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Lecture 1. General Introduction

1.1. Introduction

During the past year there has been a great deal of activity in the newly found subject of
sub-critical strings. Many results have already accumulated, giving some clues on the non-
perturbative properties of string theories in realistic dimensions. These new developments
are a consequence of the investigations over the last two decades on subjects such as
conformal field theory, lattice and continuum integrable models, quantum field theory in

the large N limit, string theory, critical systems on random surfaces, etc.

These notes are based on an eight-lecture Cours de Troisieme Cycle de Physique de
la Suisse Romande, held at Lausanne in the Fall of 1990. The aim of the course was to
provide a reasonably self-contained introduction to the subject of sub-critical strings and
matrix models, and their connection with some problems in statistical mechanics. Since
the audience contained both students and faculty members with a wide range of research
interests, we assumed very little in terms of prerequisites, and we made an effort to assume
as little previous knowledge as possible. The various preliminary subjects required to
understand the double scaling limit construction of two—dimensional conformally invariant
systems coupled to gravity are reviewed in some detail. Consequently, the lectures do not
contain an exhaustive treatment of the subject, but should be considered instead as an
invitation to study the new subject of sub-critical strings, and as an introduction to such
a fast-growing field. What constitutes a pedagogical presentation of a subject is almost
always a matter of personal taste. Accordingly, the author alone should be held responsible
for the choice of preliminary subjects intended to present the concepts and techniques of

this new subject as transparently as possible.

In preparing these notes, we have followed faithfully the content of the lectures, without

adding any extra material. The outline of the course is as follows. Lecture 1 provides a
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general introduction to string theory and to its relations with the theory of random surfaces
and conformally invariant theories. Lectures 2 and 3 contain a mini—course on conformally
invariant quantum field theories, the minimal conformal models and the Coulomb gas
representation of their correlation functions. In lecture 4 we derive some of the main
results due to Polyakov [1] and Knizhnik, Polyakov and Zamolodchikov [2], using the
presentation of David [3] and Distler and Kawai [4]. This provides us with the gravitational
dressing of conformal primary fields and with their gravitationally dressed dimensions.
These results are derived in the continuum and they constitute good reference points for
the subsequent lectures, concentrating mostly on the discrete definition of two—dimensional
quantum gravity and its coupling to matter. The next three lectures (5, 6 and 7) present the
use of large NV field theory techniques to simulate the sum over two—dimensional geometries,
and the properties and definitions of critical exponents for statistical mechanical models
coupled to fluctuating surfaces. We obtain the Kazakov multi-critical points [5], one-
matrix models, orthogonal polynomials, and a first look at the double scaling limit [6, 7, 8].
Finally, in lecture 8 we survey the relation between sub-critical strings, the KdV hierarchy,
the Douglas equations [9], the double scaling limit for the Kazakov multi-critical points,
the ¢ = 1 string theory, and the two—dimensional Ising model in the presence of gravity
and an external magnetic field. We briefly comment on the loop equations, the Virasoro
constraints, and the non-perturbative properties of pure two-dimensional gravity. All
these subjects are now being investigated vigorously. Due to the lack of time, we have
not covered these subjects in more detail. This is the reason why we only present details
throughout these lectures for the cases of pure gravity, Kazakov’s multi-critical points,
and Ising and ¢ = 1 theories in the presence of gravity. Many other models are studied
in the literature: the relevant references are quoted in the text. The approach to many
of these subjects using topological field theories has also been omitted, again due to lack

of space-time. The interested reader is referred to [10,11,12,13,14,15,16] and references

therein.
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1.2. String Theory as a Theory of Random Surfaces

Problems involving the statistical mechanical properties of random surfaces appear
in many different subjects of theoretical physics. Among them, let us mention two-
dimensional gravity and Liouville field theory, biological membranes, interphase bound-

aries, wetting, string theory, three-dimensional critical phenomena, etc.

In ordinary particle mechanics, the time evolution of a particle generates a world line.
Its quantum properties can be obtained by summing over all possible trajectories. For a
free particle, the natural action functional is proportional to the length of the world-line.

Thus for a relativistic particle

Se(r)] = -m [:f dr (1.1)

where 7 is the proper time along the particle trajectory and m is the particle’s mass. Simi-
larly, the most natural quantity to describe the action of a string (a closed one-dimensional

object) moving in some flat space-time is the area of the world-surface swept out by the



364 Alvarez-Gaumé H.P.A.

string. Thorough presentations of string theory with references can be found in [17,18,19].
Let o and 7 be the space and time co-ordinates of the world-sheet, respectively, and let
XH#(o,7) be the function describing its embedding in space—time. For a d-dimensional
Minkowski space, the action is then given by the area of the world—sheet with respect to

the reduced metric:
ds® = n,,dXHdX"
(1.2)
= NuOr XH0; XY dr? + 1, 0 X # 05 XV do? + 217, 0r XH0e XV dodr
where 1y, = diag(1,—1,-1,...,—1) is the metric of the embedding space M4 Letting

50 = {1 = o, the above expression can be written as

ds® = gij(X)dE* g’ (1.3)

d
x M M
.___ﬁ.
6
C c
Figure 1.1. A typical configuration of the embedding of a string into space—time M d
The action of the string history X#(¢9,¢!) is proportional to the area [ /detg:

S[X(EH =T / dadr\/)'(?X'? — (X - X")2 (1.4)
with ;
X =9, X+ (1.5)

A N B = n#yA‘uBV

The string tension T is the analogue of the particle mass. It has units of mass over length

or (mass)?, since we always set i = ¢ = 1.
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Depending on the mapping X#, the embedding of the string world—sheet can be ar-
bitrarily complex and crumpled. Clearly, (1.4) is a rather complicated action and if one
wants to quantize it, a simplification would be most helpful. Such a simplification is in-
deed available at the expense of introducing an auxiliary metric g;; on the two—-dimensional

world-sheet.

Instead of (1.4), consider the action ( see [17,18,19] for details)

SPX,9l =~ [ d6/Ag0X 0 X (16)
which is quadratic in X. The metric g;; on the surface swept by the string is a new field.
Since no derivatives of g;; appear in (1.6), its equations of motion will implement some
constraints on the dynamical field X#(o,7). Recalling from general relativity that the
variation of the action with respect to the metric is equal to the energy-momentum tensor

Tij, we learn that the classical theory defined by (1.6) satisfies the equations of motion
‘ 1
Tij = 0; X410, X — §9ij9keakX”3£Xp =0 (1.7)

%a,- (\/ggijajxﬂ) —AXH =0 (1.8)
Therefore, in the presence of the metric g;; the field X#(o,7) is a free scalar field which
does not carry two—dimensional energy or momentum. We can use (1.7) to solve for the
metric tensor g;; in terms of X#. Writing (1.7) as ;X - 0;X = %g,-jg’“fakx - 9y X and
taking determinants on both sides, we find that (1.6) is equivalent to the Nambu-Goto

action (1.4). Thus (1.6) provides the simplification we sought.
Several things should be remarked about the equivalence between (1.4) and (1.6):

i) The free propagation of a string in M¢ is described by a free two-dimensional field

theory.

ii) The actions (1.4) and (1.6) are both invariant under arbitrary reparametrizations £* —

FHE) of the surface, under which

gij — 0:F*0; F gre (1.9)
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The form (1.6) of the action gives the minimal coupling of d two—dimensional scalar

fields X# (p =0,...,d — 1) with two—dimensional gravity.

iii) The energy momentum tensor Tj; in (1.7) is traceless with respect to g;;: gl T;; = 0.
This tracelessness reflects the local Weyl invariance of the action (1.6). If we rescale

the metric as

gij — 645(0“,1’)9.2._1 (1.10)

we find that \/ﬁgij remains unchanged. This is true only in two dimensions.

Thus, classically, the action has three types of symmetries: diffeomorphism or repar-
ametrization invariance, local Weyl or conformal symmetry, and the space-time symme-
tries depending on the isometries of the metric 7,,. For instance, if M 4 js the standard
Minkowski space, the action enjoys d-dimensional Poincaré symmetry: X# — A¥, XV 4 b

where A% is a Lorentz transformation.

We have just met conformal invariance for the first time: it will play an important role
in subsequent lectures. We have learned that string theory is described by the coupling of

a conformally invariant field theory (CFT) to two-dimensional gravity.

The simplest topology of the world-sheet is a cylinder. In this case, the space-time
picture of string propagation is shown in figure 1.2 and the sum over all embeddings with
this topology describes the propagation of a free string. For this simple topology, we can
use the diffeomorphism invariance to fix \/gg;; = 7;;, the Minkowski metric on the cylinder:
Nrr = 1, ee = —1, nre = 0. In this gauge (the conformal gauge), the action (1.6) looks

particularly simple:

S = —%/drdo‘ (X2 _ X’2) (1.10)
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and the equations of motion in this gauge are those of a free scalar field on the cylinder.

Figure 1.2. Propagation of a free closed string.

For future reference, it is convenient to consider the dynamics of the theory on the
punctured complex plane C* = C — {0}, in order to exploit the power of complex analysis.
We do this by first Wick-rotating the time 7 to euclidean time, and then using light—cone

co-ordinates:

ot =740 - —i(r+i0) = —iw
(1.11)
0" =17—0— —i(T —i0) = —w
The metric element is thus ds? = dr? — do? = dotdo~ = —dwdw, and the null geodesics

+

are the straight lines 0% =constant, for which ds2 = 0. The causal structure is thus

preserved by any transformations of the form ot — f(o%), 6= — g(o™). Since both f
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and g are arbitrary, the conformal group is twice infinite—~dimensional.

+ 00
A
W
Z=
L >
T
y T

Figure 1.3. Conformal mapping of the cylinder to the punctured complex plane.

It follows from (1.11) that Fourier expansions in 7 4 o become expansions in e% (e®).

We may now implement the conformal transformation
2 =ev (1.12)

The lower end of the cylinder 7 = —oco is mapped to the origin of C, and 7 = oo is
mapped to the point at infinity (of the Riemann sphere). Hence this conformal transfor-
mation maps the cylinder to the sphere with its standard conformal structure and with
both the North and South poles (z = 0, co) removed. Fourier expansions in the origi-
nal variables 6* become Laurent expansions in the variables z and Z. This description in

terms of (anti)holomorphic co-ordinates is useful because the equations of motion following

from (1.10) imply
04+0-X* =0 (1.13)

or

8,0; X" =0 (1.14)
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whose most general single—valued solution is

~

B p 2 ,N 0 N0
XH = g¥ —iptlog|z| +zZ —2 +zZ —Z (1.15)
n#0 n#0

In this expression, ¢ describes the location of the string’s center of mass and p# its total
momentum, whereas the oscillator modes a, (respectively an) describe the left-moving

(respectively the right-moving) string excitations.

In holomorphic co-ordinates, the energy—momentum tensor has components T, T53

and T,z = T5,. The tracelessness of T}; implies

T,==0 (1.16)

and the conservation of energy and momentum can be written as

aETzz + 3;;T-5z = 0

(1.17)
0. Tzz+0:T,z=0
which, combined with (1.16) imply
aETzz == 0
(1.18)
azT:-,_v"fz‘ =

In words, this means that T = T, (respectively T = T53) is a holomorphic (respectively

anti-holomorphic) function in C*. Hence, we may Laurent expand T"

T(z) =Y Lpz""? (1.19)

neZ

and similarly! for T. The factor z~2

in (1.19) has a simple explanation in terms of the
conformal mapping (1.12). In the original cylinder co-ordinates, T is a quadratic dif-
ferential i.e., Tywdw? is a scalar. After implementing (1.12), dw = dz/z and therefore

dw? = dz? /2% giving rise to the overall factor of z~2 in (1.19). Similarly, a general tensor

From now on, we shall write explicit formulas only for the holomorphic part of the theory;
the anti-holomorphic equations are completely analogous.
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Ty...ww.-w of type (7,7), with j holomorphic and 7 anti-holomorphic indices, will contain

an overall factor of 2= 777,

After quantization, the coefficients L, satisfy the celebrated Virasoro algebra. Geo-
metrically, these operators generate (through Poisson brackets in the classical theory or
commutators in the quantum theory) the algebra of infinitesimal conformal transforma-
tions

2o z4+e" =24 evi(z) (1.20)

The vector field v?(z) may have poles or zeroes only at z = 0 or co. It is clear that, if
0:T(z) = 0, then also 852"T(z) = 0, and hence 2"T(z) is the local density of the Noether
charge implementing (1.20) on the space of states. In field theory, we usually compute this
charge by integrating on the 7 = 0 surface. In holomorphic co-ordinates, 7 = 0 corresponds

to the circle |z| = 1. Therefore, the charge is given by the contour integral

. :f T (1.21)
|z|=1
Here and throughout, § stands for § ?47% Since T(z) is analytic in C*, Ly is shown to be

conserved by a simple contour deformation argument (see figure 1.4).

Figure 1.4. Two different integration contours for L.
On the z—plane, time evolution is equivalent to radial evolution. Constant 7 “surfaces”

correspond to circles centered about the origin |z| = e”. Consider two homologous (i.e.,
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smoothly deformable into each other) contours C' and C’ and the annulus A bounded by
them. As long as no sources of energy or momentum are present in A, the analyticity of

T implies that
L, :% 2"TIT(2) :f 2HT(2) (1.22)
C C’

For the special case of C’ a circle concentric with C = {|z| = 1}, this is the statement that
the charge is time-independent. Notice, however, that we have a much larger symmetry,
since Ly will not change as long as C' is homologous to C. This large symmetry is a

reflection of the conformal invariance of the theory.
The transformations associated with Ly and Ly are especially significant. They gen-
erate the so—called Mébius transformations

az+b
—
cz+d

a,bec,deC, ad—bc=1 (1.23)

which are the conformal automorphisms of the sphere onto itself. The infinitesimal gener-
ators for these transformations are
L_1: z—oz4+e_
Ly: z—-(14¢9)z (1.24)
Li: z— 2+ 6]2’2
which are indeed infinitesimal translations, dilatations and special conformal transforma-
tions respectively. From these relations and the analogous anti-holomorphic ones, we learn

that Ly + Ly generates time translations + — 7 + ¢, and Ly — L( generates rotations

a——>a—i—s'.

