move. See text for details.
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Figure 3b. An example of a world line configuration in three dimensional
representation. The imaginary time (Trotter direction) runs along the vertical axis.
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Models that can be simulated with this algorithm include the Heisenberg model, free elec-
trons, the t — J model, the t — J — J’ model, the t — t' — J model, etc.. The decomposition
of the Hamiltonian is best shown by arranging the sites on a double layer (see figure 1 b,c).
The Hamiltonian is split into two sums of 4-particle terms. The interactions in the odd
numbered squares are collected in one term and the interactions of the even numbered terms
in the second term. One sees immediately that the same algorithm can be used to simulate
a double layer (figure 1d).

In the case of the ¢ — J — J’ model the Hamiltonian (1) is split into the two sums:

Hy = >, Hgy, H, = ) Hp,

1<i<L/2 1<i<L/2
t even 7 odd

where

1 1
Hy = —t Z(Eh;—l hai + hlih2i+1 + §h;-+1h2i+2 + h.c.) (3)
a

J = = l - - ]_
+§(S2i-132i — Zn%—ln%) + J(S2i52i41 — Zn2in2i+l)

J = = 1
+§(S2i+152i+2 = Zn2£+1n2i+.2)

+aJ('§2i—-1§2i+1 - inzi-mziﬂ) + aJ(§2i§2i+2) - inQin2i+‘2)-

The evaluation of the weight of a configuration is thus reduced to solving a 4-particle
system in the subspaces of constant spin and particle number. This was done numerically
(see Appendix).

Within each time interval A7 there is one application of the evolution operator U; and
one of the evolution operator U;. This leads to a graphical representation of the above
sum (2) on a two-dimensional double layer, where the applications of the time evolution
operator on a square are marked by shaded cubes (figure 3a). The occupation on each time
slice corresponds to one of the states i) in the sum for Z. As the time evolution operator
conserves particle number and total magnetisation we can connect the occupied sites on
neighbouring Trotter slices and get a representation of the configuration {|i;)} in terms of
world lines. The sum over all configurations {|i4)} with non zero weight thus corresponds

to the sum over all possible world line configurations. There are two kinds of world lines
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(black and gray) representing up and down spins that follow the imaginary time evolution
of the spins as shown in figure 3. The time evolution operators act independently on every
elementary square. Hopping or spin flips can occur only within shaded cubes but not within
unshaded ones. The configurations can as well be drawn on a two-dimensional lattice by
arranging the sites on a straight line and not in a double layer (figure 3b).

The Metropolis algorithm may then be used to upgrade a world line configuration. The
only possible moves to upgrade the configuration are those that do not break world lines as
otherwise the weight of the new configuration is zero. I have employed four types of moves
(see figure 2): 1) moves around an unshaded square, where one world line is moved from one
side of the square to the other or 2) two world lines of opposite spin are interchanged; 3)
moves along a bond to the left or right of an unshaded square, where the particle is shifted
along that bond or 4) two particles with opposite spin are interchanged. The moves that are
shown in figure 2 are examples of these moves. The sites that are affected by the move are
marked with a gray circle. The occupation of the other site is arbitrary. It has influence on
the weight of the configuration but not on the move itself. The move just exchanges particles
on the affected sites. After the exchange new world lines can be drawn in any case as the
particle number and magnetisation are conserved within each of the cubes.

These moves conserve the total particle number and magnetisation as well as the winding
number of the world lines. When one knows that the ground state is a spin singlet the z-
component of the total spin can be chosen to be zero. If the spin of the ground state
is nonzero or if one wants to do calculations at higher temperatures one has to include a
global move which changes the spin of a particle (colour of a world line). This move allows
fluctuations in the spin and in the square of the total magnetisation < M? >, which is zero
only if one simulates in the subspace of zero total magnetisation. However this move is very

expensive in CPU time since it is global while the other moves are local.

B Measurements

[ have measured the energy and the charge and spin correlation function of the system. The

energy can be be decomposed into two parts, E; and E,. To get an estimate for the energy
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one has to evaluate the sum

(By) = Z7'-Tr (Hye?H)
= Z7'.Tr (1‘11(6_(‘1’/2)H1 e_A"’HQe_(ATﬂ)Hl)M) +0(Ar?)

= Z7'.Tr (Hl(e'ATH‘e_ATH2)M) + O(AT?)

(i LUy [2a)

- Rl 12,)eunyt . . +O AT2 b
Z 182y-0i2 M (33|U1132> ( )

£1,12 ,,,,, izM
where the weight P; ;, . . of the configuration (|41}, |i2),. .., |i2ar)) 1s given by
11,22, 22 Af Zi1,i2 """ S (11|U1|712M> . (22|U2|zl)

In the same way I get

(1.2|H~2U2|?:1) 2
E = Pi1 yeniaM s 77 12\ + O(A :
( 2) Z s (12|U2|11) ( T )

11,0202 M

And for the total energy

(E)

(Er) + (Es) = -
_ (i3|UrHylta) | (22|UaHalty
= P ( {13|U1]22) (12|Uz]t1)

114829e-9t2 M

)+omﬁ)

As the trace is cyclic it does not matter on which Trotter slice I perform the measurements.
Averaging over all Trotter slices improves the statistics. The charge-charge correlations are

estimated through:

(nin;) = Z7'-Tr nnje"'gH)

= =1 Ty (n o~ (A7/2)H) ,~ATHy ~(AT/2)H) )M) + O(ATZ)
= Z7VTr (e'(ATﬂ)H‘n n; PRl f (UlUg)M 1) + O(AT?)
n,n_,

U U UM ) + O(Ar?)
_ Z p. (i2|U1n,:nJ- + ninlelil)

1482yl M 2(22|U1[21)

- Z—l j

+0(A7?)

