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(7. ITII. 1991)

Abstract. We show the existence of the limiting free-energy density of inhomogeneous
(“site- dependent coupling”) mean-field models in the thermodynamic limit, and derive a
variational formula for this quantity. The formula requires the minimization of an energy
term plus an entropy term as a functional depending on a function with values in the
one-particle state space. The minimizing functions describe the pure phases of the system,
and all cluster points of the sequence of finite volume equilibrium states have unique
integral decomposition into pure phases. Applications are considered; they include the full

BCS-model, and random mean-field models.
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I. Introduction

Since Haag’s pioneering paper [18] the BCS model has attracted the attention of many
mathematical physicists. Haag and others [26] focussed on the simplifying features of the
model in infinite volume, but did not attempt to control the thermodynamic limit. This was
done first by Thirring and Wehrl [36] for the strong-coupling limit of the model. The main
simplifying feature of this version of the BCS model is that the coupling constants do not
depend on momentum, i.e. it is a homogeneous model in the terminology used in this paper,
as opposed to the inhomogeneous full BCS model. Progress on the general inhomogeneous
case proved to be difficult, and was mostly achieved by N.N.Bogoliubov and his school (see
[5] and the references therein). It was only in 1988, in the work of Duffield and Pulé [13],
that a rigorous derivation of a variational formula for the free-energy density was given.
The Duffield-Pulé method for inhomogeneous mean-field systems, which has also been
applied to the Overhauser model [14], the full spin-boson model [30] and some random
mean-field models [12], combines Bogoliubov’s Approximating Hamiltonian Method [5]
with ideas of Cegta, Lewis and Raggio [9]. These authors had shown that a large deviation
treatment of the measures arising from the multiplicities of the irreducible representations
of SU(2) in the decomposition of the total spin, combined with the use of the Berezin-Lieb
inequalities, streamlines the treatment of the thermodynamics of homogeneous mean-field
models such as the strong-coupling BCS model.

Often the term “mean-field” system is used for a sequence of finite systems, in-
dexed by the total particle number n, such that the interaction is a fixed two-body potential
multiplied by n™!. In the Cegla-Lewis-Raggio approach, and already in [21], the connec-
tion between the Hamiltonians for different system size was given instead by expressing
the Hamiltonian density for each n as the same polynomial in the generators of global spin
rotations (compare also [6]). This idea can be extended to an arbitrary compact semisim-
ple Lie group, the Large Deviation result necessary for completing the Cegla-Lewis-Raggio
method in this general case having been obtained in [10].

An indication that even this generalized notion of mean-field systems misses an
essential point came from the work of Petz, Raggio, and Verbeure [29], who managed to
treat models in which the Hamiltonian density of the n-particle system is of the form f(X,)
with X, =n"12Q1® - @I+I1z®I® - - I+1I®-- @ 1I® z) for a fixed one-particle
observable z, and f a fixed continuous function evaluated on X, in the functional calculus
(compare also [7]). The function f did not have to be a polynomial, and z did not have to
be considered as one of the generators of an irreducible representation of a Lie group. In
[31] we managed to bring these two sets of examples together into a simple general notion

“mean-field” Hamiltonians. We require that the sequence H, of Hamiltonian densities be
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“approximately symmetric” in the sense that for large m, and n > m, H, is approximately
obtained by symmetrizing H,, (considered as an observable of the n-particle system) with
respect to all permutations of the n sites. This property is obvious for the generators
of a product representation, and was shown [31,Appendix] to be preserved under the
continuous non-commutative functional calculus.

The Large Deviation methods of [9], with their inherent limitation to models
allowing a classical approximation, could be replaced in [31] as in [29] by estimates of
quantum relative entropy, as defined by Araki [2,3]. Taking these ingredients together
we obtained in [31] a Gibbs Variational Principle characterizing the limiting Gibbs states
as states of the infinite volume system. This variational principle can be contracted to a
variational principle on the one-particle state space by application of Stgrmer’s de Finetti-
theorem [35].

In the case of inhomogeneous mean-field systems the Hamiltonian of the n-particle
system depends on n external parameters. This dependence destroys the permutation
symmetry, which was the key ingredient of the method developed in [31]. In this paper we
show that our method can nevertheless be extended to the inhomogeneous situation. The
basic idea for making this extension is the introduction of an auxiliary algebra of functions
on the space of external parameters taking values in the one-particle algebra of the system.
With respect to this algebra (first used by [4]) permutation symmetry is regained, and the
techniques of [31] become applicable.

In order for the limiting free energy and limiting Gibbs states to exist, it is neces-
sary to make an assumption about the asymptotic behaviour of the n external parameters
of the n-particle system. We show that it suffices to assume that as n — oo these sets
of parameters have a limiting density. This assumption is easily checked in the BCS
model, where the external parameters are just the discrete momenta of the finite system
belonging to the cutoff region. However, the limiting density assumption is also true with
probability one, when the external parameters are random variables distributed according
to some ergodic process. Thus our method also covers so-called site-random mean-field
models [12]. We would like to stress, however, that we do not make use of probablistic
methods, and indeed our result is stronger than the usual statements of the theory of
quenched random systems: we do not only prove convergence of the free energy for almost
all samples of a random model, but also describe explicitly a set of measure one, on which
convergence holds everywhere. This strengthening of almost everywhere convergence to
a pointwise statement is essential for the application to the BCS model, since there the
external parameters are explicitly given in terms of the geometry of the finite system.

Under these assumptions we obtain a characterization of the limiting Gibbs states
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and a formula for the free energy density in terms of a Gibbs variational principle. As
in [31] the variational problem can be contracted to a “one-particle” problem, or more
precisely, a variation over functions from the space of external parameters to the state
space of the one-particle observable algebra. This result was announced in [32]. A special
case of this principle was also obtained by Blobel and Messer [4]. We briefly discuss the
relation between their work and ours in section IV.3.

This paper is part of an ongoing project. The class of approximately symmetric
sequences as the class of intensive variables appropriate to mean-field systems was also
used in [16] to treat the dynamics of homogeneous mean-field systems. An extension to
the dynamics of inhomogeneous systems, together with further examples and applications
of the pressent paper, and a detailed discussion of different notions of “mean-field limit”
for states can be found in [15]. A survey is to appear in [37].

The paper is organized as follows: the general class of inhomogeneous mean-field
models is described in section II, which also contains the main result. The proof is given in
section III; it relies on results obtained in [31], but we hope it is reasonably self-contained

as to be intelligible. Section IV describes a series of applications.

II. The models, and the results

To clarify the nature of the models to be considered, we present a specific example. The

Hamiltonian of the full BCS-model in its quasi-spin version is given by (compare [13])

n

1 I -
My (ky) = 5 Y e(kn )X - 0f) - A > ofU(kniknj)oy

i=1 i,j=1

where 0% (o = +,z,y,2) denotes a copy of the Pauli-matrix ¢% acting on the *" com-
ponent of the n-fold tensor product of the single-particle Hilbert space €2, ky, is a vector
with n components, each taking values in momentum space ]Rd, € and U are real-valued
functions on R? and R? x R? respectively, and V,, is the volume available to the n “spins”
(i.e. Cooper pairs). It is assumed that the density n/V, converges as n — oo. In our
terminology, this is an inhomogeneous mean-field system. Inhomogeneous, because the
single-particle energies e(k, ;), and the inter-particle interactions (i.e. coupling-constants)
U(kn,i, kn,;) are particle-dependent (here via their momentum); and mean-field because
of the factor 1/V,, « 1/n multiplying the inter-particle interaction. The corresponding

homogeneous model would be obtained if both ¢ and U were constant functions.
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In order to extract the essential features of the above model, we formulate things
in algebraic language. Although this introduces, necessarily, a certain degree of generality
which need not be of value in the discussion of every specific physical model, it does help
to rid oneself of unnecessary details. Moreover, this language is appropriate to identify
and discuss the role of permutation symmetry, which, in our opinion, is the key to the
mean-field nature of the models.

We introduce basic terminology and notation. We will consider C*-algebras A4
with identity 1, whose state space is denoted by K(.A). When w € A} is a positive linear
functional on A, we write the state w(I)™'w as Norm ™ 'w. The n-fold minimal C*-tensor
product AQ AR --® A of A with itself is denoted by A". The C*-inductive limit of these
algebras is denoted by .4°°. Whenever convenient, A™ will be identified with a subalgebra
of A™ for n € m < oo. There is a natural action of the permutations of {1,...,n}
as automorphisms on A", For n < oo, sym, : A" — A" denotes the corresponding
symmetrization projection, i.e. the projection onto the algebra of permutation-invariant
elements. The set of symmetric states in A", i.e. the states ¢ € K(A") with ¢ o sym,, =
@, will be denoted by K,(A"). K,(A>) is the set of states invariant under all finite
permutations of IN. For any state w € K(A) and n < oo, we denote by w” = wQuw®: - Quw
the corresponding symmetric product state on A™.

