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Non-existence of path space measure for local (QED),*

By J. Loftelholz
Karl Marx University, Department of Physics/NTZ, 7010 Leipzig, Germany

(16.X.1990)

Abstract. We study the interaction of a “charged” particle with an oscillator. On the classical level
holds mx = p — e4, where x, 4 € R. In QM we let x move on the circle S to have a proper ground state.
The imaginary time Green’s functions exist, satisfy OS-like axioms and, for e # 0, are complex valued.
They define a normalized quasimeasure di on path space Q x 4. Our main result is the proof of
|A]| = + 00, due to a theorem of Yngvason. Integrating out the oscillator variable 4 we find some
probability measure du on Q (given by the effective action for the particle). Because of memory it allows
us to recover the Hamiltonian semigroup for the coupled quantum system.

1. Introduction

On a heuristic level the idea of path integral was introduced by Feynman [1].
After reformulation of QFT in terms of Euclidean Green’s functions [2] its existence
became a challenge for mathematicians [3].

In particular Yngvason [4] obtained the following result: Given those Green’s
functions then strong OS-positivity implies that a measure exists and must be real.
He used an argument of Frohlich. However from QED we know that the interaction
of charged matter with gauge fields is given by a complex phase factor and, if ® denotes
time reflection, one has combined PC ®-symmetry. To understand the crux we looked
for some caricature of electromagnetism in standard QM avoiding any troubles with
Fermions [3].

Fig. 1.

*) Seminar given at the Workshop “white noise analysis: New results and their impact on quantum
physics”, ZiF Bielefeld Sept. 24-29, 1990
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Let x be the angular coordinate of a particle moving on the circle as drawn
above. The stationary states of the system are described by eigenfunctions
W =exp {i (kx)},k €Z, of p = —id/dx. Indeed imposing periodic boundary condi-
tions at x = +7 the momentum p defines a selfadjoint operator [6] in L*(S). When
x couples to a homogeneous magnetic field of flux ® = 2nA then p acquires a shift
by « = eA, where ¢ was the charge. We claim that for « ¢ Z (otherwise the effect
would be unvisible) the propagator leads to a complex-valued normalized cylinder
measure dw, of infinite total variation [7].

So contrary to general believe the formal substitution ¢ — — it does not resolve
all problems with the path integral.

2. Model

Below we consider 4 € R as dynamical degree of freedom describing a quan-
tum oscillator. On the classical level our model is given by the coupled equations of
motion

A+ 24 = ex (1)

where E = — 4. Clearly, p = mx + eA4 and total energy H are conserved. We will fix
m equal to one. In QM we realize

(p —eAd)?
2

mx =eE}

H = + I,(E,A), (2)
where 1; = 1/2(E* + 247?), as a Hermitean operator in the separable Hilbert space
H = L*(S x R). Of course p € Z so that H has discrete spectrum and a proper
ground state Q. The variable x € S gives a bounded operator with norm |x|| = =.
This affects the classical identity mx = p — eA. Indeed, we find the singular anoma-
lous commutation relations

I =px —
e (3)
=i- Y, (—=1)Fe*,
k#0
and hence
1
[H, x] =5 {(p —eA)L + L(p —ed) }. (4)

3. Propagator

To obtain the propagator one may start from the Lagrangean [8], calculate the
action along a trajectory ¢ — (x(z), A(2)), t, <t < t,, and then go to imaginary time.
Because of the restriction x € S this seems to be a doubtful venture. Instead we
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rewrite
P'=exp(—tH)
(3)
—ip” * i
= exp M - V*K'V, t=0,

where V = exp {ie/y*(pE)}, y = /B> + e? and M is an effective mass. Moreover we
introduced K = exp (—tly), governing the oscillator [9]. The unitary V' commutes
with momentum p. So if
LY(S xR) = @ #4, (6)
keZ

on wave functions ¥ = ¥(x, 4) from some fixed sector #, the operator V induces
a shift of A4 to A, = A — ek/y?. Using Poisson’s formula [10] we get

(-3)
exp __2—1’
P=Y — =/ Ki(4, B), (7)
leZ 2nt
where
zp=(y —x) +id(r) M—Jﬁ)unl, (8)

() =7 - (B* +e%5) and 0<6(r) <2/y. Hence, for e #0, in the Schrodinger
representation the imaginary time propagator of the model (QED), is complex-
valued. We may hardly associate a genuine stochastic process with trajectories
t — (x(r), A(t)) on path space

O0xA= X (§xR). (9)

te(—co,0)

4. Quasimeasure

Let us renormalize the Hamiltonian so that HQ =0 and perform a unitary
transformation on L?*(S x R) which brings the ground state vector Q into the
function equal one.