11,82 ez M

and the spin-spin correlations in the same way through

(5757 = Z b (lUiSIS; + SESiUALiy)
1 J 11,12,...,12M

. : o(AT?).
11,12, 2(32|U1|21) ( )
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The charge and spin structure factors are defined as the Fourier transforms of the rcal space

correlations:

Sen(q) = D€ %(nig + niy)(iva, + Niva,1)

Swp(g) = D e%(niy — ni ) (Nigag — Nige,l)-
xr

Here n;1,n;, are the particle number operators for particles with spin up (down) at the
lattice site j. Due to translation invariance and the cyclicity of the trace measurements can
be done at any Trotter slice. Averaging over all these measurements again improves the
statistics.

A problem that arises here is that the Metropolis algorithm requires the weights P, i, ...,
(4) to be non negative. If the weights of the configuration are not all positive one has to
rewrite the measurement:
0y = 2280 _ 2z |P5:0; _ (S-0)

TP LIRS (5)

Here P; is the weight of a configuration and O; the value of the observable O in that
configuration. Sy is the sign of the weight Pr of the configuration. Now the weights |/%| are
positive. But one has to measure the average value of (§ - O) and the average sign (S).
By splitting the measurement into the sum over all configurations with positive weight and
average value (O), and the sum over all configurations with negative weight and average

value (O)_ one can measure the quantities as described above and calculate the total value

from
o - 3 (<0>+ +(0)- + 5)

A small average sign leads to numerical problems due to cancellation in the third term on

the right hand side.

C Evaluation of the Measurements

In this section I want to sketch the way I performed my simulations. As the measurements
take a lot of time (especially the measurements of the structure factors) it is not useful to do
measurements after each local upgrade. The spacing between two upgrades was chosen to be

larger than the autocorrelation time. More measurements do not improve the statistics very
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much as they are not independent. It is better to use the CPU time to do more upgrades
than to do more measurements. As the error on the sign is important and measuring the
sign takes nearly no CPU time it was measured after every upgrade nevertheless. This
results in an improvement of the statistics without using much CPU time. The average and
variance of a sample of about 1000 measurements was stored on disk. Separate measurements
were done for configurations with negative and positive weight. Following Furukawa and
Imada [14] I interpret my measurements as coming from N, independent simulations with
N, measurements.

Let me denote the mean value of the i-th measurements of the observable X in the j-th

simulation by X;; and the sign at the time of that measurement by S;i. Let

1 s
XP=mE o 2 K
J  {with S;i=+1
T — 1 Y,
5= T &
7 iwith§;;=-1
1 8. 5
X, = — X15’1
2 Ns; ? I

X j' and X are the average values of the measurements at positive respectively negative
sign. NJ-Jr and N; are the number of measurements at positive respectively negative sign.
The average sign then is N
1 & &
= 77 2 S
The straightforward way to estimate the average value of the observable and the statistical
error is by calculating estimates for the averages at positive and negative sign and an estimate

for the average sign:

N 23
Z' : N_;I-Xj- _ Zj,i,gj,,‘:+l Xj,f

X, = =i _
* E;V-—fl NJ+ Ej,i,sj,,'=+1 1
XI - Zﬁl N]'—Xj_ - Zj,i,gj"':-—l X],z
+ Z_gvril Nj"‘ Zj,t.,.;j’,':—l 1
LS
S = =35
N, &
1 |
AXL = 3y DX - X
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e
AX! = — [ (X7 —XL)?
Na\j=1
S IR
AS = =— S;— 8"
Ns\ =
Using formula (5) estimates for the observable and the statistical error can be obtained:
1 X!, - X!
AI — XI ! -
5 (x4 X
1 k% 1\? (X, -X_\°
P~ = 2 il 2 o + 2
AA Q\jAX+ (1+5) +ax2(1-5) +( o ) NG

Another method, proposed by Furukawa and Imada [14], is calculating an estimate of the

observable from the results of each of the N, simulations and averaging over all of the

simulations thereafter:

1 Ns X
A = E;Aj where A; = —S—j

The statistical error is then estimated by

1| X
—_ ;v 2
AA = Ns Jz:‘;(AJ A)2.

Due to correlations in the measurement of X; and S; the statistical fluctuations are smaller
than before. However these correlations introduce a systematic error. Now I do not calculate
(X;)/(S;), but (X;/S;) which is not the same when the two variables are correlated. Let
me denote the expectation value of the average sign S; by S and of the observable X; by
X. The difference to the expectation value is denoted by 6X; = X; — X and 65; = S; — S.

