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(17. III. 1991, revised 10. VI. 1991)

Abstract

A simple solvable model of two-channel inelastic scattering is constructed. The contact-
type interaction is realized mathematically by a self-adjoint extension; if the interchan-
nel interaction is switched off it reduces to one point interaction in each channel. The
scattering matrix is calculated and the bound states and resonances are found in the
weak-coupling case. The decay of the resonance state is also considered ; it is shown
that the asymptotic behaviour of the non-exponential corrections to the decay law
depends substantially on the spectrum of the unperturbed system.



Vol. 64, 1991 Exner 593

1 Description of the model

Multichannel scattering represents one of the most important processes, especially in nu-
clear physics (for a general overview see [33]). The formalism to describe concrete physical
situations, however, is usually not quite simple and some effort is needed to see interesting
physical effects like resonances below the threshold of the excited channels. This might be a
motivation to study solvable models in which these effects are manifested in a transparent
way.

The aim of the present paper is to construct and analyze such a simple model. It
has not only the pedagogical value since it is expected to represent a low-energy limit to the
two-channel scattering with a spherically symmetric matrix potential, however, we postpone
the discussion of this aspect to another publication. Moreover, the model constructed be-
low represents the simplest and generic example in a class of models describing N-channel
contact-interaction inelastic scattering.

The method of constructing the interaction is based on the concept of point interac-
tion defined by means of self-adjoint extensions. This idea goes back to Berezin and Faddeev
[8] and in the last decade it was studied systematically — see, e.g., [2-4] and the monograph
[1] — and generalized by adding an internal structure [34], for interactions supported by sur-
faces [6, 11, 37, 38], curves and graphs [9, 10, 20, 23, 25], more complicated objects [16-19],
for the Dirac operators [10, 12, 13, 26] efc. ; many recent results are summarized in [21, 22].

To begin with, suppose we have a pair of non-relativistic particles which can exist
in two states ; for definiteness one can imagine a neutron plus a nucleus having two internal
states. After separating the centre-of-mass motion, the state Hilbert space is therefore
G = G, @G, with G; := L*(R?). In view of the Bargmann superselection rule [7, 30] the
reduced masses in the two channels are the same ; for simplicity we put g, = g, = 3. Our
basic assumption is that the full interaction between the particles, including the part which
is responsible for the transitions between the two channels, has a contact nature, i.e., it is
supported by the origin of coordinates in the relative-coordinate space only.

Following the standard contact-interaction ideology, we shall construct the class of
admissible Hamiltonians from the pair of non-selfadjoint operators

Hﬂl = —A  with D(Hgll) = CSO(R3 \ {0}),

’

Hyy := —A+E with D(Ho,) = C(R®\ {0}).

Here E is a positive number which represents the threshold energy of the inelastic channel. In
view of our basic assumption, the pair of particles whose relative-coordinate wavefunction v
1s separated from the origin does not feel the interaction, which means that Hy := Hp 1 Ho 5
acts on such 1 as the Hamiltonian should act. To specify the dynamics, one has to say what
happens when the particles hit each other; it is clear from what we have said that the
Hamiltonian should be chosen among the self-adjoint ertensions of Hy.

These extensions can be easily constructed since the deficiency indices of Hy are
(2,2). It is seen from the partial-wave decomposition ; since this part of the argument is
standard [1] we skip the details. Due to the presence of the centrifugal barrier, the component
of Hy ; in the l-th partial wave is e.s.a. if | > 1 so only the s-wave parts can be coupled. In this
way the problem is substantially simplified : passing to the reduced radial wave functions
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f(r) := ri(r), we take

H=Hi®H, with H; := L}*(R,) (1)
as the state space of the problem, and the ”starting operator” will be hqg := hq; @ ho 2, Where
hoy = ——d-2— with  D(ho;1) = C5°(0, 00),

dr?
hoz = —;2;5 + E with D(hos) = C5°(0, 00). (2)

The operator kg has again deficiency indices (2,2), and therefore a four-parameter family of
self-adjoint extensions. The most convenient way to characterize them is through suitable
boundary conditions :

1.1 Proposition. To any u = {a,b,c} with a¢,b € R and ¢ € C denote by h, the operator
defined by the same differential symbol as hy with the domain D(h,) C D(h}) specified by
the boundary conditions

fi(0) = afi(0) + ¢f2(0),
f2(0) = ¢f1(0) + b£2(0). (3)

Then h, is a self-adjoint extension of k.