Then for any 1, <t,<t, <---<t, the iteration of the propagator defines a

.....

For n =1 we obtain
di, = dp(xA) - P*(xA, yB) dy dB, (10)

where ¢ =1, —t, and dp = Q? - dx dA is the measure on S x R defining the new
scalar product in the “physical” Hilbert space. Its extension to some o¢-additive
measure on Q x A4 yields a nontrivial problem. Unfortunately we cannot use [11].
But the simple structure of our model allows us to control the total variation of di,
in the limit n / oo, directly.



Vol. 64, 1991 Loffelholz 551

We return to the situation of a particle x moving on the circle S in presence of
magnetic flux ®. The evolution operator
eik(y—x) e—!(k—d)2 1

ro_ . ; _ _1 — )2
Ri=Y o= i Zexp{zk(y x) 2(k o) }, t=0, (11

keZ T ez

: to® : :
satisfies R: 1 =exp -——g— - 1, where « = e®/2n and the Chapman equation. Via

the Kolmogorov construction we find a normalized cylinder measure dw, on Q. We
claim that for given ¢ > 0

eor?

n@r=ap(2)JLmewhv>L (12)

Equality holds if and only if aeZ. By inspection the QM amplitude
(cos x, R sin x) is not real. We remark that R%(x, y) coincides with Jacobi’s theta
function [12] at z =(y — x) + iex and imaginary time parameter. Using the fact
that the value of the integral does not depend on x € S we get

Lemma.
|0, (S x $M) = Y,(e)", n=0,1,2,... (13)

For large n the total variation of dw, diverges. Conversely, let us fix ¢ > 0, so that
¢ =t/n "\ + 0 if n tends to infinity. Then from Y, (g) < exp (ex?/2) and translation
invariance we conclude that on a finite time interval the total variation stays
bounded. We easily check Daletzki’s condition. We observe the symmetry
do, - ® = (dw,)*. Complex conjugation is equivalent to changing « by —a. How
our lemma can be applied to the full propagator?

For small ¢ >0 one may substitute P*(x4, yB) by R;(x,y) - K;(A4, B), with
o =e (A + B)/2. In the case n =1 for the total variation of dA on X ;,_,, (S x R)
we obtain approximately

Jj Ye(A + B)/2 (&) - dny(Aa B), (14)

where do, denotes the oscillator measure. Finally we combine the above estimate
with e - (4 + B)/2 ¢ Z, for a.e. (4, B) € R? and the fact that dp, was normalized.
Similarly we proceed when n=2,3,.... Hence di acquires unbounded total
variation. We shortly write || = + co.

5. OS-axioms

If e = 0 the Hamiltonian is the sum of P?/2m and I;. Its ground state is given
by the vector 1®Q; € L*(S x R), where Q; stands for the oscillator vacuum.

At imaginary time we have a two-dimensional Markov process ¢ — (x(#), A(¢))
on the large probability space

(Q x A,y x U, dw0®dgoﬁ). (15)
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The measure dw,, for o =0, describes free Brownian motion in the circle S and dg,
governs an Ornstein-Uhlenbeck process. The moments factorize. Using x € S and
the fact that dop, is Gaussian we easily derive the estimate

A Gl 16
SRR § .80 ‘~<\ m ,

|Cx(s1)x(s5) * -+ x(5,,,) (1)) <7 2h)" (16)
valid for m,n=0,1, 2,.... Of course for odd m or n this vanishes. As an exercise

let us calculate the correlation function of dw,. Expanding f(x) = x in a Fourier
series on (—m, ) we get

(x(s))x(s2) Do = ), k% -exp (—ek?/2), (17)
k#0
where & = |s, — s,|. In the limit ¢ \, + 0 we recover the variance of the normalized
Lebesque measure dx/2n on S.
We denote x = x(0) and u = dx(¢)/dt. Then by the Feynman—Kac formula
—{x - u(e) ), for small ¢ becomes equal to the divergent expression

1(xQ, pY(xQ)) = + . (18)

Because of x € S also in the interacting case the existence of Green’s functions is
rather trivial. But, as we learned above, their time derivatives are singular at
coinciding arguments [13].