We take equilibrium states to be defined as KMS states with respect to the one-
parameter group t — a4 of automorphisms on the observable algebra A under consid-
eration. For simplicity of notation we shall always take the inverse temperature § = 1.
This is possible since in all thermostatic expressions (i.e. not in the time-evolution) the
Hamiltonian appears only in the combination SH. In order to restore physical dimen-
sions in the variational expressions we use later on, it suffices to multiply all entropies
by T = kB~'. Since oy is not in general of the form «,(A4) = exp(itH)A exp(—itH)
with ‘H € A, we cannot in general make sense of expressions for the Hamiltonian as the
one in the beginning of this section. We shall therefore split the generator of the time
evolution into a “non-interacting” part generating a one-parameter group ¢ — o, and
a perturbation h = h* € A, which we call the relative hamiltonian of the model. If af
is generated by a Hamiltonian H°, the perturbed time evolution « is generated by the
Hamiltonian H = H° + h; in the general case, we take a; to be defined by the integral
equation a¢(A) = [ ds ad_,(i[h, as(A))).

Suppose now that p is a separating state (a state whose GNS vector is separating
for the generated von Neumann algebra) of A, which is KMS for af. Then Araki [1]
defines the perturbation of p by the relative Hamiltonian h as a certain, in general unnor-

malized linear functional on .4, which is denoted by p". It is then shown [1] that the state
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Norm ™! p* := (p*(1))~p" is a KMS-state for the perturbed evolution @;. The number
F(p, k) = —log p~*(T)

will be interpreted as the relative free energy of the new Gibbs state. A closely related
quantity is the relative entropy $(p,¢) of a state ¢ € K(.A) with respect to the separating
state p € K(A). This was defined by Araki [2,3] for normal states on a von Neumann
algebra; the relative entropy for states of C*-algebras is obtained by passing to the GNS-

representation if the states are quasi-equivalent, and agreeing that it is +oco otherwise
[3,28]. We have the relation

F(p,h) < @(h)+ 8(p, )

and the perturbed equilibrium state ¢ = Norm ™' p~" is characterized as the unique state
for which equality holds (see Proposition III.1.below). Thus one recovers the usual ther-
modynamic relation FF = U — TS, where the first term on the right is interpreted as
the relative internal energy, and the difference in sign of the entropy results from Araki’s
sign convention (see below), which makes $(p, ) positive. We emphasize that the above
quantities are “relative” to the choice of a “free” system described by of and p. This
point of reference can easily be shifted without changing «;, and its equilibrium state ¢.
Explicitly, if we choose instead of p a reference state 5 = Norm ™ p¥, and choose as relative
Hamiltonian h = h + k, then the perturbed dynamics is unchanged, and because of the re-
lation (p¥)~* = p*~*, the equilibrium state ¢ = Norm_lﬁ_’-z coincides with ¢. Moreover,
F(5,h) = F(p,h)—F(p, —k), $(h) = @(h)+¢(k), and 8(5,¢) = $(p,¢)—p(k)—TF(p, —k).
Hence the above equation holds for the new quantities as well, albeit with a different split-
ting between the contributions of “relative internal energy” and relative entropy.

We illustrate these concepts in the case of a finite dimensional matrix algebra M.
This will serve as a justification for the terminology, and facilitate the comparison of our
sign conventions with those of other authors. A separating state p € K(M) is given by a
density with respect to the trace Tr of the form

D, =e*/Tr (e¥)

where k is a self-adjoint element of M. The perturbation p~* of this state by the relative
Hamiltonian h then has the density

Ah/Tr ()
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The relative free energy is just the difference of the “absolute” free energies in the usual

sense, taken with g = 1:
F(p, h) = —log(Tr e*=") 4 log(Tr €¥)
If D, is the density matrix of ¢ € K(A), the relative entropy is

S(p, ) = Tr Dy (log(Dy) — log(D,))

From this it is easy to check the relation between the relative free energy, internal energy,
and entropy using D, = Tr (eF=")"1ek—h,

A homogeneous mean-field model [31] is now specified by a C*-algebra A and a
separating state p. For each n, the non-interacting system of n “particles” is specified
by the product state p" = p®@ p® -+ ® p on A™. That is, p™ is the KMS-state of an
“unperturbed” time evolution of the product form a?™(4; ® --- ® An) = (oY 4;) ®

.- @ (a)' A,). The interaction is introduced by a relative Hamiltonian nH, which is a
self-adjoint element of A". The sequence H = (H,) of relative Hamiltonian densities is

assumed to be approzimately symmetric, that is:
(¢) Hp=sym,(Hy) ;
(12) for every € > 0, there exists an m € IN such that (MF)
for every n > m, |H, —sym,(Hm @ In_n)|| < ¢

Notice that the key requirement is (i1): if (ii) holds true, then we may replace H, by
sym,(Hy) to satisfy (i) without altering the limiting thermodynamics. Equivalently, an
approximately symmetric sequences is characterized by the property [31] that for suffi-
ciently large n, H, is uniformly approximated by a “strictly symmetric” sequence of the
form X, = sym_ (X ® I,,—x) for fixed k.

We illustrate the definition by the homogeneous version of the BCS-model. Here
A is the algebra of (2 x 2)-matrices with complex entries, and the state p is taken to be
the normalized trace. On A ® A set

H, = Z((]I—a’)®1[+1[®(]l—az)) +%(0+®0—+a—®0+) ,

where A~ is the limiting density. Then
H?’ifcs —-n symn(Hg)H =o(n) ;

and this model is indeed a homogeneous mean-field model. Notice that self-interaction

terms do not contribute.
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For every approximately symmetric sequence H = (H,), H, € A", and any
symmetric state ® € K,(A>) the limiting relative energy density lim,—,.o ®(H,) exists.
In the particular case of a symmetric product state ® = ¢°>° with ¢ € K(A) we have the
limit

J(H)(p) = lime" (Hn)

Then j : H — j(H)(-) = j(H) maps the set of approximately symmetric sequences onto
the continuous functions over the state space K(A) [31].

The ingredients defining an inhomogeneous mean-field model are again a C*-
algebra A and a separating state p which specify the non-interacting system. The inter-
action is introduced by perturbation of p™ with a relative Hamiltonian which is assumed
to be of the form nH, (€ 1,.-.&n,n) where the n parameters £, 1,...&n, » take values in a
fixed compact space X, and H,, : X™ — A" is a continuous function in the norm topology
of A", i.e. an element of C(X™, A™")=C(X,.A)". The sequence (H,) is assumed to be ap-
proximately symmetric. The sequence of n-tupels (€p,1,...6nn) = & € X™ is constrained

only by the condition, that there exists a limiting density p € K(C(X)):
1 n
Ly (Ens) — (LD)
1=1

in the w*-topology, where §(z) € K(C(X)) denotes the evaluation functional at z € X.
There is a further rather technical assumption on the space X, which is nevertheless
harmless from the point of view of applications. We suppose that C(X) admits a separating
state; equivalently, there exists a finite regular Borel measure on X whose support is X
itself.

It can be verified that the BCS-model is an inhomogeneous mean-field model,
provided the momenta are restricted to take values in some compact subset 2, condition
(LD) is satisfied, and, of course, both € and U are continuous functions. Condition (ii) is

met with Hy € C(2 x 2, A® A) given by

1 1
Hy(ki, ko) = Ze(ki)(T - 0%) @ T+ 2e(ke) 1@ (1 - 0%) o
1 .
+ ﬁU(khkz)(ﬁ o™ +o0~ ®0’+)

Consider an inhomogeneous mean-field model specified by (A, p, X, (&), &, (Hxr)),
and set ¥,, := Norm™'(p™)~"Hn (&) for the Gibbs state of the n*? system (we will keep this
notation throughout the paper). Because of the £,-dependence of H,,, ¥, depends on the

labelling of the n points &€, 1,...&n n € X. Therefore, unless we make further assumptions
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on the relation between the labellings of successive n-tuples £,, we cannot expect these
equilibrium states to converge in any sense to a state of 4. We shall use the “location
in X-space” itself as a label; this amounts to considering the equilibrium state of the n'®
model not as a state on A", but as a symmetric state on C(X, A)". To formalize this idea

we introduce the operator Z,, : C(X, A4)" — A" of “symmetrized evaluation” at ,:
EnF = (sym, F)(én1,...&nn) for F e C(X™ A™)

Since H, € C(X,A)" is symmetric, the n'® Hamiltonian density is given by
H,({n) = Zn(Hn). Since Z, contains a symmetrization its adjoint takes K(.A") into
Ko(C(X,A)"™). If the limit of the states ¥, o E, exists (we will state precisely what
we mean below), it will be a symmetric state on C(X,A)*. Note that the restriction

(¢n 0 Zp)]C(X)™ does not depend on ¢, € K(A™), but only on £,. Therefore we expect
that condition (LD) forces the limit of (¥, 0 Z,) to lie in the set

K= {4 € K, (C(X, A)™)| 41c(X)> = u=}

In the previous paragraph we were speaking loosely of convergence of sequences
of states defined on A"™. We make this precise as follows. Let v be a subnet of IN, i.e.
a function v : A — IN on a directed set (A,>) such that for every n € IN there exists
ag € A such that v(a) > n, whenever o > ap. If (an)nen is a sequence in a Hausdorff
space, we write lim,_,, a, for limyea a,(q) if it exists, and employ a similar notation for

superior and inferior limits of sequences of extended-real numbers.

