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Abstract. We study the dynamics of local correlation functions in dissipative
mean-field systems. This is done by extending the abstract notion of a mean-field dynami-
cal semigroup on a C*-algebra given in [1] , from an evolution on site-averaged observables,
to one on a class of local observables. Conditions are established under which this general-
ized mean-field dynamics factorises, in the thermodynamic limit, into contributions from
disjoint regions. Correspondingly, the nested correlation functions factorise into contribu-
tions for single site observables in this limit. We demonstrate that these conditions are

satisfied for a large class of model systems.

1. Introduction.

In this paper we extend the theory of mean-field dynamical semigroups, as de-
scribed in [1] , to include the mean-field dynamics of local observables. We formulate
general conditions under which all nested local correlation functions factorise into contri-
butions for disjoint regions in the thermodynamic limit. We show that these conditions are
satisfied for a large class of model systems. First we recall the main features of mean-field

dynamical systems, and summarize the results on which the present work relies.
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Mean-field dynamical semigroups are used, implicitly or explicitly, to analyse
the dynamics of dissipative quantum systems in the thermodynamic limit. Following the
example of Hepp and Lieb [2] in their treatment of the dynamics of the laser, many other
models have been treated by various authors. These include, for example, the BCS model
[3] , H. Frohlich’s model of non-equilibrium boson condensation [4,5] , and the boson gas
relaxing to thermal equilibrium [6,7] . Although these models differ in detail, they have
the following common features: (a) a sequence of systems indexed by a volume parameter;
(b) for each volume a dissipative quantum dynamics, and (c) a relationship between the
generators of the dynamics for different volumes, which essentially specifies the mean-field
nature of the model. At each volume, the dissipative quantum dynamics is obtained from
the hamiltonian dynamics of a larger system (the system + thermal reservoirs) by isolation
of the dynamics of the system variables through some limiting procedure (for example, the
weak-coupling and long-time limit). A review of these matters can be found in [8] .

Building upon some of the original notions of [2] , and their abstract generalization
in [9] , a general theory of mean-field dynamical limits has been obtained in [1] , as we shall
describe shortly. First we outline the mathematical description of intensive observables,
as given in [9] (but using the notation of [1] ). The sequence of systems is labelled
by the positive integers. The n*" system comprises n sites, at each which sits a copy
of some C*-algebra A with identity 1. The observable algebra of the n'® system is
A™: the tensor product of n copies of .4 (completed in the minimal C*-cross-norm). If
Xm € A™ is an m-site observable for some m € IN, then for each n > m we can form
the observable X, by averaging X,, over all n sites i.e. by averaging X, ® I,_m over all
automorphisms of .A™ induced by permutations of the n sites. We shall denote this process
by the operator j,m, so that in the above case X,, = jnmXm- To illustrate, if X; € A
then j1 X; = $(X1 @ T+ 1I® X;) € A2

The sequence of resymmetrized observables (jnmXm)n>m Will be called strictly
symmetric. From the mean-field point of view, we can say that an arbitrary sequence
n — Yy, with each ¥, in A™, represents an intensive observable if it can be approximated
uniformly in n by strictly symmetric sequences, i.e. if for all € > 0, there exists a strictly
symmetric sequence n — XZ and an ng € IN such that |Y, — X§|| < € for all n > ne.
Such sequences will be called approximately symmetric. Of course, all strictly symmetric
sequences are also approximately symmetric.

From the thermodynamic point of view one expects that multiplication of intensive

observables should be commutative in the thermodynamic limit. Correspondingly, it is a
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combinatorial result from [9] that for two approximately symmetric sequences X. and Y.,
hm | XY, — Y, X,[l4~ =0
n— 00

This is a reflection of the fact that for approximately symmetric sequences, most of the
factors in the tensor product are occupied by simply the identity element I. Now, we can
consider limits of approximately symmetric sequences as follows. In [9] the existence of
the limit X (p) = imp_,0{p™, X») is shown for all approximately symmetric sequences
X. and states p in space K(.A) of states on .A. (Here, p™ denotes the n-fold tensor product
state p® ... p on A", and (-,-) denotes the canonical bilinear form between a C*-algebra
and its dual). If we consider the set of approximately symmetric sequences as an algebra
with n-wise addition and multiplication, the the map X. — X, becomes a homomorphism
from the set of approximately symmetric sequences onto the algebra C(K(A)) of weak*-
continuous functions on the state space of .A. That this latter algebra is commutative is
simply a reflection of the limiting commutativity of approximately symmetric sequences.

Having set up the general framework for intensive observables, we now turn to
the question of dynamics, as described in [1] . Suppose that for each n € IN as strongly
continuous semigroup of completely positive maps (T}, ):>0 on A™ is given. We naturally
say that the sequence T} . has good mean-field properties if it preserves the set of intensive
observables i.e. if it maps the set of approximately symmetric sequences into itself. It is
natural then to attempt to define a limiting semigroup on C(K(A)) via (Tt,c0)t>0 Via the
formula T} oo Xoo = (T%,.X.)eo- In [1] it is shown that this can be done when Ty . satisfies
a reasonable continuity condition. Moreover, a complete theory of mean-field dynamical
semigroups on C*-algebras is obtained, paralleling the theory of contraction semigroups
on Banach spaces.