Theorem 1. The moments {x(s,)x(s,) - x(s,,) - A(t,)>, where m,n=
0,1,2,... of the cylinder measure dJ. on Q x A exist and are
(1) integrable,
(i1) time translation invariant,
(ii1)) OS-positive,
(1v) complex for e # 0. (19)

Proof. Within the famous reconstruction theorem of Osterwalder and
Schrader (iii) is a consequence of QM [J. We would like to check it looking just at
the Green’s functions of our model. The idea is simple.

The propagator which defines dw, satisfies R} (x, y)* = Ri(y, x), where x, y € §
and s > 0. So for any bounded function f = f(x(s)) we get

J f* - Ofdw, =exp (—sa?) - [¥[*=0, (20)
2]

where W = R{f e L*(S). We also check the inequality for cylinder functions say
f=1(x(s,), ..., x(s,) with 5,,5,,...,s,in R, . Strong OS-positivity requires it to
hold for any exponential function measurable with respect to

5, - a( U z) (21)

s=0

We observe that o(X_ UZXZ ) =X, where £ _ is the image of £, under reflection ©.
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This generalizes to the cylinder measure d4. What about Yngvason’s result? He
proved that the above conditions are not compatible with the existence of di as a
finite measure. So the upper bound

1
2 H Pe(s1)x(s5) -+ - x(s,) 0 A(L,) | dewo ® dopg (22)
QOx A
on the Green’s functions, for all m,n =0, 1,2, ..., implies Z = 0. Indeed the free

measure dw, ® dog 1s ergodic and hence [14] dA cannot be the perturbation by some
phase factor.

6. White noise

We remark that

<exp {i : (i ij(;,.))} A(ty) -+ A(t,,)>, (23)

for k\,k,,...,k, € Z, has an integral representation with respect to the measure
dx ® dn(u, A), where t > u(t) € R for e = 0 was white noise [15]. More precisely, let
us consider the operator

in D = L*(R) @ L*(R). Above A = 2 — d*/dt* and G4(-, -) will denote the kernel of
its inverse A~'. One easily shows that C defines the covariance of the desired
cylinder measure on U x A. Of course the restriction of dn to A should coincide
with de,. To avoid confusion we introduce another symbol -} for expectation
with respect to dy. We find

(u(b)A(a)y = —ie(b, G, a), (25)
PAN. 2. 2 1
(u(b)A(@)2y = —2¢? - (b, G, a) +(b, oy Gﬁb)(a, G,a), (26)

etc. Provided |e|* < B?/2, the last expression becomes non-negative. We claim that C
is a sectorial operator [16] in D with half opening angle arctg (e/f). There is a
striking analogy to the path space measure for the bosonized massless Schwinger
model (QED), [17]. Formally dn is given by

6722/2 dZ®d§DY |z=u+ieA' (27)

Of course the variable z was nothing but the imaginary time counter part of the
canonical momentum p = mx + eA, where m is fixed to one.

Let t = &(¢) € R be one-dimensional Brownian motion mastering at time zero
the slalom £(0) € (—m, #). This defines a Markov process on (X, E, dv), where X is
the space of trajectories and E the o-algebra generated by cylinder sets.
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dv=dx®e 2 du, x=¢&0), (28)

is an averaged conditional Wiener measure. If we close ( — =, n) to the circle and
consider the real line as covering space [18] of § we may identify periodic sets

7t*‘(M)=!uZ {¢eX: &) —2nle M}, (29)

for Borel M in S and ¢ # 0, with elements of . In other words © was the canonical
projection from R onto S = R/Z. The lift # ' in a natural way induces a measure
isomorphism. All that generalizes to the coupled system.