Then the systematic error is the expectation value

AA = (T-=) (6)

J
l((7 +6X;)5 - X(S + 5,),
T8 S+ 65;

_ _l_(axi-z's"—??asj)
S S+6Sj

&
~
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In obtaining the last line I have used the fact that the averages (65;) and (6.X;) vanish and
only terms of even order remain. When 65;/5 << 1 the second order terms are the leading
ones. To get an estimate for the error one has to find a relation between X; and S; (6.X;
and 65;). Denote the expectation value of the measurements at positive sign with X, and
of the measurements at negative sign with X_. Let Xa = &'—;—}—(’— and Xg = -‘X—'f'—;L Then

the expectation value of X, given an average sign S;, is just
. 1
X = (A +5)X = (1= 5;)X-) = Xa+5iXo

The expectation value of 6.X;, given a value of 65}, then is

~

§X; = X; - X = (Xa + 8;X0) — (Xa + 5Xg) = 68; X0

Inserting these relations into equation (6) leads to

1 — —
(=55, (65;X05 — (Xa +5X0))85;))

1
= —§-3(XA6S_?)

Xa A8
2 B

B

Q

&

where AS? = (65%) is the variance of the sign. Of course when X, is smaller than the
estimated statistical errors on X and X' these errors have to be taken into account to
get reliable estimates for the systematic error. When the size of the simulations is taken
large enough, such that AS? << 5° the systematic error is much smaller than the statistical
error. Particularly in measuring the correlation functions near the phase boundary this
procedure results in smaller statistical errors than the direct method of interpreting all the
data as coming from one simulation and estimating the errors with the straight forward
method. The error on the charge fluctuations is typically reduced by a factor two to three.

Sometimes it is even reduced by an order of magnitude.

D Sources of Systematic Errors

There are some sources of systematic errors in the algorithm. First there is the O(A7?)-

correction that arises from the path integral formulation. It is of the order B(Ar)?a” J*t*~*
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with 0 < r < s < 3. This error can be eliminated by extrapolating to A7 = 0 at fixed values
of J, B and a. I have carried out most of my calculations at A7t = 0.25. This introduces an
error of about 0.4% on the energies. The correction on the structure factors is much smaller.
It 1s smaller than the statistical error bars.

The restriction to the subspace of zero winding number is not a source of errors but just
a boundary effect. The boundary conditions imposed on a finite size lattice do not influence
the thermodynamic limit.

All the models I have investigated have a SU(2)-symmetry. Therefore the expectation
value of the total magnetisation (M,) is equal to zero. The square of the total magnetisation
(M?2) however is not always zero. In order to achieve ergodicity one has to introduce the
global move described above, which flips the spin of a particle. But when the ground state
is a spin singlet and the temperature is smaller than the gap to a state of higher spin the
square of the total magnetisation is nearly zero. Then the global move may be omitted
without introducing a large systematic error.

At half band filling and @ = 1/2 the ground state is dimerised due to frustration [15]
and is a spin singlet. However one cannot be sure that the ground state is a spin singlet
for all values of the parameters. For the Hubbard model in the limit U/t — oo Ogata and
Shiba [16] have shown that for even number of particles the ground state is a spin singlet
for a system with periodic or antiperiodic boundary conditions, except for systems with 4n
(n is an integer) particles and periodic boundary conditions where the ground state is a spin
triplet. The same holds for the ¢t — J model at small values of J/t. When J/t > 2 the ground
state is a spin singlet for all boundary conditions. Omission of the global move introduces
only small systematic errors at low temperatures [8]. I expect that the omission of the global
move will not change the qualitative picture. At large negative values of a the ground state
need not be a spin singlet. In this parameter region one has to include the global move to
get reliable results. At small values of a however the ground state should still be a spin
singlet.

All the calculations were carried out at finite temperature and without the global move.
To get information on the ground state properties an extrapolation to zero temperature

(B — o0) has to be done. This is difficult since increasing the lattice size leads to an
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configuration: sign of the weight for small At

o=0 o>0 a<0

+ - +

Figure 4a. Local configurations and their sign for different values of a. The two
configurations shown in the first row are identical, but there are two ways to
connect the sites with worldlines. This has no influence on the calculation, only on
the way the configurations are drawn.
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Figure 4b. Periodic configuration Figure 4c. Periodic configuration
with negative overall weight if o > 0. with negative overall weight if o <0.
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Figure 5. Average sign for different values of the parameters and lattice size. a) Dependence on J/t for
14,12 or 6 particles on a lattice of size 24 and for 4 particles on a lattice of size 40. b) Dependence on o
for 12 particles on 24 sites (p=0.5), J/t=2.5 and 6 particles on 24 sites (p=0.25), J/t=3.0 . c) Dependence on
the inverse temperature  for quarter band filling and J/r=2.0 . The solid line is a fit of the values for B>6
to an exponential decrease d) Dependence on the lattice size. Here J/t=2.0 and p=0.25 . Again the solid
line is a fit to an exponential decrease.
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exponential decay of the sign, giving rise to numerical problems. I have done most of my
calculations at an inverse temperature of 3t = 15. Measurements of the structure factors

and real space correlations at lower temperatures give the same results within the error bars.