II.1 Definition. Let (¢,)nen be a sequence of states ¢, € K(A™). We say that (¢,) is
convergent along a subnet v: A — N to a state ¢ € K(A*®), if for all m € IN and all
X e A™, ¢(X) = limp—, ¢n(X). Here A™ is identified with a subalgebra of A™ for all

m<n < oo.

Relative entropy, as the difference of two entropies, is an extensive quantity. The
interesting quantity in the thermodynamic limit therefore is its density, called the mean

relative entropy, which is defined for an infinite product state p°°, and a symmetric state
Y € K, (A*®) of A°°, by the limit

Sm(p™,¢) = lim n7'S(p", 9l A")

n

which is actually a supremum [29,31].
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The main result of this paper is the following Gibbs variational principle for inho-

mogeneous mean-field models.

II.2 Theorem. For any inhomogeneous mean-field model specified by the C*-algebra A,
the separating state p, the compact space X, the probability measure p, and the sequences
(€n) of parameters, and (H,) of relative Hamiltonian densities, satisfying the conditions

(MF) and (LD), one has
lim n ' F(p", nH,(£,))

= inf { lim ¢(Ha)+ Sm((u® ), 6)| ¢ € K2} (+)
= inf {j(H)(¢) + S(4 ® p,¢)| ¥ € K(C(X, A)),0lC(X) =} . (%)

Moreover, the first infimum is attained at any w*-cluster point of the sequence (¥, 0 E,)
of symmetric states of C(X, A)".

The proof of the following result is obtained as in [31].

I1.3 Proposition.

(1) The subset M, C K" of states maximizing () is convex and compact, and the subset
M, C K(C(X,.A)) of states maximizing (x*) is non-empty and compact. The extreme
points of M, are the states ¢*° with ¢ € M. Every ¢ € M, has a unique w*

integral decomposition ¢ = [ v(dg)p™, where v is a regular Borel probability measure
supported by M,..

(2) If A is separable, and X is metrizable, then for any extreme point ¢ of M, there exists
an approximately symmetric sequence (Hp) such that lim, ||H, — Hy|| = 0, and the
sequence ¥, € K (C(X,A)") defined from H,, is w*-convergent to ¢.

(3) Suppose that ¥,, converges to an extreme point of M., and let X,, = X} € C(X, A)"
be an approximately symmetric sequence. Let ,, denote the probability measure on IR
describing the distribution of the observable X, in the state ¥,,. Then the sequence ,
is w* -convergent to a point measure.

The solution of the variational problem (*x) can pose a formidable task. In the
rest of this section we shall comment on some simplifications of this problem, which apply
in special circumstances. In many applications A is separable. In this case every state ¢

of C(X, A) has a unique decomposition of the form

@
P = / to(dz)pos
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that is to say, there exists a regular Borel probability measure g, on X, and a K(.A)-valued
function  + ¢ such that for every F' € C(X, A), ¢(F) = [ pp(dz)p-(F(z)). The proof
is the same as that of Proposition IV.5 in [31]. Then, if p, = g, i.e., [C(X) = p, we have
(see II1.2.2 below):

S04 @ g, ) = [X u(dz) S(p, p-)

Also, the integral decomposition of ¢ can often be used (see below, and applications in
section IV) to express j(H)(p).

Suppose, for example, that the Hamiltonian density H, can be expressed in terms
of finitely many elements A, € A (o = 1,...r). To be specific, consider a gquadratic model

specified by consecutive symmetrization of

Hy(z1,72) = 22 €a(21)Ax ®][+sa(a:2)]I®A )

=1

+— Z Uaﬂ :El,:l:g)A ® Ag
a,B 1

(2.2)

where €4 € C(X), and Uy,p € C(X x X) are such that this expression is hermitian and
symmetric. We find

n

nsym,(Hs ® I,_2)(z1,22,...,2,) = Z Zea(:n Y(Aa)i

i=1 a=1

+(ni1) Z > Uap(i,z5)(A5)i(48);

i,j=1a,f=1

(2.3)

where (A, ); is a copy of A4 acting on the i*! factor of A™. Then for ¢ = f%(d:c)gox we

obtain

i) = [ wde) Y. Zal@pa(da)
o=t (2.4)

+5 [ WD) Y Vasla,ylorlAaliy(As)
o,f=1
Hence the energy term of the variational principle depends only on the function
z — ¢(z) € C, where #(z) € € denotes the vector with components ¢, (Aqs)(a =1,...7).
Therefore we need only consider states, which minimize the entropy term among all states
with given ¢(z). For any ¢ € CT, let

-,

S( ):inf{S(p,go)‘go(Aa)zq;a fora:l,...r} ,
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with the understanding that the infimum over an empty set is +00. Then using the integral
decomposition of $(x ® p,¢), (**) becomes
lim n 7 IF(p", nH,((,)) =

n—oo

-

= iuf {<é: §+@U8) + [ udn)8()

3 e £o(X, @’")}

Here £*°(X, u, C") denotes the set of u-essentially bounded C"-valued Borel measurable
functions on X, (-,-) denotes the inner product (¥,¢) = [ u(dz) 3, Tal(z)pa(z) on
L%(X,u,C"), and U denotes the compact integral operator

(Ud)alz) = / (dy) 3 Uas(z,v)Ba(y)
8

This discussion generalizes immediately to more than quadratic models, defined from an
H,, with m > 2. Note also that for r large enough any H, € C(X, A)* can be approximated
by an expression of the form (2.2), so that there is no essential loss of generality in taking
r finite.

The above discussion shows that the choice of the algebra A in a given model is
partly a matter of convenience, and one can often replace A by a smaller algebra A A
necessary condition is, of course, that H, € A" for sufficiently large n, or A,,... A, € A
in (2.2). In the classical case there is no further requirement, but in the quantum case one
has take into account that the entropy inequality $(p]A4,3) < inf { S(p,tp)' @] A = 95} is
strict in general, so g(q—ﬁ') may come out too small when computed relative to a subalgebra
A. A sufficient condition for the reduction from A to A to be valid is the existence of a
positive unital projection E : A — A with polE = p.

Similar remarks apply to the choice of the compact space X. As is commonly
the case in probability theory, the underlying measure space (X, pu) itself is irrelevant,
and only the distributions of the random variables £, and U,p really enter the problem.
Suppose that H, is given by (2.2) for some bounded, measurable, but not necessarily
continuous functions €, and Uspg on some measure space (X, u). Then the functions g4
and Uqyg(z,-) generate a C*-subalgebra of the algebra of bounded functions on X, which
can be represented as C(j{r ) for some compact set X. The space X arises from X by
identifying all points of X, which are not distinguished by the functions € and U. If X
1s a compact space and the functions ¢ and U are continuous to begin with, then the
quotient map z — Z is continuous, and the condition (LD) carries over from any sequence
€n € X™ to its quotients £, € X™. However, if € or U is discontinuous, or no topological

structure was assumed for X, (LD) becomes an independent condition for &,. This shows
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that the continuity of ¢ and U, or more generally the continuity H, : X™ — A", is not in
itself vital for our theory, but is needed only to ensure the boundedness of H, (together
with compactness of X) and to formulate an appropriate version of the limiting density
assumption.

The choice of the reference state p is also a matter of convenience. In fact, the
choices p = p* for some h = h* € A, and H, = H, + sym,(h) describe exactly the same
system as p and H,, and as discussed previously, one obtains exactly the same variational
principle up to a different splitting of the relative free energy into relative internal energy
and relative entropy. If A is the algebra of (d x d)-matrices, it is convenient to choose the
reference state to be the trace 7 given by: 7(h) = d~'Tr (k). Then $(r,¢) = $(7)—3(p) =
logd — $(¢), where 3(p) = —Tr (D, log D,) denotes the “absolute entropy” of the state
¢ with density matrix D,. Then if F(H) = —log Tr (exp(—H)) = IF(7, H) — log d denotes
the “absolute free energy” of the system with Hamiltonian H, the variational principle

becomes

lim - F(6nH,) = inf { i) - 5 [ w(an)S(o)} (25)

where the infimum is over the states ¢ = fe?u(dsc)c,osg

ITI. Proof of the Gibbs Variational Principle
The proof of the variational principle follows the strategy of [29], and [31]; it relies on

the relation between free-energy, energy, and entropy known from thermodynamics, and
formulated for general states on a C*-algebra by Petz [27,28]. The Petz Duality Theorem
characterizes the relative free-energy functional h — log p"(1) as the Legendre transform
of the relative entropy functional $(p,-). Since $(p,®) is also defined for non-normalized
positive linear functionals ¢ € A%, there is a second version of the Duality Theorem,
describing the variation of $(p, ) — 1 (h) over this larger set. We shall need both versions
below.