In certain cases the limiting evolution is implemented by a continuous flow (Fy):>o
on the state space: (T},00 X0 )(p) = Xoo(Fip). (The non-linear differential equation for the
flow is just the Hartree equation). So it follows that the limiting evolution is a homo-
morphism: (T} 00(XooYe0))(p) = (Tt,00X00)(P)(Tt,00Yeo)(p). In this case the correlation

functions for intensive observables in product states factorise in the limit n — oo. For

example, for approximately symmetric sequences X.,... X .k,
Jim (p", Ty (XA T (X2 T n X5 )) (1.1)

= (TH,OO(Xioth,OO(X:o s Ttk,OOX:o) %% )))(P)
= (Tt1,00 X0 () (Tty 442,00 X2 )(P) - - - Tty tta b 410,00 X 5 ) (P)
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We remark that in all the physical examples mentioned, the generators G, of the
semigroups Iy , are polynomial in the sense that each G, is obtained by symmetrization
over n-sites of some fixed generator acting on the algebra of a finite number of sites. General
theorems establishing a limiting dynamics obeying the factorisation conditions (1.1) had
been given previously only for classes of models in which the generators are polynomial in
the sense described, and bounded (possibly with the addition of an unbounded hamiltonian
one-site term), [10,11] , sometimes with the requirement that A be finite dimensional [12] ,
or that evolution be hamiltonian [13,14,15] . As is shown in [1] , the class of models for
which the limiting evolution is implemented by a flow is somewhat wider, and includes
models in which the generator is not polynomial. Generators of this class occur in lattice
systems for which the interaction does not link just finite numbers of sites. We emphasize,
however, that mean-field dynamical limits need not be implemented by flows: in [1] an
example is given in which the limit is diffusive.

We turn now to the central matter in the present paper, namely local correlation
functions. By this, we mean that we want to consider expressions like eq. (1.1), but
when the X.7 are not approximately symmetric. In certain cases, and for certain choices
of the X7, the existing framework suffices. For example, if T}, is itself invariant under
permutation automorphisms, then we can estimate the correlation functions for two single

site observables in a product state as follows:
(p" (A @10 1)Ten(1® B® Tn2)) = (p", (§a14)Tyn(§ma B)) + O(n ™) . (1.2)

Thus we could estimate the RHS of eq. (1.2) by using expressions of the form in eq. (1.1).
The estimate relies on the fact that A and B lie in the algebras of different sites in the tensor
product A™. To treat arbitrary correlation functions is an awkward combinatorial problem.
What we do in this paper is to introduce a mean-field dynamical formalism which takes
care of the combinatorics for us. It has the added advantage that we are able to treat states
which are not simply products (or linear combinations of such states): we may also consider
suitably local perturbations of such states. In this way we are extending the formalism of
[1] which was designed to treat only the dynamics of approximately symmetric sequences.
We finish the introduction by outlining the contents of the remainder of the paper.

In section 2 we give the theory of partially symmetric sequences. Briefly, this is
a follows. Let I be a finite subset of IN. For n > m,max;cr{i}, we define the partial
averaging operators j1 . on A™ by setting jI_X,, to be the average of X, ® I—pm over

all automorphisms of A™ corresponding to permutations of {1,...n} which leave the set
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I pointwise invariant. For example, if I = {1}, then for any X; € A, j,{,i})ﬁ = X1 ®
In-1. A sequence of observables (51, X, )n>m will be called strictly I-symmetric, and we
have a corresponding notion of approximate I-symmetry. Using some ideas from [9] , we
show that the limiting objects of such sequences form the algebra C(K(A), A?), of weak*-
continuous functions on the state space of 4 which take values in .Af. For the sequence
n— j,{lll}Xl this limit is X; ® I¢(k(4)). Now the limit algebra is no longer abelian in
general. However, we show when I and J are disjoint finite subsets of IN, and X and
Y are approximately I-symmetric and J-symmetric, then their product, regarded as an
(IU J)-symmetric sequence, has a limit in C(K(.A), A’Y7) which takes the form X1 @ Y
for some X1 € C(K(A), A7) and Y. € C(K(A), A7).

In section 3 we turn to the question of dynamics of approximately I-symmetric
sequences. We formulate the notion of a mean-field dynamical limit on C(K(A), AT) for
each finite I C IN. We say that a family of semigroups 7} . is approximate I-symmetry pre-
serving if it maps approximately I-symmetric sequences onto approximately I-symmetric
sequences. Onme constructs a general theory of these mean-field limits in a way entirely
analogous to that used for the case I = @ in [1] . The limiting evolution, which we will
denote by T/, is a contraction semigroup on C(K(A), A’). The analogue of the homo-
morphism property for the present case is the factorisation of the limiting evolution on for
disjoint finite subsets of N i.e. TS = T/ ® T/, when INJ = 0. In section 4 we show
that when this factorisation holds, all multi-time and nested correlation functions factorise
into contributions over single sites. Note that the present method does not give any easy
method for calculating multi-time correlation functions for one site alone. However, there
are certain systems for which these can be calculated for a sufficiently large subalgebra of
one-site observables [16] .

In section 5 we show that that mean-field dynamical semigroups with bounded
polynomial generators have the disjoint homomorphism property. In fact, it is possible to
show the same for the class of approximately polynomial generators described in [1] .

In an appendix, we return to the subject of mean-field dynamical semigroup for
fully symmetric sequences. We investigate the conditions under which limiting flows pre-
serve the set of normal states when A is isomorphic with a von Neumann algebra.

Finally, we mention the fact that the present work is not limited in application to
homogeneous mean-field models. Following [17] , one replaces the one site algebra A by
the algebra C(X, A) of A-valued continuous function on some compact space X. In this

way one can treat (for example) lattice models with a spatially varying interaction. The
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thermodynamics of such models has been treated in [18,19] , while their (fully symmetric)

mean-field dynamics is treated in [20] .

2. Sequences with partial symmetry.

We start this section by generalizing the notion of symmetric sequences, to se-
quences which are symmetric only under a subgroup of permutations. In what follows, for
any C*-algebra A with identity I, .A* denotes the dual of A, (-,-) : A* x A — C denotes
the canonical bilinear form between .A* and A, K(A) = {p € A* | p >0, (p,I) =1} is
the state space of A, and A, denotes the set of positive elements in A.