E The Sign Problem

As mentioned above a small average sign leads to numerical problems in measuring the
averages of physical quantities. They arise from the cancellation of terms in the right hand
side of equation (5). The sign problem is severe as the average sign decreases exponentially
with growing lattice size L and inverse temperature #. This can easily be seen by the
following argument. Assume that for a given lattice the probability for a configuration with
positive weight is p, and for a configuration with negative weight p_. The average sign
will then be (S§) = py — p_. Now one doubles the size of the lattice in either direction.
If the lattice is large enough the configurations in the two halves are independent and the
new probabilities are p!, = pypy + p_p_ and p_. = 2p,p_. The average sign now is (S)' =
Py —p_ = (p+ —p-)* = (8)2 One sees that the sign decreases exponentially with growing
lattice size. This is in accordance with my measurements (figure 5 ¢,d). There are only small
regions of the parameters where one can do Monte Carlo simulations.

In order to get more insight into the sign problem I have looked at the lowest order
configurations with a negative weight. In the ¢ — J model there is no sign problem [8]. There
the crossing of world lines of opposite spin is the only local configuration with negative
weight. But these crossings have to occur in pairs, which gives a positive overall weight. In
the t — J — J' model the situation is different. If J’ > 0 then the crossing of two world lines
shown in in the first row of figure 4a has a negative weight, while the same configuration
in the ¢ — J model has positive weight. Now we can write down a periodic configuration
with negative overall weight (figure 4b). When J' < 0 there is a different source of the
sign problem. Now the crossing of two world lines that are two lattice sites apart with no
world line in between (figure 4a, second row) has positive weight while in the ¢ — J model
this configuration has negative weight. In the first case the configuration will have a high
acceptance rate in the regions where there is a dense particle rich phase. I expect the sign

to be small near half band filling and in the phase separated regime. In the second case one
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needs a hole to generate a configuration with negative weight. There will be no sign problem
in the case of half band filling. In the region of high density one expects a large sign, while
in the region around p = 2/3 one expects the sign problem to be severe. In the low density
region the sign should be larger again.

These qualitative arguments are in good agreement with my measurements. For positive
J/t I have been able to perform calculations for small J/t up to the density p = 7/12. T have
been able to simulate in the region of phase separation for densities p < 0.25 only. Even
there it is very hard to get quantitative results. In figure 5a I have plotted the dependence
of the sign on J/t for several band fillings. For J’/t < 0 it is possible to simulate in the high
and low density regions. When the absolute value of J'/t is much larger than J/¢ we have
a large next nearest neighbour Heisenberg coupling and only a very small nearest neighbour
interaction. The acceptance rate for the above configurations is then very small and there
should be no sign problem. Figure 5b shows the dependence of the average sign on a for

two parameter regions.

IITI Results

A Comparison with the Checkerboard Decomposition and Ex-

actly Solvable Models

I have compared the results of my algorithm with exact calculations and the checkerboard
decomposition for some exactly solvable systems. I have simulated the Heisenberg model,
free electrons and the supersymmetric ¢ — J model( see figures 6a,b,c). My simulations agree
favourably with results of Assaad and Wiirtz [8] obtained with the checkerboard decompo-
sition and with the exact ground state energies. The small deviations from the ground state
energies can be explained as finite temperature and boundary effects.

One sees that the (A7)2-correction is much smaller than with the checkerboard decom-
position. Given a tolerance for the systematic error (produced by a finite value of A7) a
higher value of A7 may be chosen. This results in smaller lattices. The acceptance rate

grows as a function of A7. A higher acceptance rate results in shorter autocorrelation times
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Figure 6. Comparison of exact results with results of the cluster decomposition and the checkerboard
decomposition. a,b,c) Energy per site in the Heisenberg model (lattice size L=32, BJ=30), free electrons
(lattice size L=80, Br=15) and the supersymmetric -J model (lattice size L=16, B#=15). Plotted are the
energies for different values of At and the quadratic extrapolation to At=0. d) Energy per site in the
Heisenberg model on a lattice with eight sites and a next nearest neighbour coupling with strength J'=ouJ,
for different values of o.. The solid lines are the exact ground state energies calculated for periodic boundary
conditions (see [Majumdar 1969]).
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and therefore shorter simulations. As expected from the Feynman path integral formulation,
the extrapolation to A7 = 0 is independent of the special type of decomposition. Another
advantage of the method is that it can be used for models with next nearest neighbour
interactions and double layers.

I have also compared the method with exact results by Majumdar and Ghosh [15] for
the antiferromagnetic Heisenberg model with next nearest neighbour interaction (figure 6d).
The results are in good agreement for @ < 0. The deviations, less than one percent, are
smaller than the temperature. They can be explained as finite temperature and boundary
effects. At this band filling it is not possible to simulate the region a > 0 due to the sign

problem.

B Simulation of the t — J — J' model, a > 0

Here 1 describe the results of my calculations and compare them to the ¢ — J model. The

results for the t — J model are taken from Assaad and Wiirtz [8].