II1.1 Proposition. Let A be a C*algebra, and p € K(A) a separating state. Then for
@ € K(A) (resp. Y € A% ) and h = h* € A:

$(p, ) +log p"(1) — @(h) 2 0
(resp.  S(p,) + p"(T) — (A + 1) 2 0).
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Equality holds if and only if ¢ = p"*(1)™!p" (resp. % = p"). The following variational
formulae hold:

F(p,h) = —log p"(1) = inf {(h) + $(p,¢)| ¢ € K(A)}
$(p,) = sup {@(h) —log p"(I)| R = h* € A} , and
$(p,¥) = sup {$p(h + 1) — p*(I)| h = h* € A}

Proof : The statements about states ¢ are proven in [27], and we shall reduce the case of
unnormalized functionals 1) € A% to these. Any ¢ € A} can be written as 1 = Ap with
A € R4 and ¢ a state. Then by the scaling properties of $ (see [2,3], or the Appendix of
[29]) the left hand side of the second inequality can be written as

MS(p, ) + log p"(T) = p(h)] + [Alog(Ap" (1)) — X + p*(D)]
Both brackets are positive, and the second one vanishes only for A\ = p*(1). This proves
the inequality and the condition for equality. Proving the variational formula for $(p, )
( while $(p, ) is finite) is equivalent to showing that the infimum of the above expression
with respect to h vanishes. The substitution h — h + a1 does not change the first bracket,

and can be used to make the second one vanish. This reduces the statement to the known

theorem for states [27]. A similar argument works if $(p,%) = oo.

For arbitrary (not necessarily separating) w € A% and h = h* € A, we define
(1) = sup {$(h+ T) — S(w, )] ¥ € A3} ;

and remark that the map h +— w"(1) is continuous in the norm topology of .A. Moreover,
if w is a state, logw™(1) = sup {p(h) — $(w, )| ¢ € K(A)}.

We now describe the main ingredients of the proof of the variational principle.
An upper bound on the limit of the relative free-energy density n™!IF(p" nH,(£,)) is
obtained from III.1 by substituting suitable states x, € K(A") for ¢ in the expression
©(Hn(€n)) + n718(p™, »); to establish lower bounds we substitute for ¢ the equilibrium
state U, of the n'® system.

The energy term may be written as @(Hn(£n)) = (v 0 Z,)(Hp) with ¢ 0 E, €
K (C(X,A)"). The states x, used for the upper bound will be constructed so that the
sequence (x, 0 Z,) is w*-convergent to a state oo on C(X,.4) (IIL.7.). Then the ap-
proximate symmetry of H, ensures (Proposition II1.3 of [31]) the convergence of the mean

energy (Xn 0Z,)(Hy). For the lower bound the convergence of ¥, 0=, holds along suitable
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subnets by w*-compactness, and this again ensures the convergence of the mean energy.

Turning now to the entropy terms, one expects heuristically that
n"r8(p", @) = n T §(p" 0 E,, 0 0 Ey)

Here the inequality “> ” holds unconditionally, which takes care of the lower bound; for
the upper bound equality is achieved by judicious choice of x, (IIL.7.). A critical step in
the proof is to establish the approximate equality

n 8(p" 0Zn,p0En) R S((k®p)", 9 0En) . (=)

To see the heuristic content of (a) note that, by definition of =,, the restriction ¢ o
En|C(X)" =: in, € K(C(X™)) is independent of ¢ € K(A"). In fact, fin is just the
symmetrized evaluation at £, € X", and p" 0 2, = [i, ® p". The difference between the
two sides of (&) is the conditional entropy n~! 8(u™, ii,,) (see II1.2.(3) below). By virtue
of the limiting density assumption (LD) for the sequence £, the measures fi, and un on
X™ are w*-close (II.6.). Hence one may expect this conditional entropy to vanish in the
limit n — oco. Unfortunately, however, this expression is typically infinite, because [,
is singular with respect to u™. All states must thus be regularized by a coarse graining
operation (III.3.). After coarse graining (R¢) becomes valid in the limit (IIL.5.), and the
right-hand side converges to the mean relative entropy. The coarse graining is removed at
the end of the proof.

We now establish some basic facts about relative entropies in algebras of the form
C(X,A). Since this algebra will appear often, we shall from now on use the abbreviation

B =C(X,A). The following Lemma will mostly be applied to B™ = C(X, A)"=C(X", A").

ITI.2 Lemma. Let A be a C*-algebra with unit, and p € K(A) be separating. Let X be
a compact space and y € K(C(X)). Then

(1) For h € C(X, A),
(1 ®p)"(T) = / u(dz)p™=) (1)
(2) If A is separable, and ¢ € K(C(X, A)) is decomposed as ¢ = fe?u(dw)t,oI with ¢, €
K(A), then z — $(p, ;) is measurable, and

S(k®p,p) = /#(dI)S(p,%)

(3) Let ¢ € K(C(X,A)) with |C(X) = v. Then,
S(k®p,0)=S5(r®p,p) + S(p,v)
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whenever the left-hand side is finite, and there exists a separating w € K(C(X)).

Proof : (1) It is a general property of the relative entropy on a C*-algebra D [3,28] that
whenever $(p, ¢) is finite, ¢ has a unique extension ¢ to the von Neumann algebra ,(D)"
in the GNS representation with respect to p, and $(j,¢) = $(p,¢). By monotonicity we
also have $(p,¢) = $(pIM,p|M) for any C*-algebra M with 7,(D) C M C =,(D)".
Applying these considerations to D = C(X,.A) we find that 3(p ® p,p) may be com-
puted in the C*-tensor product M := L®(X,u) ® A. By definition (p @ p)*(1) =
sup {z/)(h + 1) - S(p® p,d))l P € ’D:L} for all h € C(X,A), and this supremum is un-
changed if 4 is allowed to range over M7%. We may thus prove relation (1) for A in
the algebra M, and utilize the fact that every h € M can be approximated uniformly by
step functions h(z) = 3, Xa(2)ha, With by € A, Xo = |xal’ € L2(X, p) and 3 xo = 1.
The formula is clearly true for constant h. Since M = @ (xo ® I)M, and a step function
is constant on each direct sumand in this decomposition, the formula holds for step func-
tions. Finally, the continuity of A + p®(1) in the norm topology shows that the formula
holds for arbitrary h € M, and hence for h € C(X, A).

(2) Let (An)nen be a dense sequence in A, and define
Sn(py ) = max {p(Am + 1) — pm (1)}

Clearly, n — S$,(p,¢) is increasing, and $(p,¢) = sup, Sa(p,¢). For every n, the
function z — $,(p, ) is measurable, hence the pointwise supremum of this sequence
of functions is also measurable, and [ u(dz)S$(p, ) = sup, [ u(dz)S.(p,¢:) by mono-
tone convergence. By IIL1, and (1), $(u ® p,¢) = sup, {@(h+ 1) — (k@ p)*(1)} =
supy ([ p(dz) {pz(h(z) + T) — p*&(1)}) < [ u(dz)$(p,p:). To prove the converse in-
equality, we construct for every n a measurable step function h : X — {A41,... A,} such
that {¢z(R(z) + I) — p"& (1)} = maxm<n {@e(Am + I) — pA=(1)} for all z € X. In-
tegrating this equation with respect to p, and using part (1), we find $(p ® p,p) >

e(h+ 1) — (1 ®p)"(1) = [ u(dz)8n(p, pz). Now the result follows by taking the supre-
mum over 7.

(3) This is the conditional entropy formula of Theorem 2 of [28], applied to the conditional
expectation IE : C(X,A) — C(X) ® I given by E(f ® A) = p(A)f ® 1. There the claim
is proved when u ® p is separating. Let w, = (1 —e)p @ p+ew ® p, 0 < ¢ < 1, which
is separating and preserved by IE. By monotonicity [3], $(u ® p,¢) > S(e 7 we ® p, ) =
S(w ® p,p) +log(e), so that $(we ® p, ) is finite. By the theorem mentioned,

S(we ® p,) = B((1 —e)p + ew,v) + 5(v @ p, )
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Using the lower semicontinuity of $(-,-) in the norm topology (Theorem 3.7 (1), of [3]),
and the joint convexity (Theorem 3.8 (1), of [3]), we obtain the claim by taking the limit

e — 0.