The algebra satisfied by the infinitesimal generators of conformal transformations

iy = —zn+1-d— (1.25)
dz

is given by

[vn, vim] = (n — m)vn4m (1.26)
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where [, | is the commutator of the vectors (1.25), viewed as differential operators. After

quantization, we may ask whether the representationt

v—T(v) = f v(2)T(2) (1.27)
C
still satisfies (1.26) This is not necessary, and in fact it is not the case.

Notice, first of all, that the states in quantum mechanics are represented by rays in a

Hilbert space. Therefore, in general we will have a projective representation of (1.26):
[T(v), T(w)] = T([v,w]) + ¢ — number (1.28)

From a mathematical point of view, we can determine the general form of the central term

as follows. Since vy is represented by L,, we can write (1.28) in full generality as
[Ln, Lm] = (n — m)Ln+m + Cn’m (1.29)

The antisymmetry of the commutator and the Jacobi identity imply

Cam = —Cmmn
(1.30)
(n— m)cn+m,k +{m — k)cm—i—k,n + (&~ n)ck+n,m =0
The general solution to these equations is
cnm = (an® + )6 4m 0 (1.31)
Furthermore, it is possible to redefine the generators in such a way as to make b = —a.

We want to keep explicitly the SLg symmetry of the theory: since Lij, Ly generate
the conformal automorphisms of the sphere, we effect the redefinition so that cmn = 0,
m,n € {—1,0,1}. Mathematically, cm n is a cocycle, and (1.30) are the cocycle conditions.
The solution ¢ n = bndy4p 0 is a co-boundary. The geometrical meaning of this co-cycle

can be found in [20].

The tensor is T}, and the vector is v?, so v* T}, is a one—differential whose contour integral
is well defined.
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The other reason why one expects a central extension has to do with the positivity of

the Hilbert space. It is conventional to write (1.31) as
c
Cn’m = E(n?’ - n)6n+m,0 (1.32)

so that the algebra (1.28), known as the Virasoro algebra, takes the form

c

[Ln, Lm] = (n —m)Ln4m +
The translationally invariant ground state satisfies the so—called Virasoro conditions
L,|0)=0 n>—1 (1.34)

Using (1.33), we can compute the two—point function of T(z) on the SLg invariant state
|0}. A simple computation yields

c/2
(z=0)*

We can use T'(z) to construct some physical states in the Hilbert space, and (1.35) can be

(T(=)T(C)) = (1.35)

interpreted as the scalar product for these states. If ¢ was either zero or negative, then
the theory would not satisfy the positivity requirement on the Hilbert space. We will see
some examples of conformal field theories in lecture 2. We remark only that every free
massless scalar field contributes a unit of ¢. Hence, in our previous example we have a
conformally invariant theory in two dimensions described by the fields X#(o, ). If there
are d dimensions, the total contribution to the central charge ¢ is d. This allows us to
define in string theory a generalized notion of dimension. We can identify the “dimension”
of a unitary conformal field theory as the value of its central extension of the Virasoro

algebra.t

So far, we have only considered the propagation of a free string because we have concen-

trated only on the cylindrical topology for the world-sheet. We are following, by analogy,

For theories which are not unitary, the generalized dimension is d = ¢ — 24hp,;;, where hpiy,
is the minimal conformal weight of all the primaries in the theory. In the unitary case,
Bsin = 1.
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the first quantized formulation in quantum field theory. Using Feynman’s path integral
formulation of quantum mechanics, we can give a general (perturbative) prescription for
the computation of an arbitrary n—point function. For simplicity, we analyze the case
of a scalar field theory with a A¢3 interaction. We can define a diagrammatic algorithm
to evaluate the Green’s functions. Suppose, for instance, that we want to compute the
four-point function. We draw all possible networks joining the out-going and in-coming
lines in such a way that we allow a total of only three lines at each node of the network,
with strength :A. Furthermore, apart from the initial and final points, we integrate over
the position of the nodes in the network. Each straight segment between nodes contributes
also a factor equal to the free propagator Ko(z,#|z’,#'). The sum over all such networks
yields the probability amplitude between the initial and final states. From a field-theoretic
point of view, the previous rules are nothing but the Feynman rules in configuration space.
Figure 1.5 represents schematically the free scalar propagator, whereas in figure 1.6 some

contributions to the four-point function in a A¢3 theory are shown.

Ko () (x".t)

Figure 1.5. The free propagator is computed by summing over all possible paths

joining (z,t) and (z',%'), each weighted with the free classical action for the path.

From the path integral point of view, the graph in figure 1.5 means that we sum over all
paths between (z,t) and (z',#) without any branching. In string theory, the line between

(z,t) and (2',#) is replaced by a cylinder between two configurations C and C' of the
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strings, as in figure 1.1. Similarly, the lines in figure 1.6 are thickened to become tubes.

X4 X,

L
/

SN ST

Figure 1.6. Some contributions to the four—particle amplitude in a /\¢3 theory.

At this elementary level, we can already see some non-trivial differences between par-
ticle theory and string theory. Quite generally, a local and relativistically invariant field
theory can have interaction vertices (the nodes in the network) with arbitrary complexity.
In principle, any number of lines can be in-coming or out-going. This would describe a
¢™ vertex if the total number of lines at the vertex were n, because the branching of the
network is seen at the same space-time point by all observers. This is not the case in string
theory, however. First of all, notice that any space-time string diagram can always be split

into components made up of the free string propagator and a three-pronged vertex. Some
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illustrative examples are shown in figure 1.7a and b.

G e

y ' ‘(:’ @g@ (@g%

Figure 1.7. Decomposition of some string diagrams into propagators and three—point
vertices. (a) Tree-level contribution to the four—string amplitude. (b) Two—loop
contribution to the string two—point function.

We can describe the three-string vertex in terms of a time history, as in figure 1.8.
The breaking of one string into two occurs locally at the point P. Even though the
strings are extended objects, they interact only locally; and yet, the breaking point P is
different for different observers. The reader can easily convince herself/himself of this by
drawing a few space-time diagrams of the vertex for different observers. This feature is
also responsible for the high degree of uniqueness of the possible interaction vertices in the
theory of relativistic strings.

> -
- . O

C e D
D
>

Figure 1.8. Snapshots of the string vertex in Flgure 1.7(b).
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We can associate a genus to the string diagrams of figure 1.7a if we think of the graph
as a topological surface: the expansion in genus (number of handles) is equivalent to the

expansion in powers of & in quantum field theory.

To summarize, we have learned that in the first quantized approach to string theory
we must consider a conformal field theory with a given value of ¢, and then sum over all

possible surfaces interpolating between some given initial and final states.

We now outline Polyakov’s approach [21] to the quantization of string thebry (see also
[22] and the references at the beginning of this section). In our previous arguments we
have dealt mostly with the classical theory of strings. When we quantize them, we find a
number of complications which allow us to understand the difference between critical and
sub-critical strings. The Nambu-Goto action (1.4) was written in a simpler form in (1.6)
by introducing the two—dimensional metric g;; as an auxiliary field. Both (1.4) and (1.6)
are invariant under arbitrary reparametrizations of the two—dimensional world—-sheet. We
also found the classical action (1.6) to be invariant under Weyl rescalings (1.9). When
we quantize using path integrals, we have to sum not only over the embedding variables
XH(o,7) (or any other variables describing the two-dimensional conformal field theory
living on the string world-sheet) but also over the metric g;;. To avoid over-counting, we
have to “divide” the integral by the volume of the group of diffeomorphisms of the two-
dimensional surface. Classically, one would think that the volume of the group of Weyl
transformations should also be divided out. This is a dynamical issue. We can think of
the Liouville field ¢(o,7) in (1.9) as another field in the theory. When we quantize the

theory, two things may happen:

i) The Liouville field decouples completely. Then it is legitimate to divide out by the
Weyl group because (1.9) is a true symmetry of the full quantum theory. When this
happens, we say that the string theory is critical. For bosonic strings, this requires

o= 26.
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ii) The Liouville field does not decouple at the quantum level. The Weyl transformations
cannot be divided out and the string theory contains the coupling of the conformal field
theory to the Liouville field. In this case, we say that the string theory is non—critical.
We will see further ahead that, in order to solve the string theory in this case, one
needs to know how to solve the quantum Liouville theory. Unfortunately, it is not yet

known how to do this in general.

We can write formally the vacuum—to-vacuum amplitude (the cosmological constant)

in string theory as follows:

( 9i i ,
Z = Z,\h Vol(Diff)/(DX")eS 9l (1.36)

First in (1.36), we sum over the different topologies of the world—sheet: sphere, torus,
double torus, etc. In two dimensions, a closed oriented surface is completely characterized
topologically by the genus or number of handles h. The parameter A is a loop—counting
parameter. For each topology, we sum over all possible embeddings (the DX*# integral)
and over all possible metrics in that fixed topology, modulo diffeomorphisms. This explains

the factor Vol(Dif f).

= S

h=0 h=1 h=2

Figure 1.9. The first three topologies contributing to the sum in (1.36).

The prime in the integration over g;; in (1.36) distinguishes between critical and sub-
critical strings. In the critical case, we still have to divide by the volume of the Weyl group,
and the integration over geometries simplifies drastically: it reduces to a finite-dimensional

integral. A two-dimensional metric has three independent components ¢11, 912 and g99. A



Vol. 64, 1991 Alvarez-Gaumé 379

general diffeomorphism depends on two arbitrary functions. The Weyl rescaling provides
another arbitrary function. It can be shown that any metric g;; on a Riemann surface &

can be written in the form
g =e®f*(4(t)) (1.37)

where f* represents the action of a diffeomorphism, and e? is a Weyl rescaling. The
parameters ¢; are known as the moduli of the surface. The sphere has no moduli, the torus
has one complex parameter and, for genus A > 1, the number of complex moduli equals
3h —3. In (1.37), g(t) represents some slice in the space of metrics cutting once each orbit
of the group of diffeomorphisms and Weyl transformations. Hence, for critical strings, the
integration over geometries is reduced to integration over the moduli space of Riemann
surfaces. This is a difficult mathematical problem, but certainly simpler than solving the

quantum Liouville theory necessary for sub-critical strings.

Once (1.36) has been reached, it is clear why string theory can be thought of as a
theory of random surfaces. We would like to be able to evaluate (1.36) and also to obtain
non-perturbative information about the theory. In order to do this, we have to be able to
define the different pieces in (1.36) in a non-perturbative way. One possibility (perhaps
the only one known) is to discretize the problem. We can replace the conformal theory by
a statistical mechanical system at criticality, and the sum over metrics can be replaced by
a sum over random triangulated surfaces of arbitrary topology. In the continuum limit of

this approximation, one should recover a model for (1.36).

In general, one would imagine that solving a spin system on a random lattice should be
much more difficult than studying it in the continuum. The big surprise at the end of 1989
was that for some sub-critical strings (with ¢ < 1) it is possible to obtain exact expressions
for (1.36). More precisely, the partition functions were found to satisfy some non-linear
ordinary differential equations intimately related to the KdV hierarchy. It is still mysterious

why complicated objects such as (1.36) are related with the theory of integrable models.
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In these lectures, we will attempt to explain how (1.36) can be computed exactly starting
with random triangulations and using the double scaling limit, simultaneously discovered
last year by three different groups: E. Brézin and V. Kazakov in Paris, M. Douglas and

S. Shenker at Rutgers, and D. Gross and A.A. Migdal at Princeton [6,7, 8].

This will require us to review first some aspects of conformal field theories, of large N
matrix models as an efficient method to generate random lattices, of the theory of integrable
systems, and of two-dimensional gravity. It is also quite surprising that on random lattices
one can often obtain more results than on an ordinary square lattice. In 1988, Polyakov
(1] and Knizhnik, Polyakov and Zamolodchikov (KPZ) [2] were able to obtain the exact
critical exponents of the minimal conformal theories coupled to two-dimensional gravity.
In other words, they were able to obtain exact information about the behaviour of some
conformal field theory coupled to the Liouville field. Since this work sheds a lot of light

on the issues of string theory, we shall present the results of KPZ in this course.

Before leaving this quick introduction to string theory, we would like to mention in
passing that the scattering processes involving string excitations of critical strings can be
represented in terms of expectation values of vertex operators. A pictorial argument can
be given as follows. Consider the four—point scattering amplitude in figure 1.10, where the
incoming (respectively outgoing) lines come from the past (respectively future) asymptotic
region. By a conformal transformation we can map figure 1.10 into a sphere with four

distinguished points (figure 1.11).

Hence, it is plausible that the string excitations can be represented by local operators

on the world-sheet. In the case of the bosonic string, these operators take the form

V(k,z) = P(8X)etknX" (1.38)
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where P(0X) is a polynomial in the derivatives of X#.

Figure 1.10. Tree—level contribution to the scattering of two strings.

Figure 1.11. A conformally equivalent description of figure 1.10.

1.3. General Remarks

We would like to close this lecture with some comments about other aspects of the
statistics of random surfaces. The string action we considered above contained only the
area of the embedded surface. In the language of the renormalization group, this term
is strongly relevant and should be the leading term in the infra-red description of the
theory. Nevertheless, other terms should also be important in the study of phenomena

involving random surfaces in the research domains of interfaces, biophysics, molecular
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membranes, etc. In many statistical models in three dimensions one can easily see that
the understanding of fluctuating surfaces should play an important role in the classification

of universality classes.

As a typical example, consider the three-dimensional Ising model. By a duality trans-
formation, it can be transformed into a Zs gauge theory [23]. Indeed, consider a three-
dimensional square lattice and associate with each link £ a variable o, taking values £1.
If we want to make the theory invariant under Z9 gauge transformations, we write the
analogue of the Wilson action and obtain a partition function

Z=27N%"expB _ o(dp) (1.39)

{0} P
were o(dp) stands for the product of the four link variables around the plaquette p, and
Zp is the sum over all plaquettes of the lattice. Expanding the exponent and using the

fact that o2(8p) = 1, we obtain:

Z =27%N Z Hcosh B(1 + o(0p) tanh ) (1.40)

o} P
The summation over oy gives either 0 or 1 according to the parity of the power of gy in
each term in the expansion of the product. Each contributing term can be represented
geometrically as a closed surface which may self-intersect. However, each plaquette be-
longing to the surface may appear only once, and at most four plaquettes may share the

same link. Hence

Z = (cosh §)*" 3" (tanh B)” (1.41)

closed
surfaces

Here, n is the number of plaquettes making the closed surface.