Let A be a C*-algebra with identity I. Let us associate with each positive integer
i a copy, Ay}, of A. Let I be an finite subset of N, I = {t,...,%7}, where |I| denotes
the cardinality of I. Denote by I, the largest element of I: Iner; = maxg=1,..|7/{3k}-
All subsets of IN specified henceforth will be taken to be finite, but we shall occasionally
reiterate this. For every such set I, A’ will denote the tensor product of of the (A} )ier,
completed in the minimal C*-cross-norm [21] . 1 will denote the unit in A’

The choice of completion has important consequences for the continuity of cer-
tain linear functionals on the tensor products. For any finite I C IN and any collection
{w1,...w} C K(A), the linear functional w; ® ...wjs on the algebraic tensor product
A®H| has an extension to A7 which is a state. If all w; are equal to some w we will write
the corresponding state on A as w’. It follows from Corollary 4.25 of [21] that for any
finite I/ C IN and X € A’ the map (K(A)! 3 (w1,...wjp) = (01 ®...w)(X) is weak™
continuous. In particular, this means that for any disjoint finite subsets I and J of IN and
state w in K(.AT), then for any B € A’/ there is an A € A’ such that (w® o, B) = (7, A)
for all o € K(A7). In the following, for a C*-algebra B, C(K(.A), B) will denote the space
of continuous functions on the state space of .A (with the weak*-topology) taking values
in B (with the norm topology). C(K(.A), €) will be denoted by C(K(.A)).

We will adopt the convention on lower case subscripts and superscripts as follows:
A™ denotes the algebra A{l»"} p” is the state p{t™} on A™.

Let S, be the set of permutations of the numbers {1,2,...,n} and for each v € Sn
we define 7, to be the automorphism of A" induced by it. Thus for A',...,A™ € A we
have m,(A'®...®@ A") = A"V @ ... ® A" For I with I,,,. < n we define S,(I) to be

the set of permutations in S, which leave I pointwise invariant.
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For each n and each I with I,,,; < n we define the injection i, : AT — A™ by
X =X @My, ang s

1.e. by tensoring with the identity on all Ayjy for j ¢ I with j <n. Forn > m and I with

Imaz < n define j,{m : A™ — A™ by

: 1 :

Jime = (n__lIl), Mylnm
i ;

Thus jI,, is the average of inmXm When operated on by the set of all permutation au-

tomorphisms of A™ which leave A’ invariant. The operators j®  are identical with the

operators jnm, as defined in [1] for all n,m € IN.

For each fixed finite I, the operators j.  are consistent in that they satisfy

T T - T
J'nm Y er = ]'I’l'f'
for r < m < n with Ih.; < m. Restricted to j.,,,A™ each j],. is injective. Thus we
can consider abstractly the spaces jI A™ together with the maps jI_ as an inductive
system of vector spaces. Since each j;,. is a contraction in the given norms on .A™ and A™
the inductive limit carries a natural seminorm: for an arbitrary sequence (Xp)nen with

Xn € A™ we write
||| = limsup || Xa] - (2.1)

For each finite ] C IN we single out from the set of all sequences (X, )nen those
in the inductive limit space: those sequences X. : n — jI A" for which for some mq € IN,
Xn = j,{moXmo for all n > my, Inez. Such sequences will be called strictly I-symmetric,
and the number mq will be called the degree of the sequence X as defined above. The
set of all such sequences will be denoted by J!. Let p € K(A) and let o be an arbitrary
element of (A’)*, the dual of A!. For X, € A™ we define j1_X, € C(K(A), A?) by

{a, (JgonXﬂ)(P)) = (o ®P{1’-'.’n}\I>Xﬂ) )

For strictly I-symmetric sequences this is independent of n for n sufficiently large. Trivially,
XL =lim,_e 31 X, exists as an element of C(K(A), AT).

A sequence X. : n — A" is called approximately I-symmetric if for all ¢ > 0
there is an ng such that | X, — jI_X,.|| < e for all n > m > ng > Imaz. For the latter

statement we also write

lim || X — L Xml| =0

n>m—
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The set of approximately I-symmetric sequences will be denoted by 7.

Now, for each strictly I-symmetric sequence X, we can think of X,, as a element
of AT @ J(n—1]) (n—i1y A 1. This means that for each fixed I, the set of approximately
I-symmetric sequences are approximately symmetric in the general sense of [9] . Having
established this correspondence, we quote the following result from [9,§4] , but using the

present terminology.

Theorem 2.1. [9] Let I be a fixed finite subset of IN. Then
(1) For all X € )!, |1 X|| = limp_oo || Xn|| exists, and Y7 is the completion of Y*
in the seminorm (2.1). Furthermore, } is closed within the set of all sequences
n— X™ € A" in this seminorm.
(2) V! is an algebra with the operations of n-wise addition (X.,Y.) —» X.+Y. and n-
wise multiplication (X.,Y.) — X.Y.. Furthermore, Y = J® is commutative under

the seminorm (2.1) in the sense that
| XY — YX|| = lim | X,Y, - Y. X,||=0 ,

for all sequences X. and Y. in ).

(3) Forall X € Y7, XL (p) = limp_00(jL, ,Xn)(p) exists in the norm topology of A,
uniformly for p € K(A).

(4) The map Y* — C(K(A),A!) : X — X[ is an isometric *-homomorphism from
V! onto C(K(A), AT).