When X is a finite set, the conditional entropy n=! $(u", ii,) cannot diverge, and
can be seen to go to zero by a direct application of Stirling’s formula. This suggests the use
of “coarse-graining”, a standard technique for reducing problems on a general probability
spaces X to the finite case. The term “coarse graining” is usually applied to a conditional
expectation of L%(X, u) onto the subalgebra generated by a finite y-measurable partition
of X. However, this kind of discretization does not fit the purpose at hand, because
(LD) requires only the w*-convergence of certain measures, so that the convergence of
expectations of discontinuous (e.g. characteristic) functions cannot be guaranteed. This
difficulty is circumvented by using the following class of operators, which is more adapted

to the C*-algebraic (rather than the W*-algebraic) setting.

ITIL.3 Definition. Let 4 € K(C(X)). Then a continuous coarse-graining of X with
respect to p is a map -y : C(X) — C(X) of the form
(1H)@) = Y a@mlf)
i€l
where I is a finite set, g; € C(X) is positive with 3 .g; = 1, v; € K(C(X)) with
Yo u(gi)vi = p, and if p(g:) # 0, then v;(-) = p(hi-), with h; € C(X). The set of
such operators will be denoted by T'),.

For many purposes coarse graining operators with v;(f) = u(g:) 'u(gif) are
sufficient. These correspond to hermitian operators in £2(X, u), but we shall not have
any use for this property. When v € T',, the symbol v will also stand for the operator
y®id4 : B — B (recall that B = C(X, A)=2C(X) ® A). For n < oo, ¥" will denote the n't

tensor power of v, considered either as an operator on C(X)" or on B".

II1.4 Lemma.

(1) Let n < oo, € >0, r € N, By,...,B, € B*. Then there isy € [, such that
lv™(Bi) — Bi|]| < € for & = 1 suaT
(2) Let H = (Hp)new with H, € B™ be an approximately symmetric sequence. Then

there is v € T, such that ||y"*(H,) — H,|| < ¢ uniformly for sufficiently large n. Hence
for all ¢ € K(B):

GH)poy)—(GH)p) <€
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(3) Let ¢ € K(B>®), ¢, € K(B), and s' < $(, ), sy < Sm(1p°°,4). Then there is a
v € ', such that

s' < 8(Woy,poy) < 8(,e) and sy < Sm((poy)™,¢or™) < Sm(v™, ¢)

(4) The above three requirements can be met simultaneously by a suitable y € T,.

Proof : (1) We first prove this statement for n = 1 and 4 = C, that is for C(X). Any
collection of r functions in C(X) determines a continuous map B : X — C". We may then
pick finitely many continuous functions g; : E(X ) — R, each of which is supported by
a subset of the compact set E(X ) with diameter less than €/2, and such that ) . §; = 1.
Put g; = §; o B. For those i, with p(gi) > 0, set v4(+) := u(gi)~'p(gi-); otherwise, let v; be
any state of C(X) such that the corresponding measure has support contained in supp(g;).

Then the (g;,v;) satisfy the conditions of II.3, and the corresponding coarse-graining -y

satisfies

[7(B&) — Bl = sup| 3 gi(2) (v:(Be) ~ Bx())|
< S;ngi($)1Vi(Bk) — Bi(z)|

& max sup {|vi(Bx) — Bx(z)] l z € supp(g:) }

By definition of g;, ¢ € supp(g;) iff 5(:6) € supp(gi). Thus, since supp(v;) C supp(gi),
|vi(Br) — Bi(z)| < € for « € supp(gi), which establishes the claim.

Now every element of B” = C(X)® ® A" can be approximated in norm by finite linear
combinations of elements of the form B= fi ® --- ® f, ® A with f € C(X) and A € A™.
(If n = oo, this is valid for a suitable finite n). Then v*(B) = (vf1) ® - - ® (vfn) ® A.
Only a finite set of functions f € C(X) is needed in the uniform approximation of the given

B,...B;, and for all of these functions we can simultaneously make ||yf — f|| as small as

we please.

(2) Given ¢, we can find m such that ||H, — sym,(Hn,)|| < /3. Applying (1) to the single

element H,,, and using sym_, oy™ = ™ o sym._, the result follows.
g symy, 0y 84 Yy,

(3,4) The inequality S( o v, 0v) < $(%, ) holds for arbitrary Schwarz-positive unit-
preserving maps [22], and the corresponding relation for $y follows herefrom by going to
the limit which defines $y. We may assume that the relative entropy in question is finite,
and pass to the von Neumann algebra B = my(B)" generated by the GNS-representation

associated with . We then have the variational formula [22]

$(ih,p) = sup sup K (nb)
nelN b
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where the second supremum is over step functions b. : [1/n,00) — B with finite range, and

such that b; = T for large ¢, and where

oo

K(ni8) =log(n) = [ di(t7 (1~ b)" (T = b)) +1 (b))

1/n
Now for s’ < ' +¢e < $(¢, ), we/ can find K(n;b) lying between s’ + ¢ and $(¥,¢). Since
b has finite range, there is v € I, making both
[7(bey) = bubill - and [l ((T = 07 )(T — b)) — (T — b7 )(L — by)|

sufficiently small, so that the lower bound K(n;~(b)) on $(v 0 v, o v) will still be above
s'. This proves the existence of v, and it is clear that the same argument works for the
entropies on B™ and for %y, which is a supremum of such entropies. Moreover, it is clear
from this proof that (1), (2), and (3) can be satisfied by the same v. (Remark that (3)

without (4) could have been proven directly by invoking w*-lower semicontinuity).

The following proposition solves the problem of the “divergence of the conditional
entropy n~! $(u", in)” discussed previously in this section. The estimate given should be

compared with liminf,_,, n™'$(u™, ) > $m (>, ¢), which will follow from II1.6 below.

IT1.5 Proposition. Let v be a continuous coarse-graining with respect to u. Suppose
that @, € K (C(X)") is a sequence converging to ¢ € K,(C(X)*) along a subnet v. Then

limsupn ™" $(u"™, pn 07") < Sm(u™, )

n—y

Proof : We first prove the claim in the case where X is a finite set and v is the identity

operator on C(X). This is done in three steps.

Step 1: By Stgrmer’s theorem [35] (Proposition IV.5 of [31]) the symmetric states on
C(X ) are in one-to-one correspondence with the measures on the simplex A := K(C(X)).
[t will be convenient to represent states of C(X )" in the same way; to do this we use the fact
that sym,, (C(X)™) is isomorphic to C(X™/ ~), where X™/ ~ denotes the space of orbits
in X™ under the action of the permutation group of n elements. Each such orbit is char-
acterized uniquely by the number of times each of the elements of X appears in it. Thus,
an orbit corresponds to an “occupation number function” w : X — IN, satisfying the con-
straint ),y w(z) =n. To each orbit we can associate a point o, = n™' Y, o v w(z)é(z)

in A, where §(z) denotes the point-measure at z € X. Since X is finite, every symmetric
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state ¥ € K (C(X)™) = K(C(X™/ ~)) is a finite convex combination ¢ = Y  AMw)é(w).
We associate with ¥ a measure 1} on A given by

b= Aw)lon)
and a symmetric state 3 of C(X)® defined by
j = b(dx)x™® = Mw)(o,)™
b= [ banx RCLH
We will show that
[ = drecor

<2(1=n""n!) . (%)

This then implies that the sequence (¢,) associated with (¢,) is also w*-convergent to ¢

and - due to Stgrmer’s Theorem - the sequence (¢, ) is w*-convergent to ¢, along the same

subnet.

To prove (*), it suffices to show that
[(6(w) = (0w)")(A)] < 2(1 —n""nl)[|A]| (+)
for every A € C(X)™ and every orbit w. We have, on the one hand,
§(w)(A) = ()™ Y Abm1sbrs- - sbnn)
™

where the sum is over the permutations of {1,2,...,n}, and (&,&2,...,&,) is any point of
the orbit w. On the other hand,

(0w)"(A)=n"" Z Z A(z1,z2,...,2p)w(z1)w(z) - w(Tn)

j=lz;eX
This last sum can be rewritten as a sum over the n® mappings n from {1,2,...,n} into
itself:
(O-W)n(A) =R Z A(éﬂl ) 5112) ceey gﬂﬂ) ’
1
due to w(z) = {¢| £&; = z}. Since the permutations of {1,2,...,n} are just the n! injective

maps, we have

(6w) = ()7 (4) = (27" = ()™)Y Al bnay - mn)
+ o Z A(‘Snl:fn‘b v )'gnn) 3

where the second sum is over the (n™ — n!) n’s which are not injective. The modulus of
each sum is bounded by (1 — n™"n!)||4||, and (**) follows.