A closed surface is also characterized by the different volumes it separates. By duality
in three dimensions, a cube in the direct lattice L is associated to a site in the dual lattice
L*; this site can be visualized at the center of the original cube. Similarly, a plaquette is

dual to a link. To write n in (1.41) more conveniently, we define a new variable s; associated
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with the sites of L*. The value s; = +1 corresponds to the cube being exterior to the closed
surface, and s; = —1 for a cube belonging to the inner volume. Each configuration of {s;},
defined up to a global sign, is in one~to—one correspondence with each closed surface. Since
a plaquette belongs to the closed surface when the two s;’s joined by its dual link have

opposite signs, we can write

n = % > (1 - sis)) (1.42)

<t,j>
where the notation < 7,7 > stands for pairs of nearest neighbour sites. Replacing (1.42)

in (1.41), we obtain

1 il e
Z = 5(cosh B)* (tanh g)*N/2 Y ¢ logtanh 3, ;5 8i% (1.43)
{si}
The overall factor of % is due to the overall sign ambiguity in relating closed surfaces to

dual spins s;.

Thus for the free energies

3 . 1
F(B) = Fging(8%) + S log sinh 238 — 5 log 2 (1.44)
with
B¥ = w-;— log tanh 8 (1.45)
or, equivalently,
sinh 2@ sinh 23* = (1.46)

Therefore, in the high-temperature phase of the three—-dimensional Ising model, the par-

tition function can be written as an expansion in random surfaces of some special type.

From a more phenomenological point of view, one could try to derive the generic action
describing a theory of fluctuating surfaces by taking into account not only their area but

also their bending in ambient space (for details and references, see the contribution by
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F. David in [24]). As before, let X* describe the embedding of the surface in some D-

dimensional space. So far, we have only used the area in the induced metric,

9ij = %X - 0; X (1.47)
Some additional possibilities are offered by the extrinsic curvature tensor

Kfj = D;D; X¥ (1.48)

and the intrinsic Ricci scalar

— K. )
With these three ingredients, we can write the most general action
_ 2 k[ 2 i B2
S—A]do g+§./d0\/g—K:'Rj+§fda\/§R (1.50)
By dimensional analysis, A has dimension of (mass)? while x and % have dimension zero
and are marginal parameters. In the study of the large distance properties of the surface,

any other terms are irrelevant.

Depending on the embedding dimension, other terms may be added. For example, in
D = 4 a two-dimensional surface will self-intersect only at points. We may add to the
action a term proportional to the self-intersection number of the surface. This topological

term would be analogous to the 6 term in four—dimensional non-abelian gauge theories.

The action (1.50) was introduced by A.M. Polyakov to study the “fine structure” of
strings and to make contact with the confined phase of four-dimensional gauge theories.
In the context of statistical mechanics, (1.50) had been considered before in the study of
membranes and vesicles. The coefficient & is known, in this context, as the bending rigidity
modulus, and ¥ as the Gaussian rigidity modulus. The coefficient A is the two—dimensional
cosmological constant, and when the area of the surface is not fixed, it can be thought of

as the chemical potential of surface elements.
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The correlation length £ is known as the persistence length. It is a non-trivial problem
to determine whether the surface will be crumpled (finite £€) or flat (infinite £). At long
distances (t.e., bigger than the persistence length) there are general arguments which
suggest that the effective theory is controlled by the cosmological term in (1.50) plus
the action (1.6). In this case, an important critical exponent is the string susceptibility
obtained by counting the number of configurations n(A) of a surface with fixed area A.

For D < 1 it was shown by KPZ [2] that
n(A) oc A7 =3cMeA (1.51)

with
1

1= [D-1-D-1)D-2) (1.52)

for a surface of spherical topology. This and many other impressive results obtained
by KPZ generated a good deal of activity which led to the construction of exact solutions

to string theory for D < 1. In (1.51), Ao is the critical value of the cosmological constant.

Another example where random surfaces play an important role is gauge theory in four
dimensions. In these lectures we concentrate on the theory of sub-critical strings, and we
shall not dwell on other subjects where fluctuating surfaces show up. It should be clear,
nevertheless, that any advance in the study of D > 1 string theory is very likely to provide
useful information on three-dimensional critical phenomena and on four—dimensional gauge
theories. As we shall see, at D = 1 the Liouville theory enters a strong coupling regime
which has not yet been characterized in any detail. It is actually quite possible that the

surfaces stop behaving as two-dimensional objects at large distances.



386 Alvarez-Gaumé Ho P A
2. Conformally Invariant Theories

2.1. Preliminary Technicalities

The reason why scale-invariant field theories in D = 2 are very special is because the
conformal group in two dimensions is infinite—dimensional. A useful preliminay result in
the study of conformal field theories is to prove that in any relativistically (or euclidean)
invariant field theory, scale invariance implies automatically conformal invariance. The
basic reference in conformal field theories is [25]. More thorough reviews than the one

presented in this and the following lecture are for example [26,27, 28, 29].

Let ©uy be the energy-momentum tensor of the theory. It can be obtained via
Noether’s theorem or else by placing the theory in an external gravitational field, comput-
ing the functional variation of the action with respect to the metric, and evaluating the

result at the trivial metric:

_ 1.8
724 \/gég,ul/ g:6

The energy-momentum tensor generates co-ordinate transformations in D dimensions.

(2.1)

Given a vector field V#, we can construct a current

If the energy-momentum is conserved (we assume so), the current j, will be conserved
provided

Therefore if

then the current j, (V') is conserved.

Particular examples of this method are given by infinitesimal translations and Lorentz

transformations. For dilatations or scale transformations, the vector field is V# = z# and
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the dilatation current is
D, = ;g”@py (2.5)
It follows that

9,D" = © (2.6)

and dilatations are a symmetry of the theory as long as the energy-momentum tensor is

traceless.

If the theory is scale-invariant i.e., if 9,,” = 0 and 90" = 0, we now prove that
the theory is invariant under all the conformal transformations. For a generic metric, a

conformal transformation is a change of variables characterized by the equation
guv(a!)da'FdzV = QQ(x)gu,,da:"sz (2.7)

In other words, the angles are preserved. Infinitesimally, Q = 14+A(z) and z'# = z#+VH(z).

A simple computation then yiEIdS
a0,V +6V——2n V=0 (28)
u¥v vVp — pliwvCa d

where we have restricted the computation to the flat space-time metric.

The solution to (2.8) when D > 2 is
v 1 2
Vi =by+wppz” + Azp+ (¢ z)zy — 3uT (2.9)

with wyy = —wyy. If V), satisfies (2.8) and @#‘u = 0, then

2
6}1(VV®V‘1) = 3;;Vu@yu = % (BpVy + a,yV’u, - En“uaava> @py = 0 (210)

For a Minkowski space of signature (p, ¢), it is left as an exercise to verify that the gen-
erators (29) satisfy the commutation relations of the Lie algebra SO(p + 1,9+ 1). Hence
for D > 2, when scale invariance is promoted to conformal invariance, D more symmetry

generators appear.
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For D = 2, using the light-cone co-ordinates (1.11), the equation (2.8) reduces to
04 Vi=0_V_=0 (2.11)
yielding an infinity of solutions
Vi=Vi(e™) , Vo=V_(at) (2.12)

This can be understood easily if we write the two—dimensional Minkowski metric ds? =

dr? — do? in terms of o%:

ds® = dotdo™ (2.13)
If we make a transformation
ot = flo*) , o7 —g(o7) (2.14)
it is clear that
ds® > f'(o1)g' (07 )ds? (2.15)
+

and therefore the angles and the light—cones are left invariant. After Wick-rotating o
as in lecture 1, we find arbitrary analytic redefinitions of w, w. Since the cylinder is
conformally equivalent to the sphere minus two points (z = 0 and oo, the South and
North poles), using the z, z variables (1.12) the generators of conformal transformations

are vector fields

d
vn(2) = PR o (2.16)

with poles only at z = 0 or z = 0o depending on the value of n.

When D > 2, the conformal group is bigger than the euclidean group (or the Poincaré
group, depending on the signature) but it is nevertheless a finite—dimensional group, actu-
ally not very useful in the computation of correlation functions and anomalous dimensions
either in critical theories or in field theory. In D = 2, we shall see that conformal invariance
is extremely useful and, in some cases, strong enough to allow us to compute all correlation

functions.
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2.2. Scale Invariance and the Renormalization Group

One of the major advances in our understanding of critical systems has been the
renormalization group. Two of the basic results are the scaling laws by which all critical
exponents of a given system can be expressed in terms of a smaller number, and the prin-
ciple of universality according to which large classes of microscopic hamiltonians share the
same critical behaviour. There are many good books and reviews on the renormalization
group in the literature, see for instance [30, 31]. We will only stress some of its most salient

features.

The problem of co-operative phenomena in condensed matter physics is a difficult
one. It is rather surprising to find that, out of microscopic hamiltonians with short-
range interactions, one can obtain phenomena with infinite correlation length. This is
what happens at criticality. For some special models, an exact derivation of their critical
behaviour has been obtained: the two-dimensional Ising model, the six—vertex model, the
eight-vertex model, the hard hexagons, and some generalizations thereof [32]. All these
models describe two-dimensional systems. Their partition functions, as well as many of
their critical exponents, are known. In the exactly solved models, one can test some of the
hypotheses of the renormalization group and also obtain further insights into the hidden
symmetries which are responsible for the exact solvability: Yang-Baxter equations [32],

quantum groups, etc.

From a more realistic point of view, the existence of exactly solved models (in two
dimensions) is not very helpful in understanding the many features of co-operative phe-
nomena. The renormalization group provides a symmetry which allows us to obtain use-
ful information about the macroscopic behaviour of critical systems without the need to
know how to solve them exactly. This is a common case in physics. The hamiltonian
of the strong interactions describing nuclei and low-mass baryons and mesons is neither

completely known nor solvable. Nevertheless, since strong interactions are approximately
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SU(3) flavor symmetric and the electromagnetic interaction is proportional to the third
component of isospin, we can understand many features of the hadron spectrum without
having to solve the theory completely. A similar argument can be made in atomic physics
beyond the hydrogen atom. This “symmetry” approach to critical systems is provided by

the renormalization group, which consists essentially of two transformations:
i) Kadanoff’s block spin transformation;
ii) Rescaling to the original lattice size.

Imagine we start with a D-dimensional lattice with L sites (L very large) and lattice
spacing a. For simplicity, let ¢(z) be a continuous set of variables describing the lattice
degrees of freedom whose interactions are described by the hamiltonian H[¢]. (The as-
sumption that ¢(z) is a continuous variable is irrelevant, the same arguments go through
for discrete variables.) We may Fourier-transform the field ¢(z):

(z) = L7212 3" g(k)ett= (2.17)
|k|<A

where A is a cut—off, given for a square lattice by the boundary of the Brillouin zone 7/a.
Regardless of whether the hamiltonian H[¢] is fundamental (say the exact hamiltonian
describing the interactions between the atoms in a solid) or it is already a simplified
model, the restriction |k| < A means that we are not interested in describing details of the
system at lengths shorter than ~ A~1. The Kadanoff transformation allows us to thin out
systematically the fast (or microscopic) degrees of fréedom by integrating out the modes
with momentum in the shell A/s < k < A. In terms of the Fourier components, this leads
us to an effective hamiltonian for the degrees of freedom with k < A/s:

e—Hass[8)/T _ H d¢(k)e_H[¢]/T (2.18)

Afs<k<A

In principle, no information is lost in this transformation, as long as we are interested in

very low wave-numbers (long distances). We can define these transformations as

Hy/[¢] = RH[¢] (2.19)
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If we work in real space, we can divide the lattice in blocks of size sa, each containing sD

variables. Then we can define an average variable in each block:

EIE R () (2.20)

y in block z

For the coarse—grained variables,

e~ HWIT = ] gl [T6 [ d(z)—s"P > s(w) | VT (221

y in block =
the new theory is defined on a lattice with (L/s)D sites and latttice spacing sa. We can

define Rs, Ry for different s and s’, and we can easily check that
Ralla = Hoy (2.22)

whereby renormalization operations do form a semi—group.

Notice that after a few steps like (2.20), even discrete original variables would become
effectively continuous. If, for instance, ¢(y) = +1, then the block variable can take sltl
values between —1 and +1. When s increases, ¢ becomes for all practical purposes a

continuous variable.

The second step in the renormalization group is to relabel the variables and rescale
back to the original size. This means to change ¢(z) — As¢(z/s), which is a scale trans-
formation. Steps i) and ii) can be implemented simultaneously if the é—function in (2.21)

is replaced by

L R CORT D DI () (2.23)

y in block =

The factors As satisfy a functional equation as a consequence of (2.22):
AgAgt = Xgst (2.24)

with solution

Ag = h® (2.25)
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Although the lattice shrinks in size, we shall assume that L is large enough that we do
not have to worry about finite-size or edge effects. When we study bulk properties of the

material, we shall take L — oo 1.e., the thermodynamic limit.

In our simplified discussion, only one field variable was considered. More generally, the
renormalization group tranformation will transform the original fields ¢;(z) into a new set

with a linear relation of the form

Rs
i(z) = Y Myj(s)pj(z/s) (226)
J
The fields ¢;(z) which diagonalize the matrix M(s) are called scaling fields:

R " '
¢;— s -"gbj(:):/s) (2.27)

The exponent h; is the scaling dimension of the field ¢;. These dimensions are intimately

connected with the critical exponents.

Similarly, if we could also define rotations on the ¢; fields, we could also associate a
spin to them:

$i(z) — e (Ry12) (2.28)
where Ry stands for a rotation through an angle 6 about some axis.

It should be clear from steps i) and ii) that, if on the original lattice the correlation
length is £ (in lattice units), after applying R it will reduce to £/s. The correlation length

{ is determined by looking at the long distance behaviour of two—point functions
($(2)$(0)) ~Ja]o € VS (2:29)

It should also be mentioned at this point that the scaling fields represent the order
parameters. As we approach the critical temperature |T' — T;| — 0, the critical exponents
follow from h;. At the critical point the correlation length goes to infinity { — oo.