Proof : An integration by parts in combination with the standard limiting argument yield
(h3f,9) = (Ao + f19: — fagh — Fag3)(0) — j{; (figi + f292 — E faga)(r) dr

for any f,g € D(hg) ; it is simple to check that the corresponding boundary form vanishes
under the boundary conditions (3). QED

In addition to the extensions given by the theorem there are some exceptional ones
(for instance, those obtained formally by inserting @ = oo or b = oo into (3)). They can
be described by the standard methods (cf.[35], Sec.X.1; [14], Sec.XII.4) but for our model
purposes it is sufficient to know the "most part” of admissible Hamiltonians.

It is obvious that c is the complex coupling constant between the channels ; if c =0
we have h, = h, ® h;, where the last named operators correspond to the s-wave parts of the
point-interaction Hamiltonians H, and Hj in the two channels (¢f. [1], Chap.l.1) with the
interaction strengths o := a/4r and B := b/4~, respectively. Hence the spectrum of 4, in
the case of decoupled channels is easily obtained from the spectra of H, and Hj ; in Section
3 below we shall discuss o(h,) in the interacting case.

Let us finally remark that the above specified family of Hamiltonians is restricted
further if we demand the interaction to be time-reversal invariant. To meet this requirement
the domain of the corresponding self-adjoint extension must be invariant with respect to the
complex conjugation, i.e., the same must be true for the boundary conditions (3); this is
true if the coupling constant ¢ is real-valued. In fact one can check easily that h, and h,
with ¢’ = a, b’ = b and ¢/ = ce'® are unitarily equivalent by e‘*/? @ e~*/2,
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2 The resolvent

To find the spectrum of h, one has to determine first its resolvent. The form of our Hamil-
tonian allows us to do it explicitly.

2.1 Proposition. For any z € p(h,), denote k := ,/z. The resolvent (h, — 2)~! is
integral operator on H with the kernel

etklrdr!|_ giklr—r'|

. 0
/. =
Gu(ra r 9 k) = ( 2k ci»|r+r'|_ein|r—r'[

0 2tk

> (b - ZE) eik(r+r') —c ei(kr+nr’)
+D ( _ aei(nr-i-kr’) (a _ ?,k) ein(r+r') ’ (4)

where D := (a —ik)(b—ix)— |c|* and & := VK2 — E.

Proof : For ug = {a,b,0} the operator h,, decouples into an orthogonal sum so its resolvent
kernel expresses through the known resolvent kernels of the point-interaction Hamiltonians

h, and h; as
vy [ ga(r7'sE) 0
Guo(ra'f' y k) = ( 0 gb(T', rl; Ii) ’
where ] iklert g
5 _ etklr+r'] _ piklr—r etkr gtkr
ga(ryr's ) = %k Ll

and g; is obtained by replacing a, k with b, x, respectively. For the general case, the resolvent
is given by Krein formula (cf. [1], Appendix A) : its kernel equals

Gu(r,r'sk) = Gy (r,v'; k) + 22: (k%) F}‘(r)F,k(r’)t, (5)

Ji=1

where ¢ means transposition and the 2 x 1 columns F}‘ can be chosen as

F¥(r) = (Qa(r,OO; k) ) . FMr) = (g,,(r,OO;n) ) .

This choice ensures that the F }‘ solve the equation (hg — k’)ij = 0, i.e., they belong to the
deficiency subspaces of the operator A¢. It remains to find the functions A;i(k?). We use the
fact that (hy — 2)~! maps H into D(h,) which means that for any f € H, the component
functions of (hy — z)~™!f must fulfill the boundary conditions (3). After a short calculation
this requirement yields a system of four linear equations,