Note that in future we shall omit the label “}” when I is empty: in this case
our notation becomes identical with that of [1] . We remark that the proof of (2) given
in [9] is based on a decomposition of the product of two strictly symmetric sequences

Xn=jnzX;and Y, = JnyYy as
X"‘Y"- = Z Cﬂ(:l:, y;r)jn(z+y—r) ((Xz X ][y—r)(:[:n-—w‘ ® Yy))

Here

s zlyl(n — z)l(n — y)!
en(@,45m) = nlrl(z —r)l(y —r)(n+7r— 2z —y)!

is the proportion of permutations v of {1,...n} such that the intersection of {1,...z}

and {7(1),...7(y)} has r elements. The size, r, of this intersection will be called the
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overlap. The result (2) follows from the observation that except for r = 0 all ¢, go to
zero. One shows readily that c,(z,y;7) ~ n™"2!y!/(r!(z — »)!(y — r)!). Entirely similar
decompositions are made when dealing with /-symmetry.

For any I C IN and § C )! we shall define SL, C C(K(A), A’) to be the set
{XL | X € 8}. A subset D C J7, will be called dense, if all elements of ¥ can be
approximated in seminorm by elements of D. This is equivalent to saying that DI is
dense in C(K(A), AT). We define P! = YL. Clearly P! is an algebra in C(K(A), A7)
and since }/ is dense in )?, P! is dense in C(K(A), A7). P can be regarded as a dense
polynomial subalgebra of C(K(.A), A7).

Proposition 2.2. Let I C J C N, with J finite. Then
(1) Forn > Imee and m > Jpasz

.J

Jam ©JImr = Inr
(2) Let the sequence X. be approximately J-symmetric. Then the sequence n +—
j1. X, is approximately I-symmetric.
(3) Let the sequence X. be approximately I-symmetric. Then X. is also approxi-
mately J-symmetric, and X, = X1, ® 1 ;.

Proof: (1)

- I -J
Jam ©JImr = (n _ |I|)' |Jl)| Z Z W.anmmyfzm,

YESn(I) Y'ESm(J)

1 .
" (n = |I))Y(m - |J])! 2. > Ty gty

" YESA(I) ¥ E€Sn(JU{m+1,...,n})
Since I C J C JU{m+1,...,n}, every permutation in S, which leaves JU{m +1,...,n}
pointwise invariant also leaves I pointwise invariant: Sp(I) D Sa(J U {m +1,...,n}).
Furthermore S,(I) is a subgroup of S,, so that for any ' € Sa(J U{m +1,...,n}) the
set {mymy : 7 € Sp(I)} has the same elements as the set {m, : ¥ € Sp(I)}. Thus

1
T . . .I
JInm 0.71{;1- - (n — | D' Z Tylnr = Inr

(2) Let X. € J7. By Proposition 2.2(1) above, 51 X, — 3L .52 Xm = jEu(Xn —

JamXm). Thus, since jI_ is a contraction

n>m—oo
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so that n — jI X, is approximately I-symmetric.

(3) First note that it suffices to prove the assertion for all X. which are strictly
I-symmetric: for then any approximately I-symmetric sequence can be approximated
uniformly for large enough n by sequences which are approximately J-symmetric, and
is hence itself approximately J-symmetric.

For notational clarity we will set a = |I| and b = |J| Let X. be strictly I-
symmetric, so that X, = jI X, for some m and all n > m. Clearly we are free to

pick m to be not less than J,,,;. Then

P, n—a )| Z Wb K

YESL(I)
- S-Ea.l) +S£.2)
where
1 ;
S(l) — oo Z Tytnmam
YESR(I):

Y(I\IC{m+1,...,n}

and

1
2 .
SS; ) = (m—a) E TyinmXm
n a). Y ESTUIY:
F(J\I)Z {m+1,..., n}

85.1) derives from those v € S,(I) for which the A\ component of yinmXm is simply
1,;. We will show that the sequence n — 8,(,1) is approximately J-symmetric, while
limp oo S = 0.

Now the number of terms the sum S$? is precisely (n—a)(1—cn—a(b — a,m—a;0).
Since limy,, e ¢n—a(b — a,m — @;0) = 1, we have that lim, () —o.

Let 7' be any element of Sp45—4(I) for which v'(J\I)={m+1,...,m+b—a}.
Then

(n —m)!

(n+a—m-—>b)(n—a)

YESA(JT)
But (n — b){(n —m)!/(n +a —m —b)!(n — a)! = ch_a(b — a,m — a;0) which converges to
1 as n — co. Comparing with the definition of jJ = we see that

Xn =cn-o(b—a,m— g 0)3;T (m+b_a)7r—y’i(m+b—a) mXm + 51(12)

Thus

lim ||X, — Jr{ (m+b—a)7r‘Y"’;(m+b—o.) mXm| =0 ,

n—oo
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so that X. € 7. The particular form of X derives from the fact that in each S,(,l) the
A'M factors are occupied by I -

Corollary 2.3. Let I; ... I} be a finite collection of disjoint finite subsets of IN and set I =
UX_Ix. Let £ € N and let a be any map of {1,...,£} into {1,...,k}. Let X.[, .. X4
be a collection of sequences such that X.[¢] € YT« for all #' € {1,...,€}. Define the
sequence Y. by

Y, = XBxP2 x| (2.2)

For each k' € {1,...,k} form the sequence Z.[¥] from the right hand side of equation (2.2)
by replacing all X,[f’] for which a(£') # k by the identity 1,,. ThenY. lies in VI, Z¥] lies
in 5;[,., , and

YI=zMh g @zHE | (2.3)

Proof: By Prop. 2.2(3) for each £ € {1,...,£]} the sequence X €] is approximately I-
symmetric, and as a product of approximately I-symmetric sequences, so is Y. By Proposi-
tion 2.2(3) each Xw]f;o lies in C(K(A), Al=t) ® II\IQ(U))- Since the Iy are disjoint X €11
and X'l commute when a(f') # a(£"). For each k' we gather together the contributions
to YZ for all £ such that a(f' ) = k' together as Z!¥ L | N, - So Y1 factorises over the
Al yielding equation (2.3).