Now we can understand qualitatively why the system is scale-invariant at the critical
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point. In second-order phase transitions, the correlation length of the fluctuations diverges.
Mathematically, the scale £ is taken to infinity. In the renormalization group, however,
we have been thinning out the degrees of freedom and it is plausible that at criticality the
memory of microscopic lengths is lost, hence the physical phenomena in this region have

no scale and become scale-invariant.

There is a nice way to illustrate the renormalization group. Imagine that we have a
very powerful microscope which we use to look at the most minute details of a system. In
the microscope picture we see the arrays of atoms, etc. If we gradually lose magnification
power, and the sample is large enough, it will appear as if it was receding from us. Even-
tually, we will lose all knowledge of the microscopic details and the macroscopic structures

will appear (domains in ferromagnets, droplets in liquid-gas transitions, etc.)

From the previous arguments, it should be clear that one needs to study the fixed
points of the renormalization group transformation in order to obtain information about

the critical behaviour. In other words, we look for hamiltonians satisfying
R, H* = H* (2.30)

Since in the renormalization group transformations we always rescale to the original lattice,
we can picture the iteration of Rs as a trajectory in the space of possible hamiltonians.
This is perhaps not very precise mathematically, but quite clear physically. Starting with
some initial Hy, we obtain a sequence Hy, RsHy, REH 0, - - - which we can approximate as a
flow in the space of coupling constants. If A = (A, Ag, . ..) stands for the coupling constants
of the problem, then the action of the renormalization group generates a trajectory A(s).

Suppose we can find a fixed point of Rj:
RgA® =AY (2.31)

true for any value of s. The fixed points may be discrete or form subvarieties in coupling

constant space. One defines the critical surface of the fixed point A* as the subspace of
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A-space having the property that it contracts under Rg to A\* as s — oo:

lim RsA = A* (2.32)

5—00
All points of the critical surface are eventually driven to a fixed point. In the neighbourhood
of A*, we can linearize the renormalization group transformation. If X is close to A*, we can
write formally A = A* 4 6\ and for the transformed point A = \* 4 §)X. Hence, N = Rs\
becomes

6N = Rgé) (2.33)

with the linear operator
- AN
(Re)ij = 55
874 BAJ A=)*

The eigenvalues and eigenvectors of this matrix will determine the scaling behaviour near

(2.34)

A*. The eigenvalues are of the form s? , and we can expand §) in the basis of eigenvectors

ej, 6A =37 jtiej- Under a renormalization group tranformation,,
: B
SN = Z tjshJ & i t;- = t;s™ (2.35)
J

The parameters in the theory can be divided as follows:
Relevant when they grow as s increases; or
Irrelevant when they decrease as s increases; or
Marginal when they do not change as s increases.

The fundamental hypothesis linking the renormalization group with critical phenomena
1s that at zero external field, A(T¢,0,...) is a point on the critical surface of a fixed point
A*. For example, in a ferromagnet the two important parameters are the temperature T
and the external magnetic field h. Then A(T¢,0) is at the critical surface, and it is driven
to A* as s — oo, whereas A(T, h) is not on the critical surface if T # T, or h # 0. In terms

of hamiltonians, we can rewrite (2.35) as

H(t)=H*+ ) t;H; (2.36)
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Similarly, the operators H ; can be classified as relevant, irrelevant or marginal. It is now
clear that, since A(T¢) is on the critical surface, if T' — T is very small, then RsA(T") will
move closer to A\* as s — o0o. The critical dependence of A(T') as a function of (T — T¢) is
then determined by the spectrum of anomalous dimensions k;. Finding the h; is one of

the basic problems in the renormalization group approach to co-operative phenomena.

Remark 1) We saw in section 2.1 that any local field theory, invariant under the eu-
clidean roation group and scale transformations, is actually invariant under the whole con-
formal group. In an important paper that appeared in 1984 [25], A. Belavin, A. Polyakov
and A. Zamolodchikov (BPZ) made the hypothesis that scale invariance in two dimensions
should be extended to full conformal symmetry. Using this hypothesis, they were able
to compute exactly the critical exponents of many critical systems. In standard critical
phenomena, one has a finite number of order parameters. From the previous arguments
and using the BPZ hypothesis, one can ask if it is possible to classify all two—dimensional
conformal field theories with a finite number of primary fields. The question was answered

in the positive by BPZ; we will explain some of their results in lecture 3.

Remark 2) Partly motivated by the renormalization group, there has been a large
amount of research on dynamical systems and the theory of iterated maps. This permits
a rigorous study of many of the ideas of the renormalization group: universality classes,
types of fixed points, period doubling, chaotic behaviour, etc. In analogy with the renor-
malization group, we can think of iterated maps as a discrete dynamical system. For
instance, one of the basic examples is provided by the map f(z) = —uz(1 — z). The series
obtained by iteration z, f(z), f(f(z)) = f2(z), f3(z), ... displays a very rich and complex
behaviour depending on the value of the coupling constant g. This simple example exhibits

many of the interesting features of one-dimensional dynamical systems.

Remark 3) There are many situations where the ideas of the renormalization group

can be applied succesfully, such as brownian motions, self-avoiding random walks, poly-
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mers, and many other systems which can be described by “geometric scaling”. Some
of these systems can also be described in the infra-red by (non—unitary) conformal field

theories.

2.3. Simple Consequences of Conformal Invariance

In the last part of this lecture we shall consider some simple properties of conformal
field theories. We will follow [25] and rely mostly on the properties of the Virasoro algebra
(1.33). The largest set of commuting generators is {Lg,c}. Since the central term is
fixed by the theory, we can label the states by their Ly (and L) eigenvalues. Recall that
(Lo + Lp) is the energy operator. To define the ground state, we look for the largest set of
compatible conditions we can impose on it. An examination of the commutation relations

(1.33) indicates that we can require L, (n > —1) to annihilate the vacuum:
Lal0)=0 n>-1 (2.37)

Since [Lg, Lp] = —n Ly, it is reasonable to require that |0) be the lowest energy eigenstate:
this is precisely what (2.37) indicates. The simplest scaling fields are those transforming
as tensors under conformal transformations. If & hh has scaling eigenvalues h, h, and we
consider two overlapping patches Uy, Ug (with Uy N Ug # 0), the quantity ® h;dzhdf—h- is

invariantly defined:
(@) ; by b (B) 4 h =k
@hﬁdzadia = fbhﬁdzﬁdiﬁ (2.38)

which can be rewritten as

h h
B),. \_ &) dza | ([ dZa
@h’z(zlg)-—@hﬁ(za)( dzﬁ) ( dzﬂ) (2.39)
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Ug N Up

Figure 2.1. Two overlapping patches on a surface.

Under an infinitesimal transformation z — z + £(z),

a Oe
Betﬁhﬁ = (E-a—z + ha) @hﬁ (2.40)

The anti-holomorphic transformations work similarly; from now on we shall not write

them explicitly unless needed. Since the energy-momentum generates conformal transfor-

mations, we can write

0d, -
hh , , 0€
3y 5 = |T(e), 8, 5] =52 +h3-8, 7 (2.41)
If we particularize to e, = z"*1, then T(¢) = L, and
n+1 d n
n® =[Ly,®] = | 2 o +h(n+1)z" | @ (2.42)
Since 7 = —oo on the cylinder corresponds to the origin of the z—plane, we can associate
a state to the field ®;, by acting with it on |0) at z = 0:
|h) = ®4(0)[0) (2.43)

The state |0) is invariant under SL9 transformations because L4 and L annihilate it.

This is not the case for |h); however with the help of (2.37) and (2.42) for n > 0 we obtain

Lolh)=0 n>0
(2.44)
Lo|h) = h|h)
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The states satisfying (2.44) are called highest weight states, and the representation gener-
ated from |h) by the L_», n=1,2,... is denoted by V(h,¢).

The Hilbert space of any conformal field theory can be split into representations of the

Virasoro algebra Vir and the anti-Virasoro algebra Vir:
H=V(hc)®V(h-e) (2.45)
h,h
The states in V/(h, ¢) other than |h) are known as descendant states.

A way of counting the number of states in V(h, ¢) is to introduce the character of Ver:

X(q) = try(p gpgto /% (2.46)

2rit

with ¢ = e¢“™*7, and 7 a complex number (with Im(7) > 0). The constant term —c/24
will be explained further ahead. For the time being, consider it simply as an unusual

normalization factor. The states in V(h,c) are
|h) Ly=h
L_1|h) Lo=h+1

L2 |h),Lg|h) Lo=h+2 (2.47)

) ---Li"fp|h) Ly=h+n1+2n9+ -+ pnyp
Assuming that V(h, ¢) has a single highest weight vector (no null vectors at any level), one

easily obtains
gh—c/?4

;1..0:1(1 - qn)

because we can act on |h) with any power of L_, independently of the powers of any other

Xp(g) = (2.48)

L_,. It follows that the character (2.46) is formally equivalent to the partition function
of an infinite number of oscillators with energies E, = n. The total number of states at

level N (with Ly = h + N) is just the number of partitions 7(N) which count the number
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of ways we can write N as a sum of positive integers. The denominator in (2.48) is the

generating function for m(N):

ﬁ gl = Z m(N)gV (2.49)

n=1

To the states in (2.47) we can associate fields, as follows. To the highest weight |h) we
associate the primary field ®(z), while to the descendants we associate products of T'(w)

with @(z). More precisely, the state L_p, --- L_p, |h) is created by the field

fc 1(w1 — z)" M) fb 2(w2 — 2)" "t (wy) - - - }2 p(wp — 2)7% T (w,)8(2) (2.50)

acting at the origin z = 0, with the contours C; D C3 D ... D Cp. The conformal

symmetry of the theory gives a one-to—one correspondence between fields and states.

A very useful way of relating equal-time commutators to operator product expansions
(OPE) is obtained as follows: consider two analytic fields A(z), B(w) and for arbitrary

functions f(z), g(w) construct

= f f(2)Az)
0 (2.51)

B(g) = jg 9(w)B(w)

where the contours are circles around the origin, |z| = 1 and |w| = 1. To construct the

equal-time commutator [A(f), B(¢)|g T., write it as

[A(F), B(0)lgr. = }{3 F(2)A(2) % 9(w)B(w) — fb 9(w)B(w) fc f(2)A(z)  (2.52)

This can be visualized as in figure 2.2. Next, in the second integral, fix a value of w and
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deform C; to make it go through w as in figure 2.3.

Figure 2.2. Integration contours in (2.52).

Figure 2.3. Contour manipulation for the evaluation of (2.52).

The final result is thus

A(f), B(g)] = }({ 9(1) j{) A(2)B(w)f(2) (2.53)

and the contour around w is as small as we wish. Thus, f

., 15 given by the singularities

in the operator product expansion of A(z)B(w). This information, combined with (2.41),

immediately results in

T(2)®(w) = B(w) + 2—_1—56@(10) 1 analyile (2.54)

(2 —w)?

Similarly, we can represent the Virasoro algebra (1.33) in terms of an operator product
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expansion:

c/2 2

Fatuy= (z — w)? * (z —w)

5 T(w) + L@T(w) + analytic (2.55)
z—w

The reader is encouraged to substitute (2.55) in (2.53) and verify (1.33).

Assuming the theory is unitary, we find LL = L_,. Therefore, the out vacuum satisfies
(0| L, =0 n> -1 (2.56)

and we easily obtain

(0] ()T (w) 0) = (2.57)

(z = w)?

Note that this result was used in (1.35).

The operator product expansions (2.54,2.55) can be used to derive the correlation
functions of descendant fields once the primary field correlators are known. As a simple

example, consider
(T(2)@1(21) - 2N (2n)) (2.58)

This correlation function can be thought of as a quadratic differential in z which vanishes
at z = oo (if all z; # 00), and whose singularities are prescribed by (2.54). Then
N

(T(Z)¢1(21)-”‘I’N(ZN))=Z(( < B i)(‘1’1(21)-"‘I’N(?«Zf\r)) (2.59)

= \(z- z)2  z— 2z 0z

The reader is invited to work out more complicated examples and to consult the original

work of BPZ.

In the next lecture, we will study conformal field theory in more detail, and delve into

the Coulomb gas representation of correlation functions [33].
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3.Minimal Conformal Field Theories.

Coulomb Gas Representation

3.1. Consequences of SLg Invariance. Schwartzian Derivatives

The vacuum states |0), (0| are annihilated by L, Lyj. Using (2.42) we obtain for the

correlation of primary fields

LN
Z B, ke Byl =0 ()
. =1
Z (z ) (®1(21)---On(2n)) =0  (Lo) (3.1)

N
Z(z?a% 2hizi) (@1(e) - (e =0 (L)

and similarly for L;1, Lg. The behaviour of correlation functions under finite S Lo trans-

formations follows from (3.1):

fad = az+b

h#) = cz+d

dg 1

dz~ (cz+d)? (3.2)

zi — zj
(cz; + d)(cz; + d)

zi — zj = g(2;) — g9(25) =

Since ¢(z)dz* is invariant under z — g(z), we obtain

(®1(21) - 2N (2n)) H(cz,+d)2" (@1(21) - BN (2n)) (3.3)

Given four points wj, w9, w3, wg, we can construct an SLg invariant in terms of the

harmonic ratio
wi12w34
n=— wij = Wi — Wj (3.4)
w13wa4

Hence, we can solve (3.1) by expressing (1 ---®y) in terms of N — 3 harmonic ratios 7,

-y NN —3. We write

(@1(21) - BN (2n)) = (H 2;”) f(1a) (3.5)

i<j
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To determine the exponents, we impose (3.3) on the prefactor in (3.5). This yields
Yij = Vi

Y i = 2h; (3.6)
i#i

This determines completely the two— and three—point functions:

(@hﬁ(z,f)fbh,ﬁ(w,m)) = 6h,h’53’7{' (37)
(1(21)@2(22)®3(23)) = 219 2215 P23 P71y 2E 5 P20y Clo3 (3-8)
mz=h1+ha—hsy , Fia=hi+hy—h3 etc. (3.9)

We have normalized the fields such that the coefficient of the two—point function is one.
The two—point function can be used, in fact, to define a scalar product in the Hlbert space
of states. The dynamical information contained in (3.8) are the structure constants Cj;y
of the operator algebra. The dimensions k;, k; and the structure constants C;jk determine

the algebra completely.