B.1 Low values of J/t

In the limit J/t — 0 the ¢t — J model is the large-U limit of the Hubbard model. When

= J' = 0 the hopping term produces a 4k; charge density wave (k; = pr/2). As there
is no spin interaction the state is degenerate in the spin degrees of freedom. Introducing a
small spin interaction J lifts this degeneracy and produces a 2k¢ spin density wave. This is
exactly what is expected since the ¢ — J models scales to a Luttinger liquid in the limit of
small J/t. It is also confirmed by results of Ogata et al. [9] and Assaad and Wiirtz [8]. In the
t —J — J' model I see the same structures at low values of J/t. There is a peak in the charge
structure factor at ¢ = 4k; (figures 7a, 8a) and a peak at ¢ = 2k, in the spin structure factor
(figures Tb, 8b, 9b). They correspond to a 4k; charge density wave and a 2k; spin density
wave. These density waves can also be seen in the real space correlations (figure 7c,d). The
spin and charge structures at a density of p = 7/12 (14 particles on 24 sites) show the same

features as the structures at lower densities. It is not possible to simulate at higher densities

due to the sign problem.
The ¢t — J model loses this Hubbard like character at higher values of J/t. The spin
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interaction is in competition with the hopping term as it favours antiferromagnetic alignment
of particles on nearest neighbour sites. The particles will tend to form nearest neighbour
pairs. The 4k, charge peak vanishes and is replaced by a peak at ¢ = 2k;. The 2k spin peak
Vanishe§ also and there is a maximum at ¢ = = in the spin structure factor, corresponding
to antiferromagnetic alignment of spins on nearest neighbour sites.

In the t — J — J' model (J' = J/2) there are similar changes at higher values of J/t. At
quarter band filling the 2k; spin density wave and the 4k; charge density wave correspond
to the structure T . | . T . | . (arrows denote up and down spins, dots denote holes).
This structure is also favoured by the antiferromagnetic next nearest neighbour coupling J'.
Therefore J' enhances this structure. When increasing J/t it does not break down as soon
as in the ¢ — J model. Even at J/t = 2.5 where there is no 4ks charge peak in the t — J
model any more, it is still more pronounced than the 2k; charge structure (figures 7a,b). At
even higher values of J/t these structures vanish nevertheless and we see the same behaviour
as at lower densities (J/t = 3 in figures Ta,b). The same behaviour can be observed at the
slightly higher band filling of p = 7/12.

At J/t = 2.5 and quarter band filling I have looked at the dependence of the charge and
spin structures on the relative strength of the next nearest neighbour coupling o = J'/J
(figure 11). In the ¢t — J model (a = 0) there is no 4k; charge peak and no 2k; spin peak at
this value of J/t. Instead there is a 2k; peak in the charge structure factor and a maximum
at ¢ = 7 in the spin structure factor. With growing a these structures change continuously
to the structures of the t — J — J' model with J' = J/2. A 4k; charge density wave and
a 2k; spin density wave is formed and these structures become more dominant at higher
values of a. At small negative values of o the 2k; charge density wave is enhanced and the
4k contribution suppresséd.

At lower densities the 4k; charge and 2k spin structures are not enhanced as much by
the next nearest neighbour coupling. They vanish at much smaller values of J/t (figures
8a,b; 9). But due to the next nearest neighbour interaction the particles tend to align
antiferromagnetically on nearest neighbour and next nearest neighbour sites. This results in
a maximum in the spin structure factor not at ¢ = = but at lower values of ¢ (figures 8b,

9b). With growing J/t the maximum moves to higher wave vectors g, corresponding to a
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higher proportion of nearest neighbour pairs.

At a certain density dependent value of J/t one can see the onset of phase separation.

B.2 Phase Separation

According to results of Ogata [17] phase separation occurs at J/t = 3.4 for p = 0.5 and
JJ/t = 2.2 for p = 0.25. At quarter band filling I am not able to observe the phase separation
due to sign problem, but at lower densities I can simulate in the region of phase separation.
At a band filling of p = 0.25 and J/t = 2.0 the system is not yet phase separated, but at
J/t = 2.5 the onset of phase separation can be seen. The long wavelength charge structures
grow rapidly in this region. The same can be observed at a band filling of p = 0.1 between
J/t = 1.5 and J/t = 2.0. These observation are consistent with the values for the phase
separation obtained by Ogata.

It is of interest to investigate the nature of the phase separated state. In the limit
J/t — oo the system will be separated into a dimerised chain of electrons and a sea ol holes.
But the system does not look like this in the region near phase separation. In the ¢ — V
model the system is separated in an island of particles and a sea of holes immediately after
phase separation. In the ¢ — J model there is a small region at low densities where the
particle rich phase can be caricatured as a gas of nearest neighbour singlet pairs. When J/{
becomes larger than 3.5 the system is totally phase separated into a Heisenberg chain and a
sea of holes.

In the t — J — J' model I have been able to simulate in the phase separated region at
low densities (p < 0.25) only. Near the phase transition the system is not yet totally phase
separated, but the particle rich phase can be caricatured as a gas of nearest neighbour and
next nearest neighbour singlet pairs. I have done a least square fit of the spin structure

factor to the structure factor of such a gas:
Stoin = @-2p(1 = cos(g)) + b-2p(1 - cos(q/2)). (7)

The first term on the right hand side is the spin structure factor of a gas of nearest neighbour
bound pairs and the second term the structure factor of a gas of next nearest neighbour pairs.