.

3. Mean-field dynamical limits and the preservation of I-symmetry.

We continue the conventions of the previous section. For each n € N and t € R*
let Ty n : A™ — A" be a completely positive, identity preserving contraction, such that for
fixed n, (T}, = et~ )t>o0 is a strongly continuous one-parameter semigroup on A™ with
generator G,,.

From a physical point of view one can say that the family (7% n)nenw has good
mean-field properties if is maps approximately symmetric sequences into approximately
symmetric sequences, i.e. if for all X € ) and ¢ > 0 the sequence n — T}, X, lies in
Y. If this is the case, one naturally tries to define a limiting evolution T} o on the limit
space C(K(A)) by Ti,c0Xoo = (Tt,.X.)oo- It not a priori clear that T} o is well defined as
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a strongly continuous contraction semigroup on C(K(.A)). However, in [1, Theorem 2.3]
, 1t shown that this is the case if and only if the set of sequences {X. | X, € Dom(Gr) :
|GaXn|| uniformly bounded } is dense in ). We will not repeat the proof of this result:
1t occurs as a special case of the generalization which we will make.

We now seek to extend the general results of [1] to sequences of semigroups
which for some finite subset I of IN preserve approximate I-symmetry. We will say that a
sequence n — T, of uniformly bounded linear maps on .A™ is approximate I-symmetry

preserving if for all X € )7, the sequence n — T, X, is approximately I-symmetric.

Lemma 3.1. Let I be a finite subset of IN and let T. be a sequence of approximate

I-symmetry preserving maps. Then T : X — (T.X.)L, is well defined.
Proof: Let X € Y7 with XL = 0. Then
I(T-X)%ll = lim || TaXa| < :gﬁHTnllnﬁ_,ﬂgo [ Xall =0
|

As remarked in [1] , the existence of a limit for sequences of unbounded linear
operators is not so clear. For each n € IN let P, be an unbounded linear operator on A™
with domain Dom(P,). For each finite subset I of IN, we denote by Dom? (P) the sequence

space

Dom’(P) = {X € ' | X, € Dom P, for all n and P.X. € Y’}

In view of Proposition 2.2(4) we see that when I C J, Dom’(P) C Dom”’ (P).

If T},. is approximate I-symmetry preserving, then by Lemma 3.1 the map T, t’: oo O
C(K(A), AT) is well defined. For X € Dom’(G) we can try to define a limiting generator on
C(K(A), AT by GL, : XL — (G.X.)L, with domain (Dom(G))%,. We see in the following
theorem, that under very reasonable conditions on the G, G, is not only well-defined,

but that T/ _ is a strongly continuous contraction semigroup on C(K(A), A’) which has

I .
G, as its generator.

Theorem 3.2. For eachn € N let (T;,, = €% );>0 be a strongly continuous semigroup
of completely positive contractions. Let I be a fixed finite subset of IN. Then the following

conditions are equivalent:

(1) For each t, T; . is approximate I-symmetry preserving, and the set of sequences
X with X,, € Dom(G,,) and |G, X,|| uniformly bounded is dense in Y'.
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(2) The operator GL, with domain Dom(GL)) = (DomI(G)); is well-defined, closed,
and generates a semigroup of contractions on C(K(A), Af).
Moreover, if these conditions are satisfied, Tt{ oy etG‘Iw, and T; . will be said to have a
mean-field limit on C(K(A), A"), namely, T/ ..

We omit the proof of this theorem, since it can be obtained by repetition of the
steps of the proof of Theorem 2.3 in [1] , using I-symmetry and I-symmetric sequences and
operators instead of their symmetric counterparts. For I = (), the above result reduces
to the equivalence (2)<=>(5) of the theorem in [1] . Although the above statement is
sufficient for our present purpose, note that all the statements in the theorem of [1] , and
their proofs, generalize to the I-symmetric case.

For the case the ordinary mean-field limits on the commutative algebra C(K(.A)),
it was demonstrated in [1] that for certain classes, T} o is implemented by a flow on K(.A).
(Note, however, that there are mean-field limits which are implemented by diffusions,
rather than flows). For such limits, the generator G is a derivation on its domain. If
the G, are sufficiently local (in the sense that they are approximately polynomial) this
can be seen as a reflection of the combinatorial fact that commutators of approximately
symmetric sequences are null in the seminorm (2.1). If I # O this is no longer the case,
and G, need not be a derivation even if Goo = G2, is. However, we shall see that some
classes of generators do behave as derivations on certain sequences.

In the following definition we shall retain the usual assumptions that for each
n € N, t — T, , = €' is a strongly continuous one-parameter semigroup of contractions

on A™ with generator G,.

Definition 3.3. For all finite I C N, let T;,. have a mean-field limit T} , on C(K(A), A7)
with generator G'CI,O. We shall say that the family of generators {GL, | I C IN : |I| < oo}
has the disjoint derivation property iff for all finite disjoint subsets I and J of N and
for all X € Dom!(G), Y € Dom”?(G) then XL ® Y € Dom(GIY7) and

G (xLeovl)=c¢LxLovl+xLeoclyl . (3.1)

The strength of the disjoint derivation property is that if it is satisfied, we are able
to prove a factorisation property of correlation function for strictly local observables (i.e.
those of the from i,7X for some fixed finite  and X € .Af), rather than just completely
symmetrized observables (i.e. those of the form j,rX). This property can be seen in its

simplest form in the following proposition.
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Proposition 3.4. For all finite I and t > 0 let T; . have mean-field limits Tt’:m on