When one studies the group of fractional linear transformations (3.2), it is known
form elementary complex analysis that they are the only conformal maps for which the

schwartzian derivatives vanish:

"o g n 2

w w

To lighten the notation, we have used w' = dw/dz, etc. The solution to {w,z} = 0 is
precisely (3.2). The schwartzian derivative determines the transformation rules of T'(z)

under conformal transformations. From the operator product expansion (2.55), we obtain

§:T(z) = [T(e), T(2)] = (egd; 4 2-3-‘2—) T(z) + ée”’(z) (3.11)

For finite transformations,

dw

2
T'(2) = (E;) T(w) + -l%{w,z} (3.12)
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Therefore, the energy-momentum operator T'(z) behaves like a tensor only under Mobius

transformations.

The property (3.12) explains the factor of q_c/ X in (2.46). Recall that in lecture 1
we started to study a conformal field theory on the cylinder, with complex variables w,

w. Then we mapped the cylinder to the punctured plane using z = e¥. From (3.10) we

obtain
{e¥,w} = -—-;- (3.13)
and therefore .
Tcyl(w) = Z2T(z) ~ o1
c - 3.14
Tcyl(w) == Z (Ln = Ezan,O) g ( )
ngz
and
C
(LU)cyl = (LO)plane - '2"; (3'15)

The contribution —c/24 can be thought of as a Casimir energy. The schwartzian derivative

gives a complete account of the contribution q_c/ 24 t6 the Virasoro characters.

3.2. Massless Scalar Fields in Two Dimensions

The simplest example of a conformal field theory is provided by a single-valued two—

dimensional massless scalar field ¢. Its operator equation of motion is 90¢ = 0, so

0p(z) = Y anz™"! (3.16)

Under canonical quantization,

{an, am} = n6n+m,0
{atn, B} =0 (3.17)

{an, Efm} = n5n+m,0

The basic two—point function follows from the normal-ordering formula

06(2)06(w) = (Z—_lw—)2+  04(2)0(w) : (3.18)
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In : ... : the annihilation operators are pushed to the right and the creation operators to

the left. The energy-momentum tensor is given by

1
Tl = -t 0é(z)0¢(z) : (3.19)
and c is computed from the leading singularity in the operator product expansion

T(z2)T(w) =~ : 0¢(2)0¢(2) : : Ip(w)d(w) := _——1_21)—)? + less singular terms (3.20)

%
2(z

> =

Therefore, ¢ = 1 for a free two—dimensional massless scalar field.

We can also construct primary fields with ¢: 8¢, for instance, behaves as a (1,0)

primary field:
1

T(z)0¢(w) = P

09(w) + ——Pg(w) + -+ (3.21)

We also have the vertex operators V(z,%),

Vi =: expliké(z,7)] : (3.22)
with conformal dimensions
kK2 k2
h(Vi) = 5 h(Vi) = 5 (3.23)

We can verify (3.23) in some detail:

T(2)Vy(w) = -é-  04(2)04(2): Y -s—g(ik)“ LY
n=0

11 1 e R | "
=3 2 Rl D 87 s+ 3 Sk 008
n=0 n=0 "
2
— (z_k_%ka(w) + > _1 u)aka(w) + analytic

(3.24)

To establish this result, we have used the fact that the two—point function of the ¢—field is

($(2,7)$(w, @)) = —log |z — w|? (3.25)
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The scalar field ¢ is not a primary field itself, because its correlation function behaves
logarithmically. Clearly, though, with vertex operators we can in principle obtain any

conformal dimension:

Vi(z, 2)V_i (w0, ) = |2 — w|* (3.26)

This led Kadanoff to conjecture that the correlation functions of any conformal field theory
can be represented in terms of free massless scalar fields. In the Coulomb gas representation

of minimal conformal field theories we will see a realization of these ideas.

3.3. Conformal Blocks and Duality

General properties of a conformal field theory can be obtained by requiring associativity
of the operator product expansion. This gives a set of crossing or duality relations for the
structure constants C'I-jk of the operator algebra. This is one of the pillars of the BPZ

analysis of conformal field theories.

Let us begin by defining the out state created by a primary field as

(hE|= Lm (0]®, 7(z,7)z2Loz2lo (3.27)

z,Z—00

With this definition, the three—point function (3.8) becomes

n| ®n(z,2z) |l =t zh"_h'"_h‘?ﬁ"_gm_ﬁ" 3.28
( | nm

From (3.5), we know that we lose no information if for the four-point function we
choose three of the points at 0, 1 and co. We shall study in some detail the four—point

function

(k| 2¢(1,1)@n(z,T) |m) (3.29)
Consider the operator product expansion of two primary fields

Bu(2,2)2m(0,0)= Y Y CBEEY S (hp=ha—hm+ T kT =R+ F) 30F) (0 0) (3.30)
P {kk}
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The index p runs over the primary fields in the theory (representations of Virasoro). For

a given family p, the notation {k,k} labels the descendant states:
k.k s -
a8 0) = Ly LTz - Tz, 85(0,0) (3.31)

In analogy with the Wigner-Eckart theorem, the structure constants factorize:

crikk} _ o ﬂp{k}—p{k} (3.32)

The S, B coefficients are analogous to the 3j-symbols and they follow from the conformal
symmetry (see BPZ for details). Hence
(K| @4(1,1)@a(z, 7) |m)

= (k| @4(1, 1)§jc£mmh by 3 el (k22 8F) (0,0)(0)

{k.k}
(3.33)

Define

t (112) = ghe—hn—hm ™ gp k) (k| (L)L, - L_ky|P) Sk

and similarly for the anti-holomorphic part. Then the four—point function becomes

G (2,7) =Y ChimCrepF ek (plz) FLk,(plz) (3.35)

k(co) p m(0)

Figure 3.1. A four—point conformal block.

Graphically, each function F is represented as a skeleton graph indicating the order in

which we perform the operator product expansion (figure 3.1). The functions F(p|z) are
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generally multi-valued and they are known as conformal blocks. The blocks are normalized
so that

FE (plr) ~ zle~hn=hm (14 ) (3.36)

z—0

This is the convention chosen by BPZ.

We can consider more general n—point functions. If we fix the external legs to belong to
the families [®; ], ..., [®; ] and fix also a particular order in which to perform the operator
product expansion (as in figure 3.2), we obtain a basis in the space of conformal blocks.
Each element of this basis is labelled by a collection of indices (pq, ... p,_3) indicating the
conformal families appearing in the internal legs. The correlation function can be written

as a “metric” in the space of blocks:

Giyein(2iys Ziy - 20, %) = 3 Fp(2)Fpp(Z) hyy (3.37)
p.y

and the blocks Fp(Z) (with Z = (z1,...,2,) for convenience) can be thought of geomet-
rically as sections of a flat holomorphic vector bundle over the moduli space of the sphere

with n marked points. We shall not pursue this geometrical picture in the following.

p1 « & & » pn-3

Figure 3.2. A particular basis for the n—point block.

Requiring now associativity of the operator product expansion gives us the desired
equations for the structure constants: the bootstrap, duality or crossing relations. In the
graph of figure 3.1, we perform first the operator product expansion between ®, and ®,,

and then we compute the operator product expansion of the result with ®,. Associativity
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implies that the physical amplitude should not depend on whether we do first the operator

product expansion between n and m, or between £ and n.

Using first the SL9 transformation z — 1—z to obtain (k| ®,,(1,1)®p(l —z,1-7T) |£),

and following next the steps leading to (3.35), we find

Y - ChimClapFrma(Pl2) Fiy(plz) = > €% Chmg Fagt (all — ) Fif(gll —z)  (3.38)
P q

Since F and F are determined by the conformal dimensions and the conformal Ward
identities, we can interpret (3.38) as a set of rather non-trivial conditions characterizing
the structure constants Cz-kj which appear in a conformal field theory. From the point of
view of conformal blocks, the duality equation (3.38) tells us that the basis defined by
the graph iES and the basis represented by the decomposition L are linearly equivalent.
This can be represented graphically as follows:

i -

sl
4

T
N (3.39)

S P
v

The fusion coefficients Fl,y [JZ H play a central role in the polynomial equations for
a conformal field theory written down by G. Moore and N. Seiberg [34]. The fusion
coefficients are very closely related to the braiding coefficients determining the monodromy

properties of the conformal blocks.

i k j k

= > F_, i J
pvPP

Figure 3.3. Graphical representation of the bootstrap equations.

The crudest pieces of information contained in the structure constants C; jk are the

fusion rules. A detailed and deep analysis of them is carried out in [35]. They simply



410 Alvarez-Gaumé H.P.A.

count in how many different ways can we couple the i, j and k families. Let us write this
number as a positive or zero integer Nijk . For Nijk > 1, we label the basic three—point

vertex as .
J

i— g =1, Nt (3.40)

The coefficients Nij’c satisfy NV, jk =N jik and the associativity of the operator.product
expansion implies
Par. € Pa £
ZNz‘k Njp = ZNjk Nip (3.41)
p p
Introducing the matrices N;,

(N)F = %, (3.42)

1

the expression (3.41) can be rewritten as
N;N; = N;N; (3.43)

Furthermore, since the operator product expansion with the identity or any of its descen-

dants does not change the conformal family,
0_ 4J
Ny =6; (3.44)
and we can define a “charge conjugation” metric

Cij = N;;° (3.45)

which keeps track of what pairs of families have the identity in their operator product
expansion. We can use Cj; to lower the upper index in Nijk:

Nijk = Ni;'Cy, (3.46)

We can also think of C as a mapping C : ®; — ®; such that C2 = 1. The coefficients Nijk
are totally symmetric. Since Njjp = Njjit, all we need to verify is Nyj; = Nj;j. For this,

it suffices to set £ = 0 in (3.41).
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We can define abstractly a fusion algebra which is both commutative and associative.
If, for simplicity, we assume that the number of primary fields is finite, we may introduce
a generator z; of the algebra for each family ¢ = 0,1,...,n — 1, with the understanding

that z( represents the identity. The defining relations for the algebra are

Its regular representation is ; — N;, and there are n one-dimensional representations

given by the eigenvalues of the matrices N;. If ,\52) is the £-th eigenvalue of N;, then
(04 _ ar. k&)

This algebra has very surprising properties, the most remarkable being that the matrix
S which diagonalizes all N;’s is the matrix which implements the modular transformation
T — —1/7 acting on the characters of the representations V(c, h;) of the Virasoro algebra

[35]. We will have the occasion to investigate some interesting fusion rules further ahead.

3.4. Degenerate Conformal Families

We present now some general properties of conformal field theories with null vectors
[25]. Many of the facts that will be stated are proved in the next section in terms of the

Coulomb gas representation of the conformal blocks [33].

In the theory of group representations, often we study only the details for simple
or semi-simple groups: Sp, SU(n), SO(2n) n > 2, Sp(2n), SU(n) x Sp(2m), etc. A
common feature of their finite—-dimensional representations is their full reducibility: every
reducible representation can be written uniquely (up to similarity transformations) as a
direct sum of irreducible representations. Representations that are not fully reducible can
be characterized by the presence of null vectors: there is more than one highest-weight

vector in the representation. In the case of Vir, we say that a representation V(c, h) has
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a null vector |X') at level N if it satisfies
Lo |X) = (b + N)|X)

(3.49)
Lo|X)=0 n>0

We should mention in passing that, for unitary representations, h is a positive number.
This is because ||L_1 |k} ||2 = (h| L1L_1 |k) = 2(k| Lo |h) = 2h. If LI, = L_p, the state
|X'} is orthogonal to all states in V(c, h), because they can be written as |¢) = [[ L—n, |h).
But since Ly, |X) = 0 (n > 0), then we have (|X) = 0. The conclusion holds for any |¢).
Hence, we can set |X') = 0, which is equivalent to taking the quotient by the null vectors
“and the subrepresentations of Vir they generate. If ®(2) is the field generating V(c, h),

we say that the family is degenerate and that it has a null vector at level N.

As a simple example, let us look for the condition guaranteeing the existence of a null

vector at level two. It must be of the general form
1X) = (aL_g + bLEl) IR) (3.50)

For all L, (n > 0) to annihilate |X), it suffices to require L1 |X) = L9 |X) = 0 because all
other L,’s are generated by the commutators of Lj and Lg. Imposing these two constraints,
we obtain 3
|¥) = (L—2 _(ZT-I—_I_) ) |h) @.81)
h= 11—6 (5—-c:i: \/(c—l)(c—25))

where we have normalized, for convenience, with a = 1. If we now examine the decoupling

of |X) from any correlation function, we obain a second order differential equation for

correlators involving ®p(z):

0 = (xh(z)¢1(z1)---<1>n(zn)>

n

_ 3 62 n (
~ \ 2(2k + 1) 822 Zl (z — 2;)2 Z r— 205 (®n(2)®1(21) - - Bn(2n))

1=1

3.52)

This equation can be derived by writing (L_9®)(2) — (3/2(2h1))(L2_1<I>)(z) as a small

contour integral about ® and then deforming the contour to the “other side of the surface.”
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This, together with the operator product expansion between T(z) and ®;(z;), yield (3.52).
If in (3.52) we take n = 4 and set z; = 0, 29 = 1, 23 = 0o, we obtain the hypergeometric

equation.

The table of Virasoro representations with null vectors was given by V. Kac [36], and
his proof completed by Feigin and Fuks [37]. To obtain this set, one has to consider for a
given V(c, h) and level N, the determinant of the scalar products among all the states at

level N. To write the result in a simple way, we introduce three number ao, a4, a_:

c=1-24a2
ay + a_ = 2a0 (3.53)
L = -1

The representations with null vectors are labelled by two integers m,n > 1 with dimension

i) 1
h(m,n) = —Zag + Z(ma+ +na_)? (3.54)

This result will be derived in the next subsection with the help of the Coulomb gas rep-
resentation. The representation V(hm, ») has a null vector at level m - n. Using the null
vectors, one can obtain a great deal of information about the theory. In particular, we can

derive useful information concerning the fusion rules.