The fit is included in the spin structure factor in figures 8b, 9b (for p = 0.25,.J/t = 3.0 and
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Figure 7. Structure factors and correlations for quarter band filling (12 particles on 24 sites). The
temperature is =15, the next nearest neighbour coupling is J'=J/2. a,b) Charge and spin structure factors
for Jit=0.5, 2.5, 3.0 . ¢,d) Real space chargeand spin correlations for J/t=0.5. The spin and charge density
waves can clearly be seen.
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Figure 8. Structure factors and correlations for 6 particles on 24 sites. The temperature is Br=15, the next
nearest neighbour coupling is J'=J/2. a,b) Charge and spin structure factors for J/t=0.5, 1.5, 2.5, 3.0 . The
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correlations for J/t=3.0 . The charge correlations are compared to the correlations for the totally phase
separated system. The solid line in the spin structure factors is the same fit as in figure b.
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Figure 9 Structure factors and real space correlations for 4 particles on a lattice of 40 sites. The
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to the structure factor of a gas of next neighbour and next nearest neighbour bound pairs.
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Figure 12. Charge and spin structure factors for different values of the next nearest neighbour coupling
J'=ou for 6 particles on 24 sites. o ranges from small negative values to a=0.75. At o = 0 the z-J-J' model
reduces to the 7-J/ model.
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p =0.1,J/t = 3.5) and in the real space spin correlation in figure 8d (p = 0.25,J/t = 3.0).
With growing J/t nearest neighbour pairs are preferred over next nearest neighbour ones.
This results in a shift to the right of the maximum in the spin structure factor (figure 8b,9b).
It is consistent with the expectation of a dimerised Heisenberg chain in the limit J/t — oo.

The fact that the system is not yet fully phase separated can be seen from figure 8c, where
I have shown the real space charge correlation and compared them to the charge correlations
of a totally phase separated system. There are still holes in the particle rich phase. This is
also evident from the charge structure factors (figure 8b,9b). If the particle rich phase were
a Heisenberg chain without holes the charge structure factor would be zero at ¢ = =. The
nonzero charge structure factor at ¢ = 7 (see figure 8a,9a) arises from local modulations of
the charge density (it corresponds to the structure particle — hole — particle — hole).

At p = 0.25 and J/t = 3.0 I have again investigated the dependence of the structure
factors on the relative strength of the next nearest neighbour coupling a (figure 12). At
a =0 the t — J — J' model is just the { — J model and the system can be caricatured as a
gas of singlet bound pairs. With growing J' = «J more and more next nearest neighbour
pairs are formed. Again the structure factors evolve continuously and there is no indication

of any phase transition.

B.3 Finite Size Scaling

I have done a finite size scaling analysis at p = 0.25 and J/¢ = 2.5, which is in the phase
separated region (figure 10). The maximum in the spin structure factor gets more pronounced
with growing lattice size. Therefore I expect it to be present in the thermodynamic limit. The
charge structure peak at small wavelengths remains as well. The maximum at ¢ = 7 in the
charge structure factor does not scale to zero but remains finite. I conclude that the above
description of the ground state near the phase separation is valid in the thermodynamic
limit. A lattice size of L = 24 seems to be sufficient to get a qualitative picture of the
structure factors. For quantitative results one has to go to larger lattices, but a lattice size
of L = 24 seems to be sufficient to see the qualitative structure. To get reliable values for the
long range correlations one has to simulate lattices much larger than the correlation distance

considered. A larger lattice size results in longer autocorrelation time for the Monte Carlo
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process and in a smaller sign. This makes it very hard to get any quantitative results such

as the critical exponents from the Monte Carlo data.

B.4 Scaling to the Tomonaga-Luttinger Liquid

The Hubbard model and the t — J model at J/t — 0 and J/t = 2 scale to the Tomonaga
Luttinger fixedpoint. As the structure factors vary continuously with J/t and a = J'/J
one can expect that the t — J — J’ model scales to the same fixedpoint if there is no phase
boundary and no spin gap opens. In my simulations I see no indication of such a phenomena.
In a Tomonaga-Luttinger liquid the real space correlations show a power law decay. The

critical exponents may be calculated from a dimensionless K ,:

(n(r)n(0)) ~ Aor i + A; cos(2kr) rm(U+K) 4 A, cos(4kyr) rile

(Sz(T)Sz(O)) ~ By r? + B COS(Qkf'r‘) T_(1+K")’

where r >> 1. Logarithmic corrections have been omitted in the above equations. In the
U — oo Hubbard model K, = 0.5 independent of the band filling. The same holds in
the J/t — 0 limit of the ¢ — J model. My results are consistent with these relations. They
indicate an increase of K, with J/t. Phase separation occurs when the compressibility v./I{,
goes to zero [9]. Beyond phase separation the system is no longer a Tomonaga-Luttinger
liquid. The increase of the 2k, spin structure and 4k; éharge structure with growing J" at
quarter band filling and J/t = 2.5 (figure 11) indicates that there I, decreases with the next
nearest neighbour coupling J'. These observations as well as the values of J/t where phase
separation occurs are consistent with calculations of K, from the energies of the ground state

and the first few excited states, done by Ogata [17].