C(K(A), AT) and let the corresponding family of generators have the disjoint derivation

property. Then for I and J disjoint, X1 € C(K(A), A?) and Y € C(K(A), A7) then
T} (xL oY) =TI XL T/ Y. . (3.2)

t,00“* 00 t,00" o0

Proof:

T/ (XL eY]) - T/ XL @ T/ V]

t,00“ 0o t,00" oo

t
:/ dsiTitjj(T{_ x! ®Tt{—s,ooyti)
0

ds s,00“* co

t
= | a1 {GlI (1L, XL ® T, Y2

5,00 (o o] 5,007 CO

- Gion-s,ooxio X Tt{ Yo T

8,00" CO t—s,00

xLeelrl, xL}

Now |[th <7|| is bounded, and it follows from the general theory of contraction semigroups
(e.g. [22] ) that since XL lies in Dom(GL) (resp. Y] in Dom(GL)) so does T} o X%
(resp. Tt{mXOJO). Thus the above expression is zero by virtue of equation (3.1).

We shall say that the semigroups 7;, . have the disjoint homomeorphism prop-
erty if for all finite I C IN they have mean-field limits on C(K(A), A”), and if fur-
thermore equation (3.2) is satisfied for all ¢ > 0, for all finite disjoint I,J C IN and
XL € C(K(A),A), Y € C(K(A), A7). A brief density argument shows that this is the
case if and only if

Tt{:)oj = Tt{oo ® Tt{oo

4. Correlation functionals.

In this section we shall show how, for a mean-field dynamical semigroup (T3,n )neN
with the disjoint derivation property, the evolutions of I-symmetric sequences for different

disjoint subsets I of IN become independent in the limit n — oo.

Proposition 4.1: Multi-time correlation functionals. Let T; . be a mean-field dy-

namical semigroup which has the disjoint homomorphism property. Let I, ... I, be a finite
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collection of disjoint finite subsets of N and set I = U‘,§,=1Ik. Let £ > k and let o be any
map of {1,...,€} into {1,...,k}. Let X1, .. X4 be a collection of sequences such that
X e Ylaw for all £ € {1,...,€}. Let (3¢)e¢=1,.... be a collection of non-negative real

numbers. Define the sequence Y. by
Yﬂ' = (T"lanXE.])(T"arnXE]) T '(Tslsn'X'r{f]) ® (4'1)

For each k' € {1,...,k} form the sequence Z.I¥'| from the right hand side of equation (4.1)
by replacing all xl 1 for which a(£') # k by the identity 1,. Then Y. lies in }', Z.[¥] Lies
in 57!"' and

vI=zUh g,  @zHK:

Remark: Since the T} , are identity preserving, replacing any xi by I, in Proposition
4.1 amounts simply omitting the factor T, . ,nX,Ll T from the definition of X¢1.
Proof: This follows immediately from Corollary 2.3 upon noting that since Ty,. is ap-
proximate I-symmetry preserving for all I, the sequence n — i ,,,X,[f Tis in Ylate) for
all £ € {1,...,4}

|

Proposition 4.2: Nested correlation functionals. Retain the assumptions of Propo-

sition 4.1, but define instead
L L L T B . L TR | (4.2)

For each k' € {1,...,k} form the sequence Z.¥! from the right hand side of equation (4.1)
by replacing all X' for which a(£') # k by the identity T,.. Then Y. lies in 7, Z.[¥ lies
in YIv and

¥i=2ltg.. gzl
Proof: Let U. € Y% for some j € {1,...k}, and let s > 0. Assuming the truth of the
proposition, then by Corollary 2.3 the sequence n — U,Y;, lies in J!, and

UY) =z g ULzl g.. gzkk

Since T,. has the disjoint homomorphism property, we can use the factorisation of equation
(3.2) to conclude that

T] J(UY), = (Th,z2Wh) ... @ (Th UL ZVE) @ ... 0 (TH,21Hk)
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Since 1y is trivially approximately I-symmetric, we can use this argument for m taking
in turn the values £,£ —1,...,2, using T, _ (X5 ... Tst,nX‘l[ll]) ...) in place of ¥,, with

Im=1l in place of U, and s,_; in place of s, and hence conclude the statement of the

proposition.

Example 4.3. Perhaps the simplest application of Proposition 4.3 is when Iy = {k'}
for all k', and X,[f'] = B, {k:}W["] for k' = a(¢') and some wlt e A¢x}. From Proposition
4.2 we obtain the factorisation of the nested one-site correlation functionals.

Now for any p € K(A) and o € K(A!) we have

lim (0 ® ptt "N V) = (a,Y L (p))

n—oco
for Y. given in either Proposition 4.1 or Proposition 4.2. So the limiting correlation func-
tions on sequences of products states on .A™ with local perturbations on A7 may be calcu-
lated. Note that the results also extend to weakly convergent sequences of states as defined
Def. II1.2 of [9] . In our extended formalism, these become sequences of states ¢, on A™
such that for a given I and for all X € }7,

e, g, T = /W) du(p) (o0 XL (o))

n—oco

where p is some probability measure on K(.A), and for each p € K(A), o, is some state
on AL

Although Propositions 4.1 and 4.2 give a factorisation of correlation functions over
different sites, the mean-field formalism does not furnish any easy method for obtaining the
one site correlation functions. However, there are systems for which these one-site correla-

tion functions may be calculated for a sufficiently large subalgebra of one-site observables
[16] .