Consider, for example, h = h(1,2) or h(2,1). The null vector appears at level two and
the decoupling equation is just (3.52). If at z; we have the field ®1(z1) with dimension A1

and we let z &~ z1, we have the operator product expansion
®p(2)®p,(21) = const. x (z — zl)k [®p(21) + - -] (3.55)

This expansion solves (3.52) provided

47 4 (3.56)
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with
h = h(1,2) d=ata_
(3.57)
h = h(2,1) d=atays
giving the fusion rules
(1)(1,2)@(&) = [(I)(a—a_)] + [q)(a-i—a_)]
(3.58)

(I)(2,1)q)(a) - [(I)(a—a+)] + [Q(a+a+)]

The normalization remains to be determined. With this argument, we only know that the
conformal families [qﬁ(a_a i)] can in principle appear in the operator product expansion
between ®(; 9y (or ®(91)) and ®(,). Examples are given by taking [®(,)] a degenerate

family itself:
21.9%01,2) = [2a, ] +[®,3)) _—_
®2,1)22,1) = [2(1,1)] + [®(3,1)]

The field ®(; 1) has zero conformal dimension and it is identified with the identity operator.
The null vector at level one is clearly L_1<I>(1,1) = 0, meaning that the identity operator

is translationally invariant.

A naive application of the rules (3.59) might seem to generate fields with m and/or n
zero or negative. This is not the case, because the operator product expansion truncates

from below. Consider, for instance, ®(1,9)®(2,1)- Using the first relation in (3.58), we find

@(1,2)(1’(2’1) = Cl[q’(2,0)] + CQ[‘I)(Q’Q)] (3.60)

But using the second relation in (3.58), we find instead

®(19)P(2,1) = €1[®(0,2)) + 2[®(2.2)] (3.61)

Consistency requires then ¢; = ¢} =0, cg = cby. Therefore,

21,2)%2,1) = [‘I’(z,z)] (3.61)

Using @(2’1) and <I>(1,2), we can in principle reach any family @(m’n). Although we shall not

derive it until next section, we quote here the general fusion rules for degenerate families:

mi+mo—1 ni+n,—1

q)(ml,n])@(mg,ng) == Z Z [Q(k,l?)] (3'62)
k=|mi—ms|+1£€=|n1—ns|+1
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Note that the sums are restricted: if |mq — mg| is odd (even), then k runs only over even

(odd) integers. The same applies to ny, ng and £.

One of the main results of Belavin, Polyakov and Zamolodchikov was to find conformal
field theories where all fields are degenerate, and containing a finite number of primary
fields. They showed that this happens when a— /a4 is a rational number. In this case, each
Verma module V(hm n) contains an infinite number of null vectors. If p, p’ are relatively

prime positive integers, the minimal models of BPZ satisfy

a- _ P

ay P )

c=1—6@:#1- (3.63)
pp

h(m,n) = ZE}; [(mp' —np)? —(p - p’)2]

If one imposes unitarity, Friedan, Qiu and Shenker [38] showed that the only allowed values

are p' = p+1, p > 2. Notice also the reflection symmetry

h(m,n) = h(p — m,p' —n) | (3.64)

The simplest non-trivial example is the Ising model, with p = 3 and p' = 4. Now

¢ = 1/2, and the conformal dimensions of the primary fields are

h(1,1) = h(2,3) =0 (1)

=

h(1,2) = h(2,2) = 7 (o) (3.65)

h(2,1) = h(1,3) =

N =S

The fields @(1,1), ‘1)(1’2) and ®(9,1) are identified with the identity, the spin density and the
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energy density, respectively. These fields can be drawn on a grid, as shown in figure 3.4.

(1.1) (1.1) (1.3)
® ) °

1.1) (1.2 (1.3)

q

Figure 3.4. Grid of (m,n) fields in the Ising model i.e., the minimal model with

(p,p') = (3,4).

We shall see below that the fusion rules of the fields in (3.65) are

€ e=|[1]
€0 =|o] (3.66)
0-0=[1]+[¢]

This concludes the generalities on degenerate conformal families. Next, we find an
explicit representation for their correlation functions. We will also derive some of the

results of this section.

3.5. Coulomb Gas Representation

The properties of all minimal (p, p’) models can be obtained in terms of a single scalar
field ¢. In section 3.3, we learned that any scaling dimension can be obtained using vertex
operators. It is not so clear how to obtain a central charge ¢ # 1 for a single scalar field.
To overcome this hurdle, imagine coupling the scalar field ¢ to an arbitrary metric on the
sphere. To the standard kinetic term in the lagrangian %gij 0;¢0; ¢ we can envisage adding
a term of the form R¢, where R is the trace of the Ricci tensor of g. Now the equations
of motion take the form A¢ o R, implying that the curent j, = 0, ¢ is ot conserved. This

is equivalent to having a background charge on the world-sheet. Varying the action with
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respect to g;; about the standard metric, leads to the following energy-momentum tensor:
1
T(z) = —70¢(2)04(2) + 10002 (3.67)

We have rescaled the field ¢ to agree with the notation of Dotsenko and Fateev [33], so

that
(¢(2)¢(w)) = —2log(z —w) (3.68)

The lagrangian from which this energy—-momentum tensor is derived is
~ gii g 3.69
2L = 19 0;90;¢ + “4—R¢ (3.69)
With respect to T'(z), the operator d¢ has an anomaly. Indeed, the operator product

expansion between T and 0¢ is

T(2)99(w) = 7= s506(w) + 7= 0% (w) +

41000
—_— 3.70
With the aid of the Gauss—-Bonnet formula, we can compute the violation of the total

charge. The vertex operators are still primary fields. If we consider the theory using the

functional integral, the correlation function of several vertex operators takes the form

<H va,.(za-,:zz-)> = ] (D)Vay (21,71) - - Vea, (2, Fn )6~ S0 H(o/87) [ VIRS (3 77)
i=1

Under the shift by a constant, ¢ — ¢ + ¢, the vertex operators contribute a factor
exp(ic) ), whereas the curvature term in the action contributes exp(—taoc [ \/gR/8).
The Gauss—Bonnet theorem states that [ VIR = 87X, where A’ is the Euler number of
the surface. If the surface is triangulated, then X is equal to the number of faces plus the
number of vertices minus the number of edges. For the sphere, X = 2, and therefore the

correlator (3.71) vanishes unless
z a; = 2a, (3.72)

Equivalently, we can view the background as contributing to the total charge, by an amount

—2a,.
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The seemingly innocent change in T'(z) has far-reaching consequences. First, let us

compute the new central charge. Contributions to the fourth-order pole come from

1 . w) e 2
T 0¢0¢(z) : : 0¢0¢(w) := P + (3.73)
and from
242 2 _ 12a2
—ag0°d(2)0"¢(w) = ——-———(z —w)? + (3.74)
Therefore,
c=1- 240> (3.75)

The conformal dimension of vertex operators changes as well. A simple computation
shows that

h(: €%? :) = a(a — 2a0) (3.76)

From this formula, we learn of the existence of two fields of dimension one. The equation
ala — 2a,) = 1 has two roots a4, a_ satisfying
ay +a_ =2a0
(3.77)
oajya— = —1
as in (3.53).
Another important piece of information we learn from (3.76) is that vertex operators

of charge a and 2o, — a have the same dimension, so from a representation—theoretic point

of view they represent the same object. From now on, we shall use
a=2a,—« (3.78)

In particular, the identity can be written either as 1 or as : exp(2tac9) :.

Finally, since there are two currents of dimension one

Jg =: eloxd (3.79)
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we can introduce two charges
Qs = }( T2} (3.80)

The conformal properties of correlation functions are not changed by the insertion of @4,

although these insertions do affect the charge balance.

To represent the correlation functions of minimal models, we write any of the primary
fields as a vertex operator V,(z) or Vi{z). We can write the four-point conformal block in
the form (VoVaVaVg). The sum of the charges is 2a + (a +@) = 2o+ 2ao. The four-point

block will vanish unless

20 = —may —na— (3.81)

in which case the charge can be screened to zero by the introduction of m Q4’s and n

@-’s. The spectrum of vertex operators with non-vanishing four—point functions is thus

1-— 11—
amnp = 2ma+ + 5 D (3.82)

The dimensions of these fields are

hm,n = am,n(am,n = 20-’0)

(3.83)
= —al+ zll-(ma+ +na_)?

which agree with the Kac table.
A four—point block will take the form

dt---f dt j{ dt’---j{ dt!
?g;a Ve, e e (3.84)

(Ve (21) Vg (22) Vi (23)Vay (24) T (1) - - - T (Bm) T (2]) - - - T-(20))

where the correlation function is understood to be computed in the presence of a back-

ground charge of —2as.

The simplest application of this construction is the derivation of the fusion rules (3.62)

[29]. We want to find the families ®(1,¢) appearing in the operator product expansion of
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P(m,n) and @(, ;). We only need the three-point functions for this. Using SLj invariance,

there are three equivalent representations of the three ‘point function:

(Vi) (©0)Vimm) (1Vr,e) (0)Q5Q1) (3.852)
(Ve (Vi) (D)Vir)(0Q5 Q1) (3.85b)
(Ve (©0)Vim m) (Vi) (00Q5QZ) (3.85¢)

The powers of Q+ are determined by balancing the charge. In (3.85a ), the charge of the

first three fields is

- i — g1
k m2 r+la++€ n25+ o (3.86)

200 —ag g+ amn + ars = 200 +

and the charge can be screened if

Ek<m4r-1 k+m +r odd

(3.87)
£<n+s-—1 £+ n+ s odd
Doing the same computations for (3.85b ,3.85¢ ), we obtain the conditions
k+m+r odd £+n+ s odd
Ek<m+r-—1 <n+s-1
(3.88)

m<r+k-—1 n<s+f-1

r<k+m-—1 s<f+n-1
implying the fusion rules

m+r—1 n+s—1

2(m,n) B (r,s) = Z Z [®(£,0)] (3.89)

k=|m-r|+1 t=|n—-s|+1
k4+m+r odd £4n+s odd

Although a truncation below is already implemented (we never find a family with £ < 1
or £ < 1), unless we impose some extra conditions the operator algebra will not truncate
from above. A truncation to a finite operator algebra appears when we restrict 0‘2:1: to be
rational numbers. Since aja_ = —1, we take

/

oy =4/5  an=— & (3.90)
P p
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and then g
b —p
/

* " (3.91)
c=1-— 6-————(p _‘? )

pp

and the conformal dimensions of the degenerate families are

147

1 1
—— 2 2 N2 2
hman == a5 + 4(ma+ +na_)® = 7 (mp —np)*—(p—p) ] (3.92)

A very useful property of (3.92) is the symmetry

hm,n = hp—m,p’—n (393)

which suggests the truncation from above. From the point of view of representation theory,
we can identify the (m,n) and (p — m,p’ — n) families, and we can compute (3.89) in a
different way:

2p—m—r—1 2p'—n—-s—1

(I)(p—m,p’—n)q)(p—r,p’—-s) = Z Z [(I)(lc,f)] (3'94)

k=|m—r|+1 £=|n—s|+1
k+m+r odd €4+n+s odd

Now (3.89) and (3.94) are compatible provided

min(m+r—1,2p—m—r—1) min(n+s—1,2p’'—n—s-1)

2 (m,n) 2 (r,s) = > Y [@upl  (3.95)
k=|m—-r|+1 t=|n—-s|+1
k4+m+r odd t+n+s odd

which is the fusion algebra of minimal (p,p’) models.

A good mnemonic for (3.89) is to introduce ordinary SU(2) spins. Let m = 2j; + 1,
r=2js+1l,n=2j14+1,s= 2j'2 + 1. The composition of angular momentum [j1] x [jg] =
[l71 = J2ll + - - - + [J1 + j2] is exactly the rule (3.89), which can be rewritten as

Jitiy Jetis o
eliiz)  ei1:32) — Z Z 31" (3.96)
l71—=311 l3z—35]
where we have used the notation
dln2) — ¢ m=2j1+1,n=2j9+1 (3.97)

(m,n)
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Finally, defining p = k + 2, p' = p' + 2, equation (3.95) becomes
rmn(]1+ji,k—11-—j{)mm(j2+15,k’-j2-]'2) .
oUn.dz)  (i172) — Z Z o’ (3.98)
li1—7il liz—Jal
which are the fusion rules for the primary fields of the Kac—-Moody algebra SU(2); x
SU(2) [39].

Remark 1) A simple way to understand why (3.93) is a consequence of (3.90) is to

write

l—p+m 1-p +n ma4 + na_

Op-mp—n = "5 O+ ¥ —  @- = 2 — - (pay + pla_) (3.99)

and to use pat + p'a— =0 for a4 as in (3.90). Moreover,
ap_m’pl_n = 20!0 = am,n (3.100)

and thus the reflection symmetry (3.93) is simply o — @.

Remark 2) The range of (m,n) in ®(,, ) for (p, p') models can be derived from (3.95)
and (3.98):

0<m<p 0O0<n<p (3.101)
The total number of families in the (p, p’) model is %(p - 1)(p' = 1).

Next, we illustrate some sample computations of four—point functions. The simplest

(Vi Va2 Via.2) Vimm) ) (3.102)
and
(Virmm Vi) Vi) Vimm) ) (3.103)

In the first ome, the total charge is 2a0 4 2a1 9 = 206 — a—, whereas in the second one

it is 206 + 209 ] = 206 — a4. In both cases, it suffices to introduce one single screening
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operator. We are then faced with the evaluation of integrals of the form

§ dt (Vo (1) Voo Vaa(oa) V(o) T () = | T[4 | 10a)
i<j (3.104)

with (&} = fdt H(z'. _ t)2a.~a:t

We can write (3.104) more conveniently using the SLg transformations:

<H Vi(Zz')J:!:(t)> [H(cz, +d)” i (ct + )2 <HV1 (:2:2) J+ (f:j;))

= (3.105)

Since the currents J4 are one—forms and t is integrated over, we can forget about the ¢

transformation. Now choose a, b, ¢, d such that 2y — oo, 29 — 1, z3 — 5, z4 — 0, where

e (3.106)
213294
This is achieved by
2 — (Z — Z4)(Z1 B 22) (3107)

(21 — 2)(22 — 24)
which leads to

ho+hg+hs—hy
fa <H Vi(zi)Ji(t)> - (2z)
)

1 2(12(13772&3(14 9 9
( Qh)g 2hs  2ha fcdt(l -ty (n — g)iesnegies

“12 %13 %14
(3.108)
This can be expressed in terms of hypergeometric functions
F(a,b,c,;z) = L/ ditt=1(1 — )41 = 1) (3.109)
T'(b)F(c —b)

In (3.108), we have two possible independent contours, shown in figure 3.5.