C Simulation of the t — J — J' model, o < 0

At negative o one has to be very careful when omitting the global move as the ground state
need not be not a spin singlet at large negative values of a. At small absolute values of «
however one can still expect to get qualitatively correct results. At half band filling I have
compared my results to the exact results of Majumdar and Ghosh [15] for a lattice of eight

sites. As mentioned above the energies are consistent with their results. They have also
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shown that the ground state is a spin singlet for —1 < a < 1. Therefore the global move
may be omitted. My calculations show that the peak in the spin structure factor at ¢ = =
gets more pronounced with growing negative «, compared to the Heisenberg model (o = 0).
This is what one expects since the ferromagnetic next nearest neighbour coupling favours

the structure of alternating spins.

IV  Conclusion

I have investigated the one-dimensional ¢t — J — J’ model with the quantum Monte Carlo
world line algorithm. Due to frustration there is a minus sign problem which makes simula-
tions impossible in parameter regions with large frustration. As the average sign decreases
exponentially with growing lattice size it is difficult to obtain information on the thermody-
namic limit (lattice size L — oo) and on the ground state properties (inverse temperature
B — o0). A small average sign leads to cancellations. However there are some regions
where simulations can be done and qualitative information obtained. As the sign problem
arises in very small systems (e.g. four sites and small 3 at half band filling) this is a good
model to investigate the sign problem. Measurements of the sign confirm that it decreases
exponentially with the lattice size.

The t —J — J' model (J/t > 0,J" = J/2) cannot be simulated at half band filling due to
the sign problem. At this filling the ground state is dimerised into singlet singlet pairs and
there is a spin gap [15]. At the densities where I could carry out my simulations there is no
indication of a spin gap any more, but there might still be a spin gap at higher densities.

Around quarter band filling the system can be simulated for low values of J/t. The spin
and charge structure show qualitatively the same behaviour as in the ¢ — J model. They
seem to change continuously with J/t and o = J'/J. It is reasonable to expect that the
model scales to the Tomonaga-Luttinger fixedpoint. At lower band fillings the system shows
the same behaviour. There it is possible to simulate in the phase separated region as well.
In the limit J/t — oo the system is separated into a dimerised Heisenberg chain and a sea
of holes. At lower values of J/t it is not yet fully phase separated but, similar to the ¢t — .J

model, the particle rich phase still contains some holes. It can be caricatured as a gas of
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nearest neighbour and next nearest neighbour singlet pairs. This description still holds for
J/t > 3.5 where the t — J model is already completely phase separated.

In order to simulate the t — J — J' model I have looked for a new decomposition of the
Hamiltonian. This decomposition can then be used with the transfer matrix method or the
world line algorithm. It allows simulations of one-dimensional systems with nearest neigh-
bour and next nearest neighbour interactions. When one includes next nearest neighbour
interactions the system may be frustrated, giving rise to a minus sign problem. This decom-
position into four particle terms is also of advantage when simulating systems with nearest
neighbour interactions only. The exact solution of a four particle system, in comparison with
the two particle system in the checkerboard decomposition, results in a smaller systematic
error arising from the Trotter decomposition. Furthermore the decomposition can be used

to simulate one-dimensional double layers.
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Appendix: The Matrix Elements.

The matrices Hy, Hy, Uy, U; are in block-diagonal form. They consist of identical blocks H;
respectively exp(H;). The matrix H(; again splits into smaller matrices in the subspaces
of constant particle number and magnetisation. The diagonalisation of these matrices was
done numerically and the matrix elements stored in a file that was read by the simulation
programme. The advantage then is that one does not have to change the programme to

simulate a different model, but has to change the file of matrix elements only.
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I got the matrix elements of H(; from the relations

—thlhess

—thl by

—thlhess

HEF e — Ininis)
-](gi i+l %ninﬂrl)
J(SiSit1 — §ninit1)
( iDi41 — i’nini-t-i)

( idi41 — %nini+l)
CYJ( iDi41 ‘““%nini+l)
(5iSip2 — %nmﬂ.g)
(S5iSiz2 — %ninﬁ?)
—CYJ(S:' it2 — ininﬂ-z)

_a-](gisi+2 - ininin)

The ket |.,.) describes the states on the sites ¢
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|o, o)
10,0)
|7, —0o)
|7, )
|7, 0)
10,0)
10,0)
|7+, —0o)
)
)
)

lga ]

q

=)

|O', )
|07'7
IO‘).JO)

q

= —t|0,0)

I~

)

S
|
q

q

"'0')"'2

C O O NN o O

Il
o

= GTJIG7'7dJ)+95J-|_O‘1'7J>

I
o o o o

and 7 + 1 and the ket |.,.,.) the statcs on

the sites 72,  + 1 and : + 2. A 0 denotes an empty site, a - any state and a o a particle

with z-component of spin ¢. The matrix is block diagonal and the invariant subspaces are

the subspaces with constant particle number n and constant spin. In the following the ket

l.,.,.,.) denotes the state on four neighbouring sites in the chain. The calculations were done

separately in each of the following subspaces:

s n=0orn=4,8 =42

This case is trivial as the subspaces are one-dimensional and the energy of these states

is zero.

on:l,Szziéornz?),Sz“——i%

In this case I used the basis

{|#,0,0,0),10,0,0,0),]0,0,0,0),|0,0,0,0)} respectively

{l0,0,0,0),|0,0,0,0),|0,0,0,0),|0,0,0,0)}
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and the matrix is

|+
=
[ ~]
[
T~
=

o O

e n = 2, spin triplet
In this case no spin flip can occur. I used the basis
{le,¢’,0,0),]0,0,0',0),|e,0,0,0),]0,0,0",0),]0,0,0,0'},|0,0,0,0') },

where the two spins o and ¢’ are in triplet state. The matrix is

[0 =t 0 0 0 0)

—t 0 —f —f 0 0
0 -t 0 0 -t o0
0 -t 0 0 -t o

e n = 2, spin singlet

In this case I take the same basis as before, but now the two spins are in singlet state.