_ A1 (k?
—/\11(k2) = bfinl\gl(k‘2), '—Agl(kz) = C (1 + all_(. Zk)) ’
Aoz (K2 ¢
—A2(k?) = ¢ (1 + bn_;m)) , —An(k?) = . _Cz-k)\lﬂ(kz)7

which is readily solved ; substituting into (5), we get the result. QED



596 Exner H.P.A.

3 Spectral properties

The explicit form of the resolvent makes it possible to study its singularities. In fact, it is
only necessary to find zeros of the "discriminant” in the resolvent kernel. To see this, notice
that for 2 € C \ R4, the resolvent can be writen as (h, — z)™' = A(z) + D~(2)B(z), where
the two operators corresponding to the matrices in (4) are bounded so that they cannot
give rise to a pole. On the other hand, one can check directly from (2,3) that 4, has no
embedded eigenvalue unless ¢ = 0. Of course, the resolvent has also cuts associated with the
continuous spectrum which come from the square roots in definitions of ¥ and &, but they
are independent of the interaction.

Consider first the decoupled case, ¢ = 0. The discriminant then factorizes so D =0
holds iff k = —ia or Kk = —ib. The spectrum is the union of spectra of the two point-
interaction operators, the second one of which is shifted by the constant E. One has to
distinguish several cases :

a <0 ... hy, has the eigenvalue —a? corresponding to the normalized eigenfunction
f(r) = v—2a(e*,0)

a >0 ... the pole corresponds now to a zero-energy resonance (a = 0) or to an anti-
bound state (i.e., a resonance on the negative imaginary axis of k¥ — hidden deeply on
the second sheet of energy)

b<0 ... h,hasthe eigenvalue E — b* corresponding to v/—2b(0,e*")
b>0 ... hy has a zero-energy resonance or an anti-bound state

The continuous spectrum of the decoupled operator is again union of the continuous spectra
of h, and hs, i.e., it covers the interval [0, 00) being of multiplicity two in [0, E) and of
multiplicity four in [E, 00).

We shall consider all the above listed cases (though we avoid mostly discussion
of the situations including the zero-energy resonances) but our main interest concerns the
cases when both «a, b are negative. Among them, we want to pay a particular attention to the
situation when % < E, i.e., the eigenvalue of h; is embedded into the continuous spectrum
of h,.

After this preliminary, let us turn to the interacting case, ¢ # 0. Since the deficiency
indices of hq have been finite, the essential spectrum is not affected by the interaction (¢f.[39],
Theorem 8.8). To find the eigenvalues (or resonances) of h,, one has to solve the equation

(a—ik) (b—iVk2 = E) = | (6)

It reduces to a quartic equation, and therefore can be solved in terms of radicals, however,
the formulae expressing the roots for general a,b and ¢ are too complicated to be of any use
(each of them requires more than one page). We shall concentrate therefore our attention
on the weak-coupling case in which the equation (6) can be solved perturbatively ; at the
same time it represents physically the most interesting situation.

3.1 Theorem. (a) Let the point spectrum of the decoupled operator k,, be non-degenerated,
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—a? # E — b?, then the perturbed first-channel eigenvalue (resonance) behaves for small |c|

as
i 2alcl? + a’—E—-bya®+ E
b+ Ve +E \/a2+E(b+\/a2+E)

In particular, the zero-energy resonance turns into an antibound state if h,, has an isolated
eigenvalue in the second channel, b < —/E, and into a bound state otherwise.

(b) Under the same assumption, let h,, have an isolated eigenvalue in the second channel,
b < —VE, then the perturbation changes it into

P4 2b|c[? n ’+E—ayb?-E
VBB ' JF=E (at JP=T)

(c) Under the same assumption, suppose now that h,, has an embedded eigenvalue, —E <
b < 0, then it turns under the perturbation into a second-sheet pole with

ei(c) = —a

zlel* + O(le[). (7)

ex(c) = E — glel* + O(lef?). ()

2ablc|?
Reey(c) = E — b* + a—z% O(le*), (9)
2b|cPVE — B2
Imey(c) = T + O(|c|Y) . (10)

(d) Finally, suppose that h,, has a degenerate eigenvalue, b = —/a? + E. Under the per-
turbation it splits into

2a* + 4a*E + E?
Za(a + B

e12(c) = —a’ F 2v/=aVa?+ E|c| + lel* + O(lel’) - (11)

Proof : One can rewrite the spectral condition as
(a —12) (ﬁ—z\/z2 ) v?, (12)

where a := a/+/E and 8,7, z are similarly renormalized a, b, k. To prove the assertion (a),
we use the Ansatz

z = -t + Y ]y ] (13)

n=1

Substituting it into (12) and expanding the lhs in powers of |y|?, we get an infinite set of

equations,
—ie; (B+Ve?+1) -1 =0,
—ic, (/5‘+\/012+I) + \/;L =0,
ic?