The different contours are related to the internal states of the conformal block. We
have written the integration contours as “open” contours in figure 3.4, assuming that all

the points 0, 1, n and co are non-trivial branch points. Instead of integrating along a
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contour, we can integrate along the cut. The difference between the two procedures is only
a normalization constant which is fixed by the condition (3.36). The results may differ
when one of the points is not a branch point. In this case, one of the contour integrals will

vanish, and this gives constraints on the fusion rules.

C

]
*—>—9 ® °
0 n 1 o
0 n 1 C2 oo
® L] . > ®

Figure 3.5. The two possible integration contours in (3.108).
As an example, consider the Ising model (3.65) with p = 3, p' =4, ¢ = 1/2. Consider
the four-point function {eeee), € ~ Vo, az1 = —a4 /2. The second contour does not

contribute because £ = 0 is not a branch point. The first contour yields

(1 — )3 [n(1 = ) ~5/3 F(—2,-1/3,-2/3;7) (3.110)

€€EE) =
(ece) Z13%24

and using the properties of hypergeometric functions we find

1 1—n+n2

(eeee) =
213294 (1 —17)

= Feeee(0[n) (3.111)

which satifies (3.36). From (3.111) we can read the fusion rule € - ¢ = 1. Many other
examples can be found in the literature. It is a good exercise to compute all the four—point

blocks in the Ising model. The integrals needed are

4 & F'(1+)I1+8) 1
— B +0+y pp )
/Odt(l )% (n — )Pt = Tt Ty " TF(—o, 147,24+ B+ ;1)

14+ a)(—a—pF—v-1)
(- -1)

F(_ﬁ)_a_ﬂ_7—17—ﬁ_7un)
(3.112)

foo di(1 —t)%(n — t)Pt7 =
1

This concludes our brief survey of conformal field theories and their Coulomb gas

representation. Using this representation of the minimal theories it is possible to derive the
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Virasoro characters for their representations [40]. One can also give an explicit presentation

of the null vectors in terms of contour integrals (see the paper by Fateev and Zamolodchikov
[41)).

Final Remarks. The minimal (p,p’) models provide an example of a rational con-
formal field theory (RCFT). The notion of rationality depends on the chiral algebra of
the theory. For the minimal theories, this is the Virasoro algebra. In general, the chiral
algebra will be A = A x Ag with Vir C A, Ag. The theory is a rational conformal field
theory if the Hilbert space decomposes into a finite number of irreducible representations

of A:
H=PV.® Vs (3.113)

a,a
with @ and @ running over a finite range of labels. When the number of primary fields is
not finite, we say that the conformal field theory is irrational. If the number of primary
fields is countable, the theory is said to be compact, and non—-compact otherwise. Ratio-
nal conformal field theories are the simplest to study, and all their duality and modular
properties can be summarized in terms of a set of polynomial equations. The largest class

of solutions to these equations is provided by the representation theory of quantum groups

when the deformation parameter is a root of unity ([29,42] and references therein).
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4. Coupling to Two—Dimensional Gravity

4.1. Path Integrals and the Liouville Field

Before analyzing two—dimensional gravity and its coupling to conformal field theory in
terms of random triangulations and with large N methods, it is useful to work with the
theory in the continuum to get the flavour of the kind of results one should obtain on the
lattice. The original derivations of the results in this lecture are due to Polyakov [1] and
to Knizhnik, Polyakov and Zamolodchikov (KPZ) [2]. They quantized two—dimensional
gravity in the light—cone gauge, where they found a residual SL9(R) current algebra which
played a crucial role in the determination of anomalous dimensions. Here, we will follow
the approach of David [3] and Distler and Kawai [4], who used instead the conformal
gauge. This has some advantages from the pedagogical point of view, and it also allows for
a straightforward generalization of the KPZ results to surfaces of higher genus. To avoid
unnecessary distractions with technical points, we have collected some well-known facts
about the conformal properties of determinants of laplacians on Riemann surfaces in an

Appendix.

In this lecture, we shall derive the change in the dimensions h(m,n) of primary fields
in a (p,p') minimal model as a consequence of its coupling to gravity. They have been
checked explicitly in various cases, where the statistical mechanical model on a random
surface have been solved. The details used below in setting up the integral can be found

in [21,22,43).

The partition function for the bosonic string (or any other conformal system with

central charge ¢ = d) is given by

_ [ _DIDX  -Su(xig)-4 [ vade
2= | Voabirp© i )

where pio is the bare cosmological constant, and Sy, is the conformally invariant action



Vol. 64, 1991 Alvarez-Gaumé 427

representing the matter fields X. For a free bosonic string,
1 — —
Su =g ] a2t /59* 0, X8, X (4.2)

The integration measures in (4.1) must be described more explicitly. For DX, we
construct the measure by normalizing the functional integral of the gaussian of a (quantum

field) fluctuation
] DysXeIBX15 — 1

(4.3)
1162 = fdzg\/gax 86X

For the metrics, Dg is more difficult to define. However, given a particular point g;;
in the space of metrics on a genus h surface, we can define the measure over a fluctuation

ég from
/ Dége—3I501Z — 1

(4.4)
l16gll% = / d¢ (g“cg"d + 29“"9"‘{) 69a599cd

It is clear from (4.3) and (4.4) that the measures are invariant under the diffeomorphism
group. The invariance under conformal transformations is not assured, however. Since

[|6X ||g depends on g, we will have Doy X # DyX. In fact (see the Appendix),
Deag X = ld/8M)SLl0)p x (4.5)
with the Liouville action
Si(o) = / N (-zl-gabaaaa,,a + Ro + pe“) (4.6)

One way to obtain this result is to decompose the measure over a scalar field ¢ in terms

of the orthonormal set of eigenfunctions of the laplacian A = —(\/E)“lai(gij V39;):

Adn = Anén (ns ) = f 026 JTdnbm = bnm (4.7)

The laplacian always has a zero mode ¢g = ([ dzf\/ﬁ)_lﬂ- Write next ¢(£) = 3 andn(§),

and since the basis is orthonormal, D¢ = [],, dan. The zero mode of X*# is to be interpreted
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as the string’s center of mass co-ordinate, and hence we give up the integration dag in favour
of d(C.M.). For the non—zero modes, we integrate over da,. The action Sjs is quadratic

in the ay’s, and therefore we obtain

/d(CM)(c}t\'f)“’” (48)

The integral in this expression gives the total volume of space-time — we shall ignore this

factor from now on. The notation det’ means that the zero mode is removed.

A useful method to compute determinants is provided by heat kernels and (—functions.

Using the identity

a_ [Fdty _u  _w
log;b_—/0 ; (e —e ) (4.9)

we can define

oo
logdet 'A = —/ -C-? Tyle 1A (4.10)
£

which is very difficult to compute in general, although some of its variations can be com-
puted in closed form. This is done for Weyl transformations in the Appendix, and the

result is (4.6).

For the metric measure Dg, we mentioned in lecture 1 that the space of metrics on a
compact topological surface modulo diffeomorphisms and Weyl transformations is a finite—
dimensional space My. Suppose we choose some representative metric §;;(7) for every

point T € My. Then the orbits generated by Diff and Weyl acting on §;;(7) generate the
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space of metrics on X4. This is shown schematically in figure 4.1.

W

Figure 4.1, Slice M g in the space of metrics M, and the orbits of the diffeomorphism
and Weyl groups.

Given the slice §(7), we can represent any metric in the form

frg =ePg(r) (4.11)

wherer f* represents the action of a diffeomorphism f : ¥ — X. Since the metric (4.3) is
Diff-invariant, we have to divide by the “orbit” of Diff. This is done using Faddeev—Popov
ghosts, as in gauge theories. If we denote an infinitesimal co-ordinate change of the metric

in complex co-ordinates as

89z, = V3§,

89,7 = Vz&z

then the measure Dy at §(7) will split into three pieces. One is an integration over moduli,

(4.12)

Dr. The second one is an integration over the conformal factor D¢o. The third integration
is over diffeomorphisms DEDE. going from Dég,,Dégz to DEDE, we pick up the Jacobian
“det V, det V5", which can be exponentiated by introducing anti-commuting ghost vari-
ables bz, ¢?, bz,, ¢*. The ghost b,, is a holomorphic quadratic differential, whereas ¢* is

a holomorphic vector. The final result for this Jacobian is

D, ngcDgEDgEe_SEh(b’c’g)_sgh(g’z’g) (4.13)
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where

Sgh(b,c,g) = /d2§ by Vzc*

San(b,c,g) = ] &6 b3,V .7

The ghosts will not play an important role in our argument, except for their contribution

(4.14)

to the conformal anomaly. Once again, the measure is not invariant under ¢ — e%g, and

the result of a conformal transformation is [21,22, 43|

DeagDeagc = Dg ngCC(_26/487r)SL (U,g) (4.15)

The path integral we want to study is
Z= f (d7]Dy oDy bDycDy X e~ (Su+Sert(pe/27) [ 63) (4.16)

The first difficulty we find is with the integration over ¢,: the measure depends implicitly
on ¢q:

660l = [ Va(680)? = [ dPe/Gete(58e)" (417)

We would like to transform this metric into a free field metric,

[ &e/isser? (4.18)

After choosing the slice g, the measure changes:
De () g ¢0De¢0 g bDed’o QCDC do ﬁX = Dﬁ ¢0 Dﬁ bDﬁ'CDgX J(¢°§) (4' 19)

The Jacobian was easy to compute for the system containing matter and ghost fields, but
some extra information is needed to evaluate the contribution of the ¢, field. David, and
Distler and Kawai (DDK) made the plausible assumption that J(¢o, §) is the exponential
of a local action similar to the Liouville action. Some justification for this hypothesis is
provided in [44,45]. For some applications of the DDK prescription, see also [46]. Since

this assumption has very important consequences, we shall present DDK’s arguments in

detail.
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In terms of the slice § and the measures defined in (4.2), (4.4) and (4.18), the partition

function is of the form

Z = /[dT]DéQSng“bD,g,CDgXG—SM(X"a)_Sgh(b’c’g)

) (4.20)
exp [— f d*¢\/§ (a@“”aaesam + bR/§¢ + ue“¢)]

Notice that a rescaling of ¢ is implied in the term €. At the end of the argument,
therefore, we will find that the physical metric has been changed to e®*?§. But recall that
we defined the path integral in a reparametrization-invariant way, and Z is only a function

of e?§ = g (up to diffeomorphisms). Hence, (4.20) must be invariant under the change
69 = e(£)g

b = —e(§)

The answers to physical questions should not depend on how the slice § is chosen. We can

(4.21)

use the computed conformal anomaly for ¢, X, b, ¢ together with the explicit variation of
the last exponential in (4.20) to determine the values of a , b, c. We first determine the

coefficients a and b.

The transformations (4.21) produce two terms, one proportional to eA¢ and another
one proportional to eR (see the Appendix). The contributions of the form ¢A¢ come
only from the variation of ¢ in the term of (4.20) proportional to @, and from the metric

variation in bR\/G¢. They yield

(2a — b) / &2 /Getse (4.22)

The term €,/g R receives contributions from all the fields. The combined conformal anoma-
lies of the matter and ghost sectors yield (d — 26)/487. From the measure D¢, we obtain
an extra 1/487, and finally from the variation of ¢ in the term proportional to b in (4.20),

we get a contribution of precisely b. The total is

(———————d mick L b) fdzg\/éfz (4.23)

48T
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Invariance under (4.21) implies then

25 —-d
487

b s (4.24)

)
Il
N o

Since the coefficient of the total Liouville action is proportional to (25 — d), the effective
coupling constant behaves as (25—d)~1, and therefore the classical limit is obtained as d —
—o00. This will prove useful later on. Furthermore, we can rescale ¢ — /12/(25 — d)¢ to

have a canonical kinetic term of the form (87)~! [(84)2 so that, on the sphere, ¢(2)¢(w) =

—log(z —w)+-- =
o [ evi (B tiouson + 22hs) -
(4.25)
1 R
= o [ @65 (5%0us0u6 + QR3)
with
Q= 253— d (4.26)

The contribution to the energy—momentum of ¢ coming from (4.25) is obtained by
computing §/6g%®. All we need is §/6g%%. The result follows if we take two identities
into account. The first one simply states that the two-dimensional Einstein equations are
satisfied identically. In two dimensions, the curvature tensor for a metric g,; takes the

form

0| By

Rabed = = (9ac9bd — 9ad9be) (4.27)

with R the scalar curvature. Then Rg;. = Rggc/2. We also need the general metric

variation of the Ricci tensor:

1
6Rap = 5 ( = V°Vebgap — VaVig™6g.q

2 (4.28)
+ VoV 4690 + vcv,,fsgca)

Therefore,

§ f ViRe = / Ve (%Rg“” - R“”) 69ab% + ] Vag*6Rapd (4.29)
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The term proportional to the Einstein equations vanishes and, after partially integrating

by parts, we are left with

[ V3 (<9897, + 9asV7") (4.30)

Since §¢g% = —g“cgbdﬁgbd, the variations of the form §g%%, §g% about a metric ds? =
9,zdzdz are such that only the second term in (4.30) contributes. The energy-momentum

tensor is then

1
T = 20,906 + 203 (4.31)
with Virasoro central charge
CLiouville = 1 + 3Q2 (4.32)

Adding now d — 26 from the matter and ghost sectors, and requiring that the total central
charge vanish leads again to (4.26) for @, thus providing a consistency check on the previous

arguments.

