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A Remark on Anisotropic Superconducting States

Joel Feldman*
Department of Mathematics
University of British Columbia
Vancouver, B.C. V6T 1Y4
CANADA

Horst Knorrer
Eugene Trubowitz
Mathematik
ETH-Zentrum
CH-8092 Ziirich
SWITZERLAND

(23, III. 1991)

Abstract

We show that, in three dimensions, there are no nontrivial, isotropic, unitary solu-
tions of the gap equation for angular momentum greater than one, while in two dimensions
they exist in all angular momentum sectors.
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Consider the many Fermion system in three dimensions characterized by the effective

potential
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where duc(v,%) is the fermionic Gaussian measure in the Grassmann variables
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with covariance
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and where the two-body interaction (k;,k;|V|ks, ks) is rotation invariant.That is
(Rky, Rk2|V|Rks, Rks) = (k1,k2|V |ks, ks)

for any element R of SO(3) acting on spatial components. The chemical potential x in e(k)
determines the election density of the model.

The infrared behaviour of this model is determined (see [FT]) by a running coupling
“constant” F(®) (¢ s'), h < 0 where at scale h the momentum & is restricted to a shell M*
away from the Fermi surface e(k) = 0 and t' = (0, 'r:'-"kp) projects t onto the Fermi surface.
Initially

FO(H, 8" = =X{t', —t'|V]s', —s").
The kernel F(*)(#', s') defines an operator on L?(krS?).

By rotation invariance the operator F(*) commutes with the action of SO(3).

Therefore the eigenspaces of F(®) coincide with the SO(3) irreducible invariant subspaces
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of L?(krS?). Recall that the space H™, obtained by restricting homogeneous harmonic poly-
nomials of degree n to S2%, is a 2n + 1 dimensional SO(3) irreducible invariant subspace of
L?(kpS?) and that

L*(kpS?) = @nxoH™.

It follows that

FM (¢! s") Zk(h)wn(t s')
n>0

where 7, is the orthogonal projection onto H™ and A,,n > 0 is the spectrum of F(®) | Here,
To(t'ys') = (2n 4+ 1)kp> " Pn({t',s")) where P, is the Legendre polynomial of degree n.

It is widely believed that any (sufficiently weak) interaction (k1, k2|V |ks, ks) flows,
after, say, h steps, to an effective interaction F® that is dominated by a single attractive
angular momentum sector Agh) > 0 (see [KL]). The infrared behaviour is then likely to be

determined by the corresponding BCS model with gap equation

.2 L. BN R e )
@ =5 [ o A A g ek (@) . ()

Here,
A(p) = (A(’,U’(p))a,a”E{T,l}
is a 2 X 2 matrix satisfying
A(p) = —A(-p)”
and

E(q)? = e(q)? + A(q)*A(q).

The expression 'E'(lTﬁ tanh (%ﬁE(q)) is unambiguously defined by expanding ﬁ: tanh (%ﬂ\/:?)
as a power series in . For a derivation of (1) see [AB], [BW].

Every solution of (1) is of the form

A(p) = (Ya-,a‘(p)) ’ Ycr,cr’ € H,.

The simplest solutions are unitary and isotropic. A solution is unitary when

A(p)*A(p) = |d(p)|*I
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and isotropic when d(p) is a constant. In this case the quasiparticle dispersion relation

(e(q)? + |d|2)% is isotropic and has a gap |d| determined by

-2 -fi-a--(-l--(")e2 2)~% [lez 41%)?
1= 2/];(:;”35 (2‘")3 oy ((Q) +|dl) tanh 2/3( (q)® +| |) (2)

when d # 0. Intuitively, they have the best chance of being stable.
There are two important examples of isotropic, unitary solutions. For £ = 0 there

is the BCS model
0 d
A [_d O]

for phononic superconductivity. Balian and Werthamer discovered, in the £ = 1 sector, the

solution

P | ‘tpz Ps3 2 2 2 2
A=d 1 . , P+ + p3; = k
P3 P1 + P2 ] 1T P2 3 o

which describes the B phase of He®.
Theorem There are no nontrivial, isotropic, unitary solutions of (1) for £ > 2.

One therefore expects that solutions will have nodes for £ > 2 making the flow
harder to control. Such nodes are observed in the A phase of He® and in the £ = 2 theory of
heavy fermionic superconductivity. Nodes also appear in the gap function for systems with
cubic symmetry. See, for example, [VG].

The proof of Theorem 1 follows immediately from the
Lemma Let f,g € Hy satisfy ff+gg=1 on S?. Then, £ =0,1.

Proof Let P;, £ > 0, be the homogeneous polynomials of degree £ on R? with SO(3) invariant

6 9 0 _
<f’g>':f(6k17ak2’ak3)g'

inner product

As usual Hy is identified with H; by the SO(3) equivariant isomorphism
fro<,f>.
We shall show that under the hypothesis of the lemma

U=fRf+f@f+9®j+35Qyg
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is the (unique up to scalars) SO(3) invariant element of H; @ H,. It follows that the

homomorphism

UcH,®@H,;~H,® H =~ Hom (H,, Hy)

commutes with SO(3) and is of rank at most four. Moreover, by Schur’s Lemma, U is an
isomorphism since H, is irreducible. Consequently, 2¢+1 < 4.

Consider the SO(3) equivariant multiplication map

H,®, H X, Py,

Z cjp; @ Pj— Z cjPi;.
J
Observe that

dim Hy @, Hy =2+ 1 +

(20+1)(20)  [20+2
2 ‘( 2

) = dim Pzg
and
MU = 2|k

If M is surjective it is an isomorphism and U is invariant.

The projection of
N - 2 2)¢
M ((k1 +iks)! ®, (k1 — iks) ) = (k2 + k2)
onto the irreducible subspace |k|2(l‘m)H 2m of Py i1s nonzero because

<|k|2(l_m) (k1 + iks)™™ , (K + k§)£>

9 8 i t—m 2 2\

—m-—1

= H 4(2 — 5)? (2— +i8—)2m(k2+k2)m
ra: Ok, ' Oks 1+
# 0.

Recall that every invariant subspace of P,; is of the form

®j: k> Hae_jy
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with 0 < j; < 72+++ < jr < £ and in particular
Py = 695:0 || Hye-j)-

Finally the image of M is invariant and therefore all of Ps,.
|
We observe that in two dimensions there are unitary isotropic solutions of the gap

equation for every angular momentum. For example,

cosfd sinfl
Alp)=d [sin £8 — cos M]

when £ is odd and

A(p)=d [_eue 0

when £ is even. Here, p = |p|(cos 8,sin§).
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