—icy (B+VaTTT) + ot

Val+1 = 2(a2 +1)%?



598 Exner H.P.A.

etc., which can be solved recursively. Returning to the original quantities, we have
ile|® iac|*
b+VaTE | JaTE (b4 V@ TE)
L bE+(E- 4a*)\a® + E
2VE(a? + E)¥? (b+ Va? + E)
so taking the square we arrive at (7). Notice that k, is purely imaginary ; if ¢ = 0 its sign for

small |c| is given by the denominator of the second term on the rhs. The assertions (b),(c)
are proved in a similar manner ; we get

B ible]?
Y = ] CFRY =)
i SET @I EWP - E e oo (16)
26 — E)*2 (a + VB — E)

’C] = —ia +

7lel® + O(lef’) (15)

leading to (8) and
b= VE-F 4 blel
VE-B (a—iVE-P)
i(26* + E)VE — 9 — oE
2E — 0232 (a — iVE = B?)

respectively. In the last named case k, is no longer purely imaginary and its square equals

We? i+ E)-aVE-P
o—iVE-F " JE=B(a—iVE—B)

the real and imaginary parts are up to the order O(|c|*) given by (9,10). The resolvent of
h, is analytic outside the real axis so the pole specified by (18) is not on the first sheet but
can be reached by analytic continuation ; notice that the imaginary part (10) is negative.

Finally, in the case (d) the perturbation series (7,8) lose meaning. We replace
therefore the Ansatz (13) by

s lel* + O(lc?), (17)

ex(c) = B — ¥ + slelt + O(c);  (18)

z = —la +1 Ebkhlk; (19)
k=1

substitution into (12) yields a system of equations which can be again solved recursively,
however, for the odd coefficients we get now two solutions differing in sign,

va®+ E of - 1E?|c|? L v—aE(5E — 8a?)
V—a 4a%(a? + E)3/? 32a%(a? + E)5/4

k]_‘z = —ta +1

lef* + O(le[*)  (20)

For both signs and |c| small enough, this value is negative imaginary, and its square yields

(11). QED



Vol. 64, 1991 Exner 599

Due to (a),(b) the interaction always repels the eigenvalues ; in the case (d) it removes
the degeneracy. The appearance of the powers of |c| instead of |c|* here is quite natural,
because the original eigenvalue was twice degenerated so the expansion (11) is nothing else
than a few first terms of the corresponding Puiseaux series — ¢f.[28], Chap.II.

3.2 Remark. We have mentioned that the continuous spectrum of k, is the same as in
the decoupled case. One can check, moreover, that it is again absolutely continuous. It is a
simple exercise to express (f, (hy —2)~! f) from (4) and to check, e.g., that for f; € Cg°(0, )
it has a finite limit as z approaches R, from above, except possibly at z = 0, E and the
embedded eigenvalue E —b* (for ¢ = 0), and that the limit is a continuous function of z. For
any interval I C (0, 00) not containing the above named points, E, (I)f € H,. by Theorem
XIIL9 of [35], and by density argument, I C o,.(k,) so h, has no singularly continuous
spectrum.

4 The scattering matrix

Consider now the scattering problem in our model. Since the interaction represents a finite-
rank perturbation to the free resolvent, existence and completeness of the wave operators
follow from Kato-Birman theory — ¢f. [35], Theorem XI.9. Furthermore, Remark 3.2 shows
that our scattering problem is also asymptotically complete.

More interesting is, however, the explicit form of the S-matrix. One can find it easily
in the time-independent framework : it is sufficient to take the wave function

—ikr _ A gikr
f(r)z(eBeinr ¢ )

which is locally square integrable. Substituting it to the boundary conditions (3), we get a
system of linear equations which is solved by

(21)

(a + ik)(b — ix) — |cf?