Step 2: For every orbit w we compute n™!§(u", 6(w)) and relate this to $(u,0,) =
Y rex(w(z)/n)(log(w(z)/n) — log(p(z)). Viewed as a symmetric probability measure on
X™, §(w) is the equidistribution on the orbit w, which consists of p;* = n!/([],cx w(z)!)
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points of X™:

6() =pu 3 6(2)

ZEWw

To every point z in the orbit w C X™, the measure u™ assigns the same probability
un({2)) = [oex #({z})®. Thus,
S(u",8(w)) =Y pulog(pu/u(2))

zEwW

= 3~ (log(w(@)!) — w(z)log(u(x))) — log(n!)
teEX
Using the following precise form of Stirling’s formula

(12n + 1)7! < log(n!) — {3 log(27) + (n + 3)log(n) — n} < (12n)7*
and the inequality 1 < w(z) < n, we arrive at
(2n)™(1X]| — 1) log(2m) — (2) ™" log(n) + |X|(12n? +n) ™" — (12n2)~?
< U S(u", 8(w)) — S(0u) <
< (2n)71(|X| = D log(27n) + (12r) 1| X| — (12n% +n)™!

Step 3: By convexity of $, and the previous steps, we have for ¢, = > Ap(w)d(w):
nT S(u",0n) < D An(w)n T 84", 8(w))

<Y An(w) 84, 00) + O(log(n)/n)

— [ alda)S(1,) + O(log(rn) )
But for finite X, 8(u, -) is a continuous function, hence w*-convergence of (¢, ) to ¢ implies

that limsup, 7' $(u",¢n) < [, #(do)S(p, o) = Sm(u>°, ). This completes the proof of
the proposition for finite X.

We now prove the full statement. Let (vf)(z) = }_;c; 9i(z)vi(f) be a continuous coarse-
graining with respect to u. Then we can write v = 73 0 v with v2 : C(X) — C(I) and
7 C(I) = C(X) given by (12£)(1) = vi(f) and (71 f)(z) = ;s 9i(2)f(é). Then
limsupn ™' $(u", @n) = limsupn ™! $(u" 0 77 077, 0 077 0 77)

n

n
< limsupn ™' $((p o 7)™, @n077)
n

< SM((V’ O 71)00a90 o 700) < SM(}uooa 90) )
where at the first and last inequality we have used the monotonicity of $ under Schwarz-
positive unital maps [22], and the middle inequality is an application of the special case
(proved above) to: the finite set I, the product state built with uo~y; € K(C(I)), and the
sequence @n 0 ¥;* € K (C(I)"™), which converges along the given subnet to ¢ o y{°.
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The following proposition is the key entropy estimate for the lower bound; its

homogeneous version goes back to Proposition II1.4. of [31].

IT1.6 Proposition. If (LD) holds, the measures fi, € K(C(X)™) with fin(f) = (sym,, f)(&n)
are w*-convergent to u®. Let ¢, € K(A™), and suppose that lim,_,, ¢, 0 =, = ¢ along
some subnet v. Then ¢ € K*, and

8

liminf ™" $(p", én) > Sm((1 @ £)™, ¢)

Proof : We first show that ¢ € K¥. The statement lim, i, = u* is the special case
A= C. Let f € C(X), and consider for each n the function F,, € B" given by

Fn(mla"wmﬂ) =14 (nul Zf(m‘l) —/,u(dx)f(a:))

This is an approximately symmetric sequence as the square of a strictly symmetric sequence
[31]. By Proposition 112 of [31], jF(¢) = (¢(f @ 1) — p(f))2 Since F), is symmetric,
En(Fn) = Fr(€n1,-..&n,n), which goes to zero by (LD). Hence limy (¢, 0Zp)(Fr) =0. On
the other hand, for the subnet v along which (¢, 0E,) converges to ¢ = [ m(diy)>, and
Proposition I1.2 of [31] implies

li(8a 0 Z)( ) = [ m@)GFIW) = [ml@) (@ 8 1) - u(5)” =0
Since this equation holds for all f € C(X), we conclude that m must be supported by the
closed set {¢ € K(B)|¥[|C(X) = u}.

To prove the entropy estimate, consider a continuous coarse-graining v with respect to p.
By the monotonicity of $ with respect to Schwarz-positive identity-preserving maps, we
have n™' §(p™, ¢n) > n 1 8§(p" 0=, 09", b 0=, 04™). Noting that (¢, 0=, 0y™)IC(X)"” =
fin © 4™, independently of ¢, € K(.A"), and that p" 0 Z, 0 " = (fin 0 Y") ® p™, we apply
II1.2.(3) to C(X™, A™) and find that
1ig§fn‘1 S(p", ¢n) = liminfn ™" $((fin 07™) ® p", ¢n o0 Eno07")
= lirrlrii}]}f(n_l S(u" ®p", dn0En09") —n T 8(u", fin0¥™))

> liminf ™" (1" @ p*, ¢n 0 E,09™) — limsupn ™ $(u”, fin 07")

Since (fin) is w*-convergent to p®, IIL5 implies that limsup,_,, n™ ! §(u™, fin 0 ¥™) <
Sm(u%, 1) = 0, so the last term above vanishes. The other term is bounded below by
Sm((n ® p)>, ¢ 04°°) due to Proposition I11.4 of [31]. The result follows by taking the
supremum over y € I', and II1.4.(3).
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The following proposition summarizes the properties of the trial states x, used in

the proof of the upper bound.

II1.7 Proposition. Let ¢ € K(B) be a state of the form ¢ = poy withy € ', ¢ € K(B),
and satisfying ¢[C(X) = p. Then ¢(f® A) = [ u(dz)f(z)¢(z, A), wherez € X — (z) =
¥(z,) € K(A) is continuous and has finite dimensional range. Let x, € K(A") denote
the state given by xn = ¥ (€n,1) ® - ® Y(€n,n). Then limy xn 0 =, = ¥*°. Moreover, if
S(pu® p,) < o0, then $(p,¥(-)) is bounded and continuous, and

lim n7'8(p", xn) = /u(d:c)S(p,z/)(:c)) = 5(p®p, )

n—oo

Proof : Let (vf)(z) = 3;cr g9i(z)vi(f). It follows that p(z, A) = > .c;hi(z)p(g: @ A),
where J is the set of ¢ € I with u(g;) # 0, and k; is the continuous Radon-Nikodym
derivative of v; w.r.t. p. Thus 9(z) = 37, ;hi(z): with hi = u(g:)hi, and states
¥; € K(A) given by

$i(A) = u(g:) (9 @A) i€
The statements about () are then obvious.

To prove the first limit formula we use only the w*-continuity of )(-). Defineamapn : B' —
C(X) by n(F) = ¢(z, F(z)). Indeed, n(F) is a continuous function since (1, A) — (A) is
jointly continuous on bounded sets for the (w*x Norm)-topology. Clearly, n is completely
positive and unit-preserving, and pon =poy=1. For F =B ® - ® B, € B™ we have
with " : B® — C(X)":

Xn(F(&n)) = Hd’(fﬂ,ia Bi(én,i)) = 7" (F)(&n)

By continuous linear extension this relation carries over to all F' € B™. Now fix some
k€ N, and F € B*, Then F is identified with F @ I,,_x € B™ for all n > k, and
n™(F ® L,—k) = (n*F) @ T,,_ because n maps the unit of B into the unit of C(X). Then
(Xn © En)(F) = xa (sym,(F @ L—t)(€x)) = (7" (symu(F @ Ln—i))(én)
= (sym,(n°F @ Tnt))(én) = fa(n"F ® Ln—g)

Then, as remarked in the proof of III.6 , (i) is w*-convergent to u®°, and thus
limyp(xn 0 En)(F) = p®(n*F) = (p o )= (F) = $>=(F).

Suppose now that $(u®p, @) < co. Since $(p, -) is convex on the finite dimensional simplex
spanned by {v;|: € J}, the continuity of $(p,%(:)) follows if we show that $(p,%:) < oo
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for all 2 € J. Since ¢p = povy = ) .. ;u(gi)vi ® ¢; is a convex combination of product
states, we have

00 > S(u@p,p) > S((k®p)oy,po7y) = S(u®p,¥)
> ulg) Sk ® pyvi @) + ) wlgi)log plgi)

teJ teJ
> > p(gi)($(uvs) + S(p, i) —log 1]
1eJ

For:i e J, S.(,u, v;) < sup,cx |hi(z)log(hi(z))| < oo, so 5(p,;) must also be finite.