The matrix is

MlL.
|
S
o
o
o

o O o O

o p=8, =4

In this case the matrix is the biggest one, of size 12 x 12. I used the basis

{le,0,-0,0),|0,~0,0,0),| — 0,0,0,0),
|J) 0,07 wU)s IG', —0a, 01 0)7 | — 0,0, O>U>a
le,0,0,—0),|0,0,—0,0),| —0,0,0,0),

0,0,0,—0),|0,0,—0,0),|0,—0,0,0)}
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and the matrix is

(= 2 &£ 3 0 0 0 0 0 0 O
P o0 3 00 0 0 00
aJ v =
o 4 L 0 o0 £ 0 0 0 0 0
s —aJ aJ
F 0 o = £ o0 —+t 0 0 0 0
- oJ —Jv J
o F o <« =L I 0 -+ 0 0 0
o o F o 2 = 0 0 -t 0 0
= J -
0 0 0 -t 0 o = 4 0o F 0
=Ju J -
o o o o -t o 4 = « g =
aJ —aJ
0 0 0 0 B3 —«+ 0 & == 0 0
s —Jv J
o o o o o o0 F 0 o0 = 4
- J -3J
0 0 0 o o0 o o F o g =M
\0 o o o o0 ©0 o0 o 3t =
where py = a+ 1 and v = 2a + 1.
e n=45=+1
Here I used the basis
{lO’,O’,O’,—0‘),|O’,O’,-0’,O’),|O’,—-0’,d,0’),l—CT,CF,O',O’)}-
The matrix is B J[zz +1) % %l "
J _J(20+43 J od
4 4 2 2
o iJ _J(2a43) J
2 2 4 4
0 ald J __J(20+1)
2 4 4

e n=45"=0

I used the basis

{lO‘, g,—a, hd)a |U7 —0,0, “0’), Io-a —a,—a, g)?

|_ g,0,0, _J)al — 0,0, —070)7|—Ja_0107a>}'

mE,wp...wﬁle_ o o o o o o o o

733
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The matrix is

__J(2a+1) J aJ ad
( 2 2 2 2 0 0 \
4 — J J
- J 4 y 0 0
ol J _JQatt 0 J al
2 4 2 4 2
al J 0 _J(2at1) g ol
2 4 2 4 2
d d — J
0 0 - ) J =
ol aJ J  _Ja+1)
\ 0 0 ; 2 2 2

The matrices for U, and H,U, are the same as for U; and H;U;. The matrix elements

for two spins are easily calculated from the singlet and triplet matrix elements.

References

(1] J. G. Bednorz and K. A. Miiller, Z. Phys. B64, (1986) 189.

[2] F. C. Zhang and T. M. Rice, Phys. Rev. B37 (1988) 3759.

[3] P. W. Anderson, Science 235 (1987) 1196.

[4] E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20 (1968) 1445.
[5] C. N. Yang, Phys. Rev. Lett. 19 (1967) 1312.

[6] J. E. Hirsch, Phys. Rev. Lett. 20 (1968) 1445.

[7] P. A. Bares and G. Blatter, Phys. Rev. Lett. 64 (1990) 2567.

[8] F. F. Assaad and D. Wiirtz, Phys. Rev. B. (1991) in print, IPS Research Report No.
90-18.

[9] M. Ogata, M. U. Luchini, S. Sorella and F. F. Assaad, Phys. Rev. Lett. 66 (1991)
2388.

[10] N. Metropolis, A. R. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. of
Chem. Phys. 21 (1953) 1087.

(11] M. Suzuki, Prog. of Theor. Phys. 56 (1976) 1454.



Vol. 64, 1991 Troyer ' | 735

(12] H.F. Trotter, Proc. Am. Math. Soc. 10 (1959) 545.

[13] M. Suzuki (editor), Quantum Monte Carlo Methods, Springer Series in Solid-State
Sciences T4, Spririger .Verlag Berlin Heidelberg New York London Paris Tokyo (1987).

[14] N. Furukawa.and M. Imada, Technical Report of ISSP A, No. 2326 (1990); to appear
in J. Phys. Soc. Jpn.

[15] C. K. Majumdar and D. K. G-'hosh, J. of Math. Phys. 10 (1969) 1388 and 1399.
[16] M. Ogata and H. Shiba, Phys. Rev. B41 (1990) 2326.

[17] M. Ogata, to be published.



	Monte Carlo simulation of the one-dimensional t-J-J' model