A= Sg(k) = D y

(22)

where D is the same as in Proposition 2.1, and

_ 2ike

b=

(23)

Consider first the case when k? < E, i.e., the inelastic channel is closed. A simple
calculation shows then that |A| = 1, and since the reflection amplitude A is (with the choice
of sign we made in (21)) just the s-wave part of the first-channel scattering matrix (or
more exactly, its on-shell component - ¢f.[5], Section 5-7), we have checked that the elastic
scattering is unitary for k* < E. Furthermore, one has So(k) = €*%(*) so another simple
calculation yields the phase shift

k(b —ik)

6o(k) = arctan alb—in) — [

(mod 7). (24)
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Notice that if the channels are decoupled, the above expression reduces to the known formula
for the point-interaction phase shift in the first channel - cf.[1], p.38.

The most interesting situation is when h,, has an embedded eigenvalue which turns
under the interaction into a resonant state whose lifetime is

P-P4+E

T = e
©) = = BeVE=T

by Theorem 3.1c (in the next section, we shall analyze the decay problem in detail). At
the same time, the phase shift should exhibit a peculiar sheer change. Since & is purely
imaginary in this case, we may rewrite the expression (24) as

k(b+ VE — k?)
a(b+ VE — k) —|c|t”

If there is a bound state in the first channel, a < 0, we have §(k) < 0 in the interval
(0,E — b?) with zero value at its endpoints. Furthermore, 8o(k) reaches the value % at
ko == \/E — (Je|*a= — b)? provided |c|* < ab; in the opposite case the argument of the
arctan in (26) which we denote as f(k) has no singularity at all in (0,+/E). For a,b fixed
and |c| small enough, the phase-shift plot is composed of the background arctan(k/a) and
the jump to the next branch of this function around the singularity. The energies at which

bo(k) = %1%, e.g., are

(1+0O(le*) (25)

do(k) = arctan (26)

2b|c|?

2
A = = 0 +a2—b2+E

(a £ VE — ) + O(|c[Y)
which corresponds to (9),(10).

On the other hand, the jump may be substantially deformed, even for small |c|, if |a|
is small enough. As an example, take an arbitrarily small |c¢| and a := |c[?/b. If E — b < E,
do(+) increases steadily from small negative values at small & to

— L2
k) = T~ EZE 4 ol
around k = E.
One can also see the resonance behaviour in the cross section. Since the scattering
is obviously isotropic, we have o0;,; = 01—9 = %’é sin? §. In the embedded-eigenvalue case
therefore the relation (26) yields for k% < E the following expression

tr(b+VE=R)"
o (b+ VE=F) = ] + k2 (b+ VE—F2)

For a, b fixed and |c| small enough, the cross section varies rapidly (has a dip followed by a
peak) in the region of the width ~ T'(c)~! around the value k = ko. In a similar way, one
can calculate other scattering quantities in the considered situation, as the time delay given

by (22) and the Eisenbud-Wigner formula (cf.[5], Section 7-2 ; [32]) etc.

(27)

Otot =
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Finally, let us turn to the case k2 > E. The reflection and transmission amplitudes
then satisfy

K
|A]® + -l;|B|2 =1. (28)

This relation expresses conservation of probability flow : it is easy to see that its radial
components J; := 21Im f; f! are

Ji = —2k(1-|A]") and J; = 2«|BJ’

in the first and second channel, respectively. The elastic scattering is now non-unitary since
|A]? < 1 due to (23) and (28). The last mentioned relation can be also expressed as

1S0a-1(E)* + |So1—2(k)* = 1,

it means, as a part of the full two-channel S-matrix unitarity condition.

5 Decay of the resonant state

Now we want to examine in more detail how the resonant state arising from the embedded
eigenvalue of h,, looks like and how it decays. The most natural choice for the ” compound
nucleus” wavefunction is the eigenstate of the unperturbed Hamiltonian (¢f. [27] ; we shall
return to this problem at the end of the section),

Fi f(r)zm(gb,); (29)

recall that —/E < b < 0. To find how this state decays, one has to compute the reduced
resolvent (f,(h, — k%)'f) and analyze its analytic structure - cf., e.g.,[15], Section 3.1.
Using Proposition 2.1, one gets after a simple integration

le|* + (a — ik)(b+ ix)
7 i)l (@~ iR — )]

(fs (ha = k)71 f) = (30)

Notice first that the function on the rhs corresponds to a four-sheeted Riemann sur-
face with respect to the complex energy z = k? (for brevity, we shall speak about the z-plane):
it has cuts along the intervals [0, c0) and [E, 0o) on the positive real axis corresponding to
the continuous spectrum as indicated on Fig.l. In the momentum plane (or k-plane) we
have a two-sheeted surface with the cuts along (—co, —vE ] and [V/E, 00) coming from the
square root in the definition of «.