5. Example: bounded polynomial generators.

In this section we give an example of a class of mean-field dynamical semigroups
which have the disjoint homomorphism property. This is the class in which the generator
G, is obtained for all n larger than some fixed g, by resymmetrization of G4, and multi-
plication by a scaling factor (n/g). G, itself will be the generator of a norm-continuous

semigroup of completely positive maps. These are discussed in [23] and [24] .
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Definition 5.1. A sequence of operators G. = (Gn)n>y, with G, € B(A™) will be called

a bounded polynomial generator of degree g if
Gn = —Sym, G, ,
g

where G, is the generator of a norm-continuous semigroup of completely positive unital
maps on AY, and the symmetrization operator Sym,, : |, ., B(A™) — B(A™) is defined
by
1 = ‘
Sym, Gm = — ¥ 75 (B Belicsen ey

) YESn

for all m < n and G,, € B(A™).

This type of generator occurs frequently in applications. However, the bounded
polynomial generators are certainly not the broadest class of generators possessing the
disjoint derivation property. Indeed , one can extend the results of this section to treat
approximately polynomial generators, as defined in [1] . One can show (see [1] ) that each
Gn is also the generator of a norm-continuous semigroup of completely positive maps on
Al

We will fix a dense subset of each J with which it will be convenient to work.
For each finite I C IN define J! c J! by

V= {X eV Xn=jln(Xp),n 2 m, lim X = X, € A™}

n—0o0

We shall call m the degree of X € V! and X,, its limiting element, as so defined. Clearly
VL =YL

Proposition 5.2. Let G. be a bounded polynomial generator of degree g, and let I be
any finite subset of IN. Then V! C 'Dom‘r(G) and GYT C Y!. Let the sequence X € YVr be
of degree z. Then G.X. is of degree g + = — 1, and ||(G.X.)L || < =||G,|l|| X=l-

Proof: For notational simplicity we take the case that I = {1,2,...,|I|}. This involves
no loss of generality since we can map any I onto this set with a suitable permutation, the
corresponding automorphism leaving the permutation symmetric operator G, invariant.

Since we are free to choose z > I,z

n ) n . )
5 Sym,, (}'9_7,{,,,,,‘){'z = —g*].,{m Sym,, GelneXs



Vol. 64, 1991 Duffield 627

We collect together all terms in G, X,, with the same overlap between G, and X,,. First
note that since each T , is identity preserving, the terms of overlap zero vanish identically.
Second, note that since c,(z,y; 7) = O(n~"), the contribution to G, X, of terms of overlap

between 2 and min{g,z} — 1 is O(n™!). This leaves the terms with overlap 1, and one
calculates that

n ) I~ g 4 n -1
Gu X, = ;cn(y, z,1)51 (g+z-1)7 Z'irq(ly) (idg—1 ®Gg) Ty (X ® Ty_1) +O(n™7)
y=1

where 7(y) is the element of Sy ,_; which exchanges y and z. (y(z) is just the identity).
Since limp,_,o0(n/gz)cn(g,2;1) = 1, and since the terms of overlap greater than 1 have

degree less than g + z — 1, G, X, lies in )}/, and is of degree z + g — 1. Finally,
I(G- X)L ]l = Jim [GaXall < 2lIGy lim X2]| = oGl Rl
|

Recall now that the set of polynomials P! C C(K(A), A7) is defined to be VL.
The proof of the following Proposition is adapted from one in [1] .

Proposition 5.3. Let G be a bounded polynomial generator with Ty,. = €*C- for all t > 0.
Then
(1) For all finite I C N, Ty, . is approximate I-symmetry preserving.
(2) For all finite I C IN, T;. is a mean-field dynamical semigroup on C(K(A), A)
with limit T = et
(3) P! is a core for GL .
(4) The family of generators {GX, | I C IN : |I| < oo} has the disjoint derivation
property.

Proof: (1) Let g be the degree of G. and let X € V7 be of degree z. Iterating the integral

equation for T; ,, we write

Tt,an = XE;'::) + RE;’-:) )

where
( ) m—1 P
Xt,: = Z E(Gn)pxn )
p=0
and
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t 82
(‘:r:') - ‘/ d‘gm T _/ dS]'Tsl)n(Gn)an
0 0

By Prop. 5.2 (G.™)X. € V! for all m € IN. T; n is a contraction. Thus
tm

Jim ([ TynXn — X7) < — lim [[(Ga)™ X

< 6, 1) T (o + #la - 1)

p=0

Now for a,b,m € IN

m. H(a+pb)< — H(a+(m—1)b p)

p._
o (a‘ + (m - l)b) < 2a.+(m-—1)b
m
Thus
Hm [|TynXn — Xow|| < 254971297 24)|G, )™ |1 Ko - (5.1)

Fort < 7 = (2971||G4||), we can take the limit m — oo and conclude that T} »,Xn can
be approximated uniformly for large n by approximately I-symmetric sequences and so
(Ty,nXn) € Y!. Note that T is independent of X.

We extend to the whole of J! by continuity, and finally for all € R by joining
together the solutions on successive intervals of length less that 7.

(2) From Proposition 5.2, |G, X4,|| is uniformly bounded in n for each X € A%l
Since J is dense in )/, the conclusion follows from (1) above and the implication (1)=>(2)
of Theorem 3.2.

(3) By taking the limits n and then m — oo in equation (5.1) we conclude from the
power series approximation that all polynomials p € P! are analytic for GZ, whent < 7,in
the sense that TtI, P can be expressed as the convergent power series Y oo (r!) "2 (tGL )P
when t < 7. Each term in this sum is itself a polynomial (i.e. in PT), so the partial sums
of the series are polynomials approximating Tt‘: «P- Replacing p with the polynomial GLp

in the series, we we find that

co 4 oo
I mpI — 1 N al R DU 1 I v r

We conclude that for ¢t < 7, p € P! and £ > 0 we can find p® € P! such that

1T ep — | <e and  ||GL(Tp—9°) <€ . (5.2)
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In fact, this conclusion holds for all ¢ > 0. We demonstrate for ¢ < 27: the
argument may be iterated for t < 47, ¢ < 87 and so on. Let s, < 7. Given p € P! we can
choose p® € P! satisfying equation (5.2). Since p¢ € P’, then for all § > 0 we may pick
g® € P! such that

IT; op® — ¢’ <6 and  [CL(T!p® - d°)| <&

Thus
1T 0,008 — €l < T oo T oo — 2°)|| + 1T 0P — || < €46

while

1G T s,00p — Ghod’l| < 1T o Gro(TE P — PE)|| + |G (T op® — &) <€+ 6

where we have used the fact that T}  is a contraction. By choosing ¢ and then § sufficiently
small, we see that the desired approximation is possible.