Theorem II.
dA =dx®d11 ‘n*l(EXQI)' (30)

We emphasize that dA is translation invariant whereas the measure dx ® dny was not
[19]. The above redefinition allows us to calculate expectation values as
(exp {i(kx)} - A(¢)), for k € Z. Integrating over x € S we obtain J(k) and then we
are left with a Gaussian. For non-integer k everything becomes more tricky. But
“Gott kiimmert sich nicht um unsre mathematischen Schwierigkeiten. Er integriert
empirisch™ [20].

7. Memory

As hidden in the title we have an alternative resolution to the problem of
existence of a path space measure for (QED),. We claim that in the mixed
representation where x and £E are diagonal the QM propagator
P'=exp(—tH),t =0, is positivity preserving [21].

Indeed given any bounded f(x, E) =0, because of Q(x, F) =0, the vector
Y =1 -Q is also represented by a non-negative function in the physical Hilbert
space L*(S x R). We now apply the factors ¥, K!, V* and exp { —1(p?*/2M)} step
by step. V shifts the variable x to x + eE/y2, V* conversely. With the other two
operators there is no trouble. Hence P"¥(x, E) = 0. In particular this will be true
for any W =(g®1) - Q with g(x) >0, x € S. By induction

(QgRle 2 WHg]---g.®@1-Q) =0, (31)

provided g;(x) >0 for all j=1,2,...,n. Let .# denote the Abelian algebra of
those bounded multiplication operators F =g ® 1, |F| < oo, acting in L*(S x R). It
is the completion of

My={F=e*®1: k e Z} (32)

in norm and not maximal [22]. Instead we observe that the vacuum Q=1&® Qy
1s cyclic for the algebra %, generated by P’,t >0, and the elements of .#,. Of
course %, is dense in the algebra # = #(L*(S x R)) of all bounded operators.



Vol. 64, 1991 Loffelholz 555

We claim that
¥(f) = Pile™ ®1)Q, (33)

t =20, span ¢, except in the case when k =0. But the vacuum sector N of
L*(S x R) is spanned by the vectors W(f) = F*P'FQ, t >0, with any Fe .4,
different from the unit element. This has a nice consequence.

Theorem III. The triple
L*S x R), My, {P',t =0} (34)

together with the vacuum Q builds a generalized positive semigroup structure. Hence
the above QM amplitude define the Fourier transform of a probability measure du on

Q.

Proof. See Klein’s theorem [23] [J. One can show that du is OS-positive.
Given 0<t, <t,<---<t, and k; € Z we find

J exp {i i ij(tj))} du = (k) - exp{ — % (ZHZ kfkjr"f)}, (35)
o) =0

i>j=1

where

; 1 : 3
TJ:(hi’mhj)’ l,]=1,2,...,n. (36)

Here £, are the indicator functions of time intervals 0<s <#,j=1,2,...,nin ﬁ+
and k stands shortly for the sum of all k;’s. The diagonal elements of the matrix t”
yield a modified function ¢ — ©(¢), t = 0, satisfying '

2

(s + 1) = 1(s) + (1) — % - 8(s) 8(). (37)

Let us introduce L*(Q) with scalar product given by the measure du and denote R
the projection operator onto the subspace L*(Q. ) of functions which are measur-
able with respect to X _ .

Then [24]

A =L¥Q, )/ker W, (38)

where W = +(ROR)'?, can be identified with the physical Hilber space. Since du

violates the Markov property 2 is larger than L*(S). Indeed we find an isometry
J: A — A so that

Y(f) = JWT e ® 1

(39)
=c(t, k?) - exp {ik(x +y~? ed(H)E)}Q,
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where E was the canonical conjugate to 4. For details see [25]. On the classical level
the elimination of the “unvisible” oscillator leads to the following integro-differen-
tial equation

5}

mx(t) = —e? {x(t) +y- f

I

Cy(s, 1)x(s) ds } (40)

Above —f2Cy(-, ) stands for the periodic Green’s function of the hyperbolic
operator fi*+ d*/dt> on (¢,,t,) [26]. Of course one may choose other boundary
conditions as well.
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