The first equality for lim,n™'$(p" xn) follows from (LD) and n~'8(p", xa)
=n"! E?:l $(p, 'ﬁb(fn,i))'

It remains to be shown that [ u(dz)$(p,¥(z)) = $(u ® p,4). By IIL1 and IIL.2.(1):

S(u @ p, ) = sup [ w(de) { (e, k(e) + D) - (D))
the supremum being taken over all £k € B. Again by IIL.1. the integrand is bounded above
by $(p,%(z)), which proves the inequality “<”. To prove “>” it suffices to exhibit for
every € > 0 a k € B such that $(p,4(z)) < e+ 9(z, k(z)) — log p*®)(1). By IIL.1, we can
find for every z some ko(z) € A such that $(p,%(z)) < &/2 + ¥(z, ko(z) + I) — pF @ (1),
Since 3(p,¥(-)) is continuous and () is w*-continuous, the set U, C X consisting of those

y € X satisfying
S(p, () < +%(y, ko(2) + I) — p*(T) . (+)

is open and contains z. Hence there is a finite subset Z C X such that {U,|z € Z} covers
X. For each 2 € Z we can pick a function (; € C(X) such that {; > 0, (, vanishes outside
U.,and ) ., (. = 1. We define k¥ by k(y) = >, C:(y)ko(z). Then since () holds
whenever (,(y) # 0, and k  log p*(T) is convex we find

S(pb(y)) =D CW)Sp () < Y C(w)le+ ¢y, k(y) + T) — p*) (1))

z€EZ Z€EZ

Se+ Py, k) + D) - D GWePP(M)  <e+ 9y k(y) + 1) — p*@(T)
z€Z

Proof of the main theorem:

Step 1: The equality of () and (*%) follows as in [31], since
Jim 4C) = Sul(n ©)°,9) = [ mlde) G(H)e) - S pp))
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where m is the probability measure on K(B) in the Stgrmer decomposition ¢ = [ m(dp)e*™
of the symmetric state ¢ € K (B°°). The constraint ¢ € K# is equivalent to m being
supported by {¢ € K(B)| [C(X) = p}.

By the Petz Duality Theorem III.1 we have

an =0~ (o7, nHa(En)) = —n~" log(p") " Hn(6)(1)

= inf {‘P(Hn(fn)) +n7t S(p",tp)l ¥ € K(An)}
Step 2: (Upper bound): By the first step we may suppose that ¢ is a symmetric
product state, i.e. ¢ = > with ¢©|C(X) = p, and we may suppose that S(u ® p, ) < oco.
Now let v € ', and define x, as in III.7. Then applying III.7, and Proposition III.3 of
[31], we get from (PD):
limsup a, < limsup(xn(Hn(ﬁn)) +n7'8(p", Xn))
n n

(PD)

= lim(xp 0 Zp)(Hy) + imn ™' $(p", x»n)

=j(H)po7) - 5(r@p,po7)
By II1.4 we may choose v such that the right-hand side is arbitrarily close to j(H)(¢) —
$(k ® p,p).

Step 3: (Lower bound) : The state ¥, = Norm™'(p") (=) attains the infimum
in (PD). Let v be a subnet, along which the sequence (¥, o Z,) is w*-convergent to
¢ € K4(B*). Then we have

liminf a, = liminf (¥ ,(ZEn(Hn)) + 27" $(p", )

n—w n—v

> lim (¥ 0 Zp)(Ho) + liminf n ™" $(p", )

> lim ¢(Hn)+ Sm((k®p)%,¢)
where for the last inequality we have used Proposition II1.3 of [31] for the first summand
and III.6 for the second. Thus any cluster point of (¥, o Z,) maximizes (*). Since
the subnet along which a, converges to liminf, .. a, contains a subnet v along which
(U, 0 =,) is w*-convergent, the above estimate shows that liminf, a, = lim,_,a, >
(%) > limsup,, a.
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IV. Applications

We consider three applications. The first one is the completion of the discussion of the
quasi-spin version of the BCS-model which we used as an example in section II. The second,

is to a class of “paired-fermion” models inspired by [14]. The third application concerns

random mean-field models.

IV.1 Quasi-spin BCS model
Consider the BCS-model in it quasi-spin version as introduced in section II. Let X be the
compact subset of R? which is the range of the momenta. For any state ¢ € C(X, A)
decomposed as ¢ = f%’uq,(k)gok, we get from (2.1)

. 1 )

HEe) = (p ®)(H) = 5 [ poldh)elk)pe(T = o%)

_ %/X #o(dE)du(p) Uk, IR {ipk(e )gp (7))}

The entropy term (recall that the reference state p was chosen to be the tracial state 7) is
given by (II1.2.2)

m@nw=LM%wmw),

if p, = p. Thus, the limiting free-energy density (at inverse temperature ) is given by

(2.5):
iﬁ{ 5 [ Had) (ko - o)

_ %\.fxxxp(dk)y(dp) U(k,p)R {r(c T )pp(07)}

ﬂ p(dk) S(w)}

We have 3(3) = —I(k), where « and (1 — k) are the eigenvalues of the (2 x 2)-

density matrix associated with %, and
I(s) = slog(s) + (1 —s)log(l—s) ,0<s<1

Using the parametrization

_ 1 147 COS(G_') r sin(Q)ew
¥=4 (T‘Sin(t'z’)e""S 1- Tcos(@)) (4.1)
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(0<r<1,0<6<m 0< ¢ < 2n) of the state space of the (2 x 2)-matrices, we get:

inf{ %/}-{p(dk)s(k)(l—rk cos(x))

_ 4%\ p(dk)u(dp) Uk, p)riry sin(0) sin(6,) cos(dr — ¢p)
XxX

+%/Xp(dk)f((l +’”k)/2)} =

where the infimum is over the Borel measurable functions k — rg, 8, and ¢y, taking
values in [0,1], [0, 7], and [0,27) respectively. This result was obtained by a different
method in [9], where the solution of the variational problem is also discussed.

The application to any inhomogeneous mean-field model of “spins” (i.e., A is some

finite dimensional matrix algebra) follows the above lines.

IV.2 Models of paired fermions

We consider a family of fermion-models where the Hamiltonian is expressed in terms of
creation/annihilation operators appearing in pairs (i.e. the Cooper pairs in the BCS-
model).
Let {;|5 =1,2,...,2n} be an orthonormal basis of C*>", and F be the antisym-
metric Fock space built upon €2". Denote the annihilation operator a(v;) on F by alj].
Let us pair-up the given basis of C*", say as {(j,7 + 1)|j = 1,3, ...,2n — 1}, and consider
the even CAR algebras A; generated by {a[j],a[j + 1]}. If A lies in A;, and B lies in
Ar with j # k, then A and B commute. Thus, the algebra generated by the collection
{A;|7=1,3,...,2n — 1} is isomorphic to the n-fold tensor product of the even part of the
CAR algebra over C?, for which we will write A. A is *-isomorphic to the direct sum of
two copies of the (2 x 2)-matrices with complex entries (denoted by Ma): A= My O M.
This isomorphism is explicitly given by the following identifications of the generators:
a*(+)a(+) = ez2 B eza, a(+)a*(4+) =enn Den, a*(—)a(—) = e Den,
a(—)a*(—) =enn Bex, o' (+H)a(-)=0@ex, a(+)a*(-)=0@(-e12) (42)
a*(+)a* (=) =e1 ®0, a(+)a(—) = —e12 B0,

where {e;;| 1,7 = 1,2} is the usual basis of M3, and + are the two components of C*>. The

state space is thus given by

K(A) = {t«,o“’ B(1—t)p@|0<t<1,eM, 0@ ¢ K(Mz)}
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As this does not restrict the generality, the reference state which specifies the model
will be the faithful trace on A defined by p = %'r @ %T, T being the unique normalized trace
on Mj. Under the further conditions of Theorem II.2, the limiting free-energy density at

the inverse temperature f is given by:

f(B) = inf {j(H)(¢) + B~ (S(n ® p,¢) —log(4)) } , (4.3)
where the infimum is over the states ¢ of C(X, A), with ¢ = [ eiz(dx)gox, and the term

—B1log(4) comes from the reference free-energy of the system in the state p™.
We mention that if ¢ =t @ (1 — t)p? is a state of .4, then

S(p, ) = ST @ 37, te) @ (1 — 1))

= 1) ~15(5) - (1 - )S(5?) +log(4) o

IV.2.1. The BCS-model

Let {Aq| @ =1,2,...} be asequence of regions in R” with volume V,,. Associated with each
region, there is a set of momenta P, = {ka(j)|j = 1,2,...}, such that if k € P, then —k €
Pa. Moreover, to each kq(j) there is associated a pair of orthogonal unit-vectors ¥, (j; £)
in a Hilbert space H, (the one-particle Hilbert space) such that {1p4(7; )| ka(j) € Pa} is
a complete orthonormal basis of H,. The fermion annihilation operator a(.(7; £)) acting
on the antisymmetric Fock space F, built upon Ha, is written a[kq(7); £]. One considers a
fixed (a-independent) inversion invariant compact subset X of momentum space. Letting

No = |{j| ka(j) € X}| be the number of momenta in X, one assumes that

Vo/No — X, (4.5)
and that there is a limiting distribution for the momenta in X:
]
N Y bkai) — H (4.6)
o g

in the w*-topology as a — co.
The Hamiltonian for the full BCS-model acts on F,, and is given by

Na
Ha Z% ;s(ka(j))(a*[ka(j); +alka(j); +] + a*[ka(4); Jalka(5); ~])

Na
- 7 O Ulka(3), ka(i))a* (ka(i)s +a" [ka(i)s ~lal—ka(i); ~lalka(Di +]