The set Q = Ut>0 P! is a dense T/ -invariant subset of Dom(GL)), and is
hence a core for GI . From thJs and the above argument, we conclude that the subset P’

of 2 is also a core for GZ_.

(4) Since, by Proposition 5.2, the action on G. is determined by terms of overlap
1, it follows that

G (fooaXe ® 55, Yy) = GIST5180 (X, @ Y,) (5.3)
= (CLik . X2) @3 Yy +il. X ® (GLiL,Yy)

Thus there are no mixed terms involving G. acting on both X. and Y.. By (3) above, for all
finite I C IN, P! is a core for GL. So, we can approximate any sequences X in Do’ (G)
and Y in Dom”(G) by polynomials, then take the limit of the expression (5.3) to conclude
that X @ Y/ € Dom(G%Y7) and that equation (3.1) holds.

u

By Propositions 3.4 and 5.3 we see that the hypotheses of Propositions 4.1 and

4.2 are satisfied mean-field dynamical semigroups with bounded polynomial generators.
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Appendix: Invariance of the predual under limiting flows.

An interesting special case of the theory of mean-field dynamical semigroups,
which turns out to be important for applications, occurs when A is *-isomorphic with a
von Neumann algebra. In this case will not distinguish notationally between A and the
von Neumann algebra to which it is *-isomorphic. According to [25] , the *-isomorphism
exists if and only if .4 is the dual of a Banach space. If this is the case, we will denote this
predual of A4 by 4,. We will view A, canonically as a closed subspace of A*.

For certain classes of mean-field dynamical semigroups, the mean-field dynamical
limit is implemented by a flow: for X € )’ and all p € K(A),

lim (Pn:Tt,an) = (Tt,ooXoo)(P) = Xoo(Ftp) )

n— 0o

for some continuous flow (F})¢>o on K(A). The following main result of this section
establishes conditions under which the set of normal states K(.4)N A, is invariant under
the limiting flows of mean-field dynamical semigroups.

In the following, we will denote the dual of any T € B(A) by T* i.e. T* is the
element of B(.A*) such that (T*w, A} = (w,TA) for all w € A* and A € A.

Proposition A.1. Let A be a C-* algebra with predual A.. Let T;. be a mean-field
dynamical semigroup such that Ty o, is implemented by a flow (Fy)¢>0. For eachn € IN
let T, have the property that its dual T, action on (A™)* leaves the closed subspace
(A™). invariant. Furthermore assume the following continuity condition on T .: that for

all ¢ > 0 there exists an ng such that forallm >m >ng and A€ A
“Tt,njnlA - jant,mjmlA“ < EHA“ . (Al)
Then the set K(.A) N A, of normal states on A is invariant under each F;.

Before we proceed with the proof we will note that the same conclusion was
reached in [10] for the class of (in our terminology) mean-field dynamical semigroups with
bounded polynomial generators (with the possible addition of an unbounded polynomial
hamiltonian generator of degree 1). As is well known [23] , these have the property that

each T, , preserves (A™),. Indeed, the treatment in [10] was carried out entirely in
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the pre-dual spaces. We will see that the mean-field dynamical semigroups of bounded
polynomial generators satisfy the continuity condition of Proposition A.1l.
To prove our result we will need the following technical result, in which we quote

without proof some results from [26, p77] .

Proposition A.2. Let A be a C*-algebra with predual A,. Let w € K(A). Then w is
normal if and only if w(A) = sup, w(Aq4) for each increasing net (A,) in A, with least
upper bound A.

Proof of Proposition A.1: Let (4,) be an increasing net in A, with least upper
bound A € A. Since the net is increasing we have that ||Aa| < ||A]| for all . By the
continuity assumption in equation (A.1), then for all ¢ > 0 we can find an ng such that
foralln > ng, B€e Aand p € A,

[(Fip, B) — (Tt np™, jn1 B)| < ]| B||
Thus for n > ng
0 < (Fip, A — Aa) < 2¢||A|| + (T} ", Gn1A — Fn14a)
= 2¢||A|| + (jaaTinP"™s (A — Aa) @ Tn-1)
Since Ty ,p™ is normal, the restriction of its symmetrization j, T} ,p" to the subalgebra

A®1,_; of A™ is also normal. Thus we can take the supremum over a on both sides and

use the “only if” part of Proposition A.2 to conclude that
0 < (Fip, A) — sup(Fip, Aa) < 2¢||A]|
[+ 4

Since ¢ is arbitrary we conclude again by the “if” part of Proposition A.2 that Fip is
normal.

Proposition A.3. Mean-field dynamical semigroups with bounded polynomial generators
satisfy equation (A.1) for all t in some compact interval. Hence if A is *-isomorphic with

a von Neumann algebra, the limiting flows preserve the set of normal states.

Proof: Let T}, = e'®», with G, = (n/g) Sym,, G, for some g and for all n > g, and let
F; be the continuous flow implementing 7T} o,. From equation (5.1) we see that equation
(A.1) is satisfied for all positive t < 7 = (297!||G,||)™!. If A has predual A,, then by
Proposition A.1 the flow F; preserves the set of normal states for all ¢ < 7, and hence for
all £ > 0 by composition.

|
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