The other singularities of the function under consideration are the bound-state or
resonance poles we have discussed in Section 3 ; they are also indicated on Fig.1. Notice that
there is one more pole here: in the k-plane it is a mirror image of the resonace pole on the
second sheet as we can see easily from the spectral equation (6). The choice between them

is not difficult since in the decoupled case, K = —ib must be positive imaginary (remember
that b < 0) which is true for the first-sheet pole.
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pole turning resonance
antibound state
fora>0
Figure 1

Analytic structure of the reduced resolvent: motion of the poles with respect to the cou-
pling constant is indicated (for a > 0 the resonance pole moves down left)

Now we want to compute the reduced evolution operator of the resonant state which acts in
the present case as multiplication by v,(t) := (f,e™****f) on the one-dimensional subspace
of H generated by f. To this end, one has to integrate
1 - y
wlt) = 5 [ e (fi(hu =) f)dz (31)

27

along the curve I indicated on Fig.2 ; we have to consider only t > 0 since v,(—t) = vu({).
Alternately, one has

—1-: L e~ (£, (hy — k)7 f) k dE, (32)

vu(t) = e
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(a) z-planc Im =
I
K —
e I Re =
honund-state
pole for a < 0 second-sheet,
resonance pole
Imk
(b} k-plane
bound-state
| polefora <0
= l‘
- Vi
Re k
o [ ]
. — resonance
pole pole

Figure 2

Iﬁtegmtion curves for evaluation of the reduced evolution in the case there is a bound state
in the first channel

where I' is the corresponding curve in the k-plane indicated on Fig.2. If we have an an-
tibound state in the first channel, the corresponding pole is not on the first sheet and the
integration curve could be shrunk to the origin (or straightened in the k-plane). On the
other hand, if the pole is present on the first sheet, I may be deformed so that we integrate
over this shrunk (straightened) curve plus a small clockwise circle around the pole. The last
named contribution to the integral can be calculated by the residue theorem; we get

le|* + (a — iki)(b + k1) ikl

Wt = — lim (k— k) 2k :
wd) ji, (=) H (bt k)2 [Je — (a — ik)(b — in)
2 .
b1 g [ eiterigne__ lFlaziktting 0 g (53
mi =0+ JR (b+ ire)2[lef2 — (a — ik + €)(b — ixc)|

where &, corresponds to k; and &, := \/ (k+t€e)2 — E. If a > 0 we get the same expression
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without the first term; in the case of zero-energy resonance which we shall not discuss in
detail the first term enters with the factor 1.

By a straightforward computation using the identity |c|® + (a — ik1)(b + ik1) =
2b(a — ik, ) and the relation (15), we find that for a < 0 the first term equals

4ab|c[?
(a2 —b% 4+ E)2

e (1+ O(lc?) .

In the second term of (33) the limit cannot be performed under the integral directly since the
limiting function is not integrable. Fortunately, one can rewrite the integral using a simple
substitution as

fw e—ik?t Iclz + (a — "ke)(b + ’iIC() ] kc dk
0 (b+ix)?[lcf? — (a — ike)(b — ixc)]

_ /°° e le|? + (a + ik ) (b + i&.)
0

— k. dk,
(b+ike)?|[c> — (a + ike)(b — iR.)|

where k, := k + e and

—Ke ... \/Egk

Here we have used the fact that the limit of & when k approaches the real axis from the
upper halfplane (on the first sheet) equals +1/k%2 — E on the right and left cut, respectively,
and t+/E — k? in between. Writing now the expression in question as a single integral over
(0, 00), the limit can be already performed giving

1 fJE' g —4ik?b|c|? i

7t Jo  (b+ik)? |c|* — 2alc|?(b—ix) + (a® + k%)(b — ik)?
1 /oo gk —4ibrc|t — 4ibk|c|*(b? + £?) L dk (34)
7 JVE (0% + k2)? |c|t — 2|c[*(ab — k) + (a? + &2)(0? + &2) '