J=1
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where € 1s a continuous real-valued even function on X, and U is a continuous, symetric
real-valued function on X x X. To verify that this model is of the quadratic inhomogeneous
mean-field type, we pair-up alks(7); +] with a[—kqa(7); =] for 7 = 1,2,..., N4, and choose
(see section II, (2.2)):
Ar =a*(+)a(+), A2 =a"(—)a(-),  As=A]=a(—)a(+)
Ei =gy =¢]2, Ea=¢€4=20,
Uss = Ugqy = =270, all other U;; =0

Using (2.3) we then verify that
“Ho, — N, (symNa(HQ ®R ][Na_g))(ka(l), 05 ,ka(Na))” = o(Ny)

so that our result applies and the limiting free-energy density is given by (4.3). Upon using

the identifications (4.2), and the formulae (2.4) and (4.4), the functional to be minimized
n (4.3) is

') =5 [ mdn)e(e)(1+ o)l (2er 1)
-3 [ T )R (D)ol )}
+5 [ wan) (1t@) ~ 1) $60) — (- =) )

where @, = t(w)tp(l) ® (1 —t(z))ex ) 0< t(-) <1, cp(J) € K(M3). The variation over the

(2) (2) _

¢y -part of the state is trivial; the corresponding minimizer is ¢; ' = 7 a.e., and we are

left with the minimization of

T(H) ) = / i(dw)e(x) (1 + t(z)pe(202 — 1))

- l/ pulda)p(dy)U(z, y)t(z)t(y)R {1z (e21)by (€12)}
XxX

X
+%/ p(dz) (I(t(z)) — t(z) 8(z) — (1 — t(z)) log(2))
X

where 1, 1s now a state of M,. Using the parametrization (4.1), we get

7)) =5 [ ude)ete) - 5 [ udale(a(oIr(e)eos(8(=))
-5 [ sl @)

(82 sin(8(y) cos(#(z) — (1)
+5 [ u@n) (1) + 65 - (1= o)) log(2)
X
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Thus our result is:
FB) =271 inf {T (), (), 6(:), ¢(-))}

reproducing the result of [14], obtained by totally different methods. This also confirms the
mysterious finding of [14, Theorem 10]: the free-energy density of the full BCS-Model

1s equal to that of its quasi-spin version at the doubled temperature.

IV.2.2. The Overhauser Model

The specification of the model is analogous to that of the BCS-model [14]. The sequence
of momenta P, is now unrestricted, and X need not be inversion invariant. Conditions

(4.5) and (4.6) are assumed. The Hamiltonian is

2

o

Ho =, (na (ka(5))a* [ka(5); +Halka(5); +] + 15 (Ka(5))a" ka(5); ~lalka(5); 1)

1

L)
Il

No
-5 3 Uka), ka(i)a" kol +alka(); ~la*[ka(); ~Jalka(@) +]

7,0=1

where nT are real-valued functions on X converging uniformly as @ — oo to continuous
functions nt. The further steps and computations are as in the previous example; we only
give the results. The pairing is now alks(7); +] with a[kq(j); —], and H; is specified by
the choice:

Ay =a*(+)a(+), Aez=a*(-)a(—), As=A{=a"(-)a(+),
g1 =11, g2 =17 , €3 =€4 =0,
Uss = Uyg = =270, all other U;; =0

The model is now over the gauge-invariant subalgebra of A which is generated by the
first group of elements of (4.2), and isomorphic to Dy @& M2, where D, is the diagonal
subalgebra of M. The limiting free-energy density is given by (4.3). Putting

1 _
nzi(n++n ), e=nt—-n7
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the functional to be minimized in (4.3) is

(), .) = / w(de)(z) + = [ u(de)e(z)(1 — t(z))p® (262 — T)
[ w0 (51~ )1~ )R { P (e )P (ern) }

A XxX
ﬂ/ u(dz)(I(t(2)) = (1 - t(2)) S (7))
+/Xﬂ(dw)t( )(n(2)et) (222 — )—‘3(90(1)))

The last summand lives on the abelian two-point algebra Ds; the corresponding vari-

ation with respect to z +— go( ) e K (D2), can be done inmediately, and contributes

—B7" [ u(dt)log(2cosh(Bn)). This leaves us with the minimization of (interchange ¢
and 1 — 2):

T(), (), 80, 4()) = fX u(dw)n(w)—% ]X u(dz)(1 — t(x)) log(2 cosh(Bn(x))

- 5 /. wdn)e(e)ta)r(e) con(t(a)
-2 [ U ) )

XxX

-sin(8(z)) sin(8(y)) cos(#(z) — é(y))
1 1+ r(:c)
3 /X u(da) (I(H(=)) + Ha) ("))

thus recovering the result obtained in [14].
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IV.3 Random Mean-Field Models

Statistical mechanics models, in which the Hamiltonian depends on random parameters
have attracted a lot of attention recently. In this section we shall apply Theorem II.2.
to such random models. Since the Hamiltonian H,({,) of an inhomogeneous mean-field
~ model depends on the parameters &, 1,...€n n the most straightforward application will
be by taking these parameters as random variables. Since we consider the free energy and
the equilibrium states separately for each value of £,, these are called quenched random
variables. To be specific, we consider a “discrete time” stochastic process, i.e. a sequence
{zi]i=1,...} of random variables defined on a probability space (§2,Z,IP) and taking
values in a compact space X (equipped with its Borel o-algebra B). For each sample

w €  and n € IN we make the simplest choice of parameters &, by setting
€n,i = €ni(w) = z4(w) , i=1,...n

Since just one random variable per site appears in the Hamiltonian, models of this kind
are called [12] site random mean-field models as opposed to bond random models like the
Sherrington-Kirpatrick model [34].

Theorem I1.2. applies to a sample w € §2, whenever the sequence £, satisfies (LD),

1.e. 1f there is a measure p on X, for which w belongs to the set

S = {w € QI lim, n ™' 377 fz;(w)) = [ p(z)f(dz) for all f € C(X)}

In the theory of quenched random systems one is usually interested in statements which
hold with probability one. Theorems I1.2. and II.3. become statements of this genre,
provided that (LD) holds IP-almost everywhere, i.e.

P(QL)=1 . (RLD)

This random version of the limiting density assumption indeed holds in many cases of
interest. For example, if the random variables z; are independent, and all have distribution
t, then condition (RLD) is merely a restatement of the strong law of large numbers.
However, independence is by no means necessary for (RLD) to hold, which is essentially
z € Zd}

the statement that the stochastic process (z;) is ergodic. For example, let {m #
be a stochastic process with sample space (2, X, IP), and compact state space X, indexed

by the points in the d-dimensional integer lattice. If the process is strongly stationary [8]
the distribution (call it u) of z, does not depend on z. If, moreover, the process is ergodic
[8], then

1
lim

P X,
A 7d A zéd /]
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exists IP-almost surely and is the constant random variable E{X[f]} = [y u(dz)f(z).
Given any ergodic process, any random inhomogeneous mean-field model specified by
Ea(w) = {X,(w)|z € A}, A C Z% |A| < oo, fullfills the (RLD) property.

Through the w-dependence of &,,, the free energy density of the n*" system becomes
arandom variable fp(w) = n " F(p", nH,(é,(w))). Then Theorem I1.2 says that for allw €
Q% b, and in particular almost everywhere, f,(w) converges to the w-independent quantity
defined by the variational formula. Consider the equilibrium states ¥,(é,(w)) € K(A™),
with ¥, (£,) = Norm™!(p™)~"H~(&), Since we have made the choice £, ;(w) = €m i(w) =
zi(w) for i < n,m, we may expect that, at least in the absence of phase transitions, these
states may have a limit in K(4°). It is obvious, however, that in contrast to the free
energy this limit must depend on w [23]. We used the device of the algebra C(X, A)
to obtain states that become w-independent in the limit: through its dependence on &,
the operator =, also depends on the sample w, and, in the absence of phase transitions,
the states ¥,(€,(w)) 0 E¢ converge to the unique w-independent minimizer of the Gibbs
variational principle (*). We can thus recover results obtained in [12,17,19,20,24,25,33].

The algebra C(X, .A) has been used by Blobel and Messer [4] in a different way to
discuss the limit of Gibbs states. They consider the states

D

of C(X™, A™). It is easy to see that if we take the z; as independent random variables with

distribution g, UBM is just the P-expectation of the w-dependent states discussed above:

¥BM / P(di) T (€n(w)) 0 2

Since by Theorem II.2. all accumulation points of the sequence ¥, (€,(w)) o E¥ lie in the
compact convex set M, of minimizers of the variational principle, the accumulation points
of the averages 2™ also lie in this set. Similarly, the expectations fZM = [P(dw)fa(w)
converge to the almost sure limit of the f,, i.e. the infimum of Theorem I1.2. These results

were obtained in [4] for the special case of finite dimensional A, and quadratic interactions.
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