The first integral is for small |c| expected to be dominated by the pole contribution; recall
that the "discriminant” D is contained in the denominator. The corresponding residuum
equals

2 - : )
__il_: T (k — ky)k 'CI + (a 2k)(b + 1K) 6—ckzt
L k—ky (b+ix)2[lc|? — (a — ik)(b— ix)]
1 2bkyky(a — iky) e—ik3t

3

i (b+ ing)2 [E + i(aky — bry)|

where &, := /E — kZ. Using the expansion (17), we get after a tedious but straightforward
calculation that the preexponential factor equals —1/27%¢ up to higher-order terms, i.e., that
the pole contribution to v,(t) is e=*3 [1 + O(|c|?)] as expected.
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Evaluation of the backgroud term

It remains to determine the background term. In the first integral, we close the integra-
tion curve as indicated on Fig.3 ; taking the segment radius to infinity, the contribution to
the background consists of the integrals over (vE, o) and the fourth-quadrant axis. The
first of them, however, can be checked easily to cancel up to higher order terms in |¢|?> with
the second integral in (34) so we get finally for the reduced evolution and the corresponding
decay law P,(t) := |v,(t)|? the following result.

5.1 Theorem. Assume a # 0 and —/E < b < 0. The reduced evolution and the de-
cay law of the resonant state (29) corresponding to the Hamiltonian A, are given by

= ~iky 2(al —a)b s ib —ik2t
‘Uu(t) - {e zt—|C|2[(a2__b2+E)2e t+ \/E—-b_f(a—z\/E_b?')?e
4b ; oo s
& 1 1 35
T T ¢ /o (22+iaz)(zz—z'(E—b'~’))2]} ( + O(|c| )) (35)

and

| —a)b e
— 2(Imeg)t __ 2 i(kf-k3)t
P,(t) {e 2|c|*Re [ @ -t E? e 2

b 2(Ime2)t

T E—Pa—ivE-p)"
zZe~"tdz

4b ifcgt—'ir 4 * ¥
g /)/0 (2% + ia?) (2 —z’(E——b2))2]} (1+0(eP)) ,  (36)

where e; = k? are given by the relations (7) and (18).

Hence we have obtained the expected result, namely the exponential decay law with
the lifetime (25) and correction terms of order of |c|?. A closer inspection reveals, however,
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that the long-time behaviour of the decay law depends substantially on the spectrum of
the unperturbed Hamiltonian : if it has an eigenvalue in the first channel (so h, has an
eigenvalue too for a sufficiently weak coupling) then the decay law contains a term of order
of |c|* which does not vanish as t — oo and therefore dominates the expression for large
times.

It is clear that this term comes from the component of the first-channel bound state
contained in the resonant state (29). Its time dependence €'*! in the non-decay amplitude is
up to higher order terms exactly what one expects from the bound state contribution to the
three-dimensional point-interaction Green’s function - cf., e.g., the explicit expression for
its kernel derived recently by Scarlati and Teta [36]. Let us remark in this connection that
in the earlier results concerning the one-dimensional resolvent kernel [29, 31] the difference
between the bound- and antibound-state cases was overlooked (it was noticed, however, in
[24]) so the corresponding formulae are only formal in the first named case.

Finally, let us comment on the choice of the resonant state (29). Hunziker [27] has
argued recently that in general one can use the formally obtained perturbed eigenstate, how-
ever, he pointed out that in the embedded-eigenvalue case only the zero order is applicable
since the higher terms in the perturbation series diverge.

The explicit form of our results allows us to see in the model under consideration
why it is so. The perturbed eigenfunction conventionally obtained from the residuum at the
shifted pole of the resolvent - ¢f.[28], Chap.II. For the second sheet pole (18) the residuum
can be formally written as R = (f,)g, where f, g are up to higher order terms equal

e cE—b? e—iVE-F & o(lcl3)

e’ + O(lef?)

f(r) = V=2

and
c W E—b2
—vmm e+ O(ef)

g(r) = vV-2b
e’ + O(lef*)

We see that R is not even no projection, but f,g are not normalizable vectors unless, of
course, ¢ = (.
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