Next, we determine the coefficient ¢ in (4.20). Since we have rescaled ¢, we can write
this term as e7%. Geometrically, f €7Y?/7 represents the area of the surface for the metric
g. The coefficient v is determined by requiring €?¢ to behave as a (1,1) conformal field
in order to implement the symmetry (4.21), or rather its renormalized forma 6§ = &g,
6¢ = —e/~. Adapting the Coulomb gas derivations in the previous lecture to the present

case leads to
1

h(e7?) = -51(r-Q)=1 (4.33)
or equivalently,
2
Q=2+ (4.34)

The classical limit d — —oo can be thought of as v — 0. This classical limit is not the
mean field theory limit, which corresponds to d — +o00. It should also be pointed out that
we have tuned the bare comological constant to cancel the exponential term $2e? in the

action. This is not strictly necessary, and in fact the Liouville energy—-momentum tensor
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is still given by (4.31) at the classical level if one uses the equations of motion for the field

b.
In (4.33), we may instead solve for + in terms of Q:

7=Qi\/2Q§—8:\/25—il/;1%\/1—d (4.35)

To recover the classical limit @ — oo, ¥ — 0 we must choose the minus sign:

_JOIZ S,
.- \/ZQ 8 _ V% f/ﬁx/l d (4.36)

There are three regimes to consider:

a) d < 1: 7 is real and the theory is well defined. With the choice (4.36), Q is real and

v < QJ2.

b) d > 25; v and Q are purely imaginary. In order to have a real metric e??§, we have
to Wick rotate ¢ — —i¢ and this changes the sign of the kinetic term. The quanta of
the ¢ field in perturbative quantization have negative metric. Exactly at d = 25 one
can interpret the continued field X = —i¢ as a time co-ordinate in space—time. More
precisely, if we start with a free field theory describing the embedding of the string
histories in flat 25-dimensional euclidean space-time, then the Liouville field becomes
effectively a time co-ordinate and the full theory is equivalent to the 26—-dimensional
string in Minkowski space-time [47]. This is very intriguing, and one is immediately
led to speculate whether the signature of space-time with its causal structure could

arise as a result from quantum string theory.

¢) 1 < d < 25; v is complex and Q is purely imaginary. very little is known about this
region. What kind of phase transition describes the passage from ¢ < 1 to ¢ > 1is
anybody’s guess. We mentioned in lecture 1 that the three—dimensional Ising model
and the confined phase of four-dimensional gauge theories are closely related to theories

of fluctuating surfaces or, equivalently, sub-critical string theory. Although it is a
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very hard problem, the reward for solving string theory is indeed a hefty one. Much
physical knowledge is likely to be gained once this range of d is understood in Liouville
theory. When d = 7, 13 or 19, there seems to be a consistent description (a unitary
truncation) of the quantum Liouville theory which can be used to construct strings in

those dimensions [48].

There is one more puzzling aspect of sub-critical strings worth mentioning before clos-
ing this section. One of the basic and universal features of critical strings is the existence
of massless spin—two excitations. In an interacting theory, this is equivalent to having a
theory of gravity. Friedan proved in his doctoral thesis that the Einstein equations follow
from critical string theory. When the string is sub-critical, however, no trace has been

found yet of the graviton. We lack some basic understanding in this regard.

After Polyakov’s papers [21], Curtright, Thorn, Braaten and Ghandour studied [49, 50, 51]
the quantization of the Liouville theory preserving conformal invariance. They were the
first to derive the results (4.34,4.35,4.36) and they also found an explicit operator solution
to the Liouville equations of motion by expressing the Liouville field in terms of a free
field through a quantum version of the classical Backlund transformation which solves the
classical equations of motion. Their results also shed light on the properties of the spec-
trum of the theory. They were not able, however, to obtain a prescription for evaluating
general correlation functions in the theory. The study of the quantum Liouville theory was
also carried out by J.L. Gervais and A. Neveu [52] with open and closed string boundary
conditions. Whenever the results of [49, 50,51, 52] can be compared, they agree. There
are also attempts to quantize Liouville theory using quantum groups [53,48, 54, 55] and,
although the preliminary results are encouraging, much remains to be done. A good and

incisive discussion of Liouville theory can be found in the review by Seiberg [56].

Unless otherwise stated, we shall restrict our discussion in this lecture to the simplest

case d < 1.
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4.2. Critical Exponents

We impose a fixed area constraint on the partition function:

Z(A) = ] D¢DXe 5 § ( / e7%\/§d*¢ — A) (4.37)

We have dumped both the ghost determinant and the integration over moduli into DX,

for notational simplicity. The string susceptibility I' is defined byt
Z(A) ~ KAT™3 when A — o0 (4.38)

We can determine I' using a very simple scaling argument. Shifting ¢ — ¢ + p/7v, p a
constant, the measure does not change. In the Liouville action, only the term proportional

to R contributes:

gQ; / d2e\/[3R¢ — é% / d*e\/5Re + é% -f; [ d*¢ /3R (4.39)
If the surface ¥ has G handles, the Gauss-Bonnet theorem implies
& [ Peir=1-¢ (4.40)
and therefore
2(4) = e~ ¥ (1=O)=r z(c=p 4) (4.41)

where we have used §(Az) = |A|~18(z). Choosing e” = A, we obtain
2(4) = 471300 (1) (4.42)
and hence
Peo= B = %(1 -G) (4.43)

At genus zero (for spherical topology),

I‘Ofrzzwg:d_l_\/(zs—d)(l—d)
i 12

(4.44)

The definition of critical exponents of statistical systems is analyzed in some detail in
lecture 7 below.
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When d = 0 (pure gravity case), I = —1/2. If we take d in the minimal unitary series,
d=1-6/p(p+1), then ') = —=1/p. Ford = 1, 'y = 0 and we should expect some

logarithmic dependence of Z(A) on the area A.

Next, we compute the dimensions of fields. Let ®; be a spinless primary field of the
conformal theory whose conformal dimension in flat space is ho = k(®,) = h(®o). The net
effect of the gravitational interactions of the field ®, is to dress it, modifying its dimensions
(ho, ho) so that the total dressed field ® is a (1,1) field (a measure). In this way, the dressed
field can be integrated over ¥ preserving the symmetry (4.21). We write the dressed field

as

d = $oel? (4.45)

with ¢ the Liouville field. The dressing factor ¢ is the “wave—function renormalization”
which allows the field to couple consistently to gravity. The value of B is determined by

the requirement that the dimension of ® be indeed one:
1
ho— 588~ Q) =1 (4.46)

We can associate a critical exponent with the dressed field & by considering its one—

point function at fixed area A in the limit A — oco:

Fp(A) = ﬁ f D¢DXe 5§ ( / 7 /5d%¢ — a) [ BoeP?/5d%¢ (4.47)
The gravitational scaling dimension h is defined by

Fp(A) — EKAl™ (4.48)
A— 0

Quite generally, exponents (such as I" or h) are physically meaningful quantities even if
the (local) operator product expansions are of dubious validity because they come from

integrated expressions, smeared over the whole surface.

The same scaling argument leading to (4.42) yields

h=1-5 (4.49)

5
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Writing this as § = (1 — h), substituting 4 into (4.46), and using (4.33), we easily obtain

72
h—ho = -h(1—h) (4.50)

which is the famous KPZ result. Choosing in (4.46) the branch 8 < Q/2 yields

V23 —d—T—d+24he Q \/ Q2
- — 2 _ 5 _949n, 4.51
g Vi2 2"V e’
and
y_ VI—d¥ 28k~ V1—d (452)

V25 —d—-+1-d

4.3. Gravitational Dressing of the Minimal Series

In this section, we compute explicitly the values hm n and B n for the minimal (p, ?)

series (recall p and p’ are co-prime, and p' > p). Since d =1 — 6(p' — p)2 /op’,

_2Aptp) 4.53
Q N (4.53)

and
y = i,—p Q=%+7 (4.54)

In the minimal series,

1 (mp' — np)® — (p' — p)*

B = —a + 7(may +na_)? = yro (4.55)

From (4.51), we obtain

Q |mp' —np|
= _Imp —npl 4.56
ﬂm,n ) 2pp, ( )
and finally

R =1 — A ";’" (4.57)

As for the undressed case, we have the reflection symmetry

hm’n = hp_m,pl_n (4.58)
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In the Ising model, for example, p =3 and p' =4,s0h; 1 =hy3 =0, hj o= hg2=1/6
and h1 3 = hg1 = 2/3. The exponents (4.56) are in agreement with all the known exact
results of statistical models on fluctuating lattices. So far, there are exact results for self-
avoiding walks, O(n) models, the Q = 1 Potts model, bond percolation, Ising model, and
a few others. They all agree with (4.57).

It is interesting to re-interpret the values of @, v and fmn in terms of the Kac table
and the Coulomb gas representation of minimal models:
2 4
L =14+3Q*=1- 24(—%—) =13 + (’)’2 + ?) (4.59)
Naturally, we have two fields of dimension one:
Jp =e’?

4.60
J_ = e28/7 ( )

This should be expected because —%fy('y — @) is symmetric under v < @ — v, and e7?
has dimension 1. In striking contrast, the coefficient v in the exponent of J; is < Q/2,

whereas for J_, 2/v > Q/2!. Define

(4.61)
po= L2
Y
By + B =260 = —z%
Then
B = V2 (1 ;mm i1 ; ”ﬁ_) (4.62)
or, more elegantly,
., _Q@ my n
Pmn = 3+t - (4.63)

In the operator solution [49,50] to the quantum Liouville theory, it is possible to define

the fields e®? using free field normal ordering when a < Q/2. Whether these fields can be
defined when a > @/2 by any other means is not known.
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which agrees with (4.56). Hence, the dressed field is, in the Coulomb gas representation,

B p = eltmnnifmné (4.64)

Here, n is the free scalar field we used for the Coulomb gas representation of minimal
models in lecture 3, and ¢ is the Liouville field, which we shall manipulate as if it really

was a free field as well.

We already have four dimension-one currents at our disposal:

dosn 16 2/7 (4.65)

Formally, however, we can construct an infinite number of possible screening charges [4]
i.e., infinitely many unitarily inequivalent representations of the canonical commutation
relations. This is very reminiscent of the picture-changing operators in superstring the-
ory. The equation determining the possible dimension one fields is, in the Coulomb gas
language,

1=nh (eia"eﬁqb) = -—%ﬂ(ﬂ -Q)+ —21-a(a — 2a,) (4.66)

consistent with an energy-momentum tensor

1 1 .
P s —§3¢8¢ + %a%s — 5577377 + zaoazn (4.67)
Using the identities
a+ = ao + %
1 7 (4.68)
g = ~ )

we can find many solutions to (4.66). For example, we can generalize the minimal model

screening currents:
Jf) — cilbagtay)n, —bagd

beZ (4.69)
J(_b) — ei(bao+a_)nebao¢

Similarly, we can start with e7% and get a whole family of dimension—one operators:

TN+ R pez (4.70)
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It is not difficult to find all solutions to (4.66) giving all possible screening operators. Now

the conditions for screening the charge in correlation functions are

Zai:an
> Bi=Q

and in principle there may be several ways of satisfying them, depending on the choice

(4.71)

of screening operators. Although this is a sensible prescription, it is not clear whether it

agrees with other methods of defining Liouville correlation functions.

The arguments of this lecture can be extended to the supersymmetric case. This was
done originally using SL(2|1) current algebra by Polyakov and Zamolodchikov [57] and by

Distler, Hlousek and Kawai in the superconformal gauge [58].

Exercise. Following the steps in lecture 3, compute the fusion rules for minimal

models coupled to gravity.

This concludes our study of the minimal (p,p’) models coupled to gravity in the con-
tinuum. The basic formulas to remember from this lecture are (4.44), (4.49), (4.50), (4.52)
and (4.57), which give the string susceptibility ' and the critical exponents hm pn in the

presence of gravity.

Appendix

We collect here a few details of the computation of determinants and conformal anoma-

lies. Further details can be found in the literature. The identity
o0
log = e —/ i (e_ta - e_tb) (4A.1)
b o ¢t
suggests the definition of the determinant of an operator O:
2 it
logdet O = -—/ Ttre_to

3

(4A.2)

where we assume ¢ very small. If the operator O has no zero modes, the trace in (4A.2) is
unrestricted. When the operator has zero modes, however, we must modify this prescrip-

tion. The basic example to study is the determinant of the scalar laplacian on a compact
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Riemann surface T with metric g;;. We showed in lecture 3 that the correct treatment of

the zero modes leads to the computation of

!
(det A) (4A.3)
IRV
with the laplacian operator given by A = —(\/j)—la,-(\/ggffaj). Using local isothermal
co-ordinates, the metric can be written as

1
ds? = edzdz oz = -2-6‘7

(4A.4)
The non-zero Christoffel symbols are
I?,, =00 I‘f—z = 00 (4A.5)
The curvature tensor is
R?, > = —0,050 (4A.6)
The Ricci tensor is
R,z = —0:0p4r,0 = Rz, (4A.7)
and the scalar curvature is, finally,
R=2¢"*R,z = —4¢" 98,050 (4A.8)
In these co-ordinates, the laplacian of a scalar function takes the form
Ao = —iai (gij\/ﬁaja) = —2¢" 79,00 (4A.9)
V3
and therefore
R =2Ac (4A.10)

Under a one-parameter family of conformal transformations

g(t) = €'’g (4A.11)
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we can compute the changes in I' and R from the above formulae and obtain
[%.(t) =T%, + 180
R, () = B,z — 10,50
R,z(t) = R,z — 0,050 ' (4A.12)
R(t) = e 'R — 2te™%¢%%29,850
=e "R+te Ao

Then we compute

det O(e%9) / to
—_— 4A.13
log 3t O(9) dt— Iog det O(e 9) ( )

d 1,9 -y0, dO -y0
— = — — 2= t i 4A .14
o log det Oy ]; dyy~ trdte / dy tr—— T ( )
In our case,

d ' d A

pn — log det 'Ay = dytr d—Ate Y& (4A.15)

where the prime in det’ and tr’ means that the zero-mode is removed. Since A; = e 7A,

we have

d
7 —logdet 'A; = / dytr'oAge™ yA: [ dy—-— tloe VA = _trlge €D

(4A.16)
= — troe €A 4 ]d2£\/.‘?7¢0 Ug‘bg)

Now tr has no constraints and ¢gt) =(fa )_1/ 2 is the normalized zero mode. Thus

d
ditlog det 'Ay = —troe Bt 4 Elog/\/g_td% (4A.17)

and we obtain
d det/ At A
log —troe o5
f N

We can now use the Seeley-DeWitt coefficients to evaluate the right-hand side:

(4A.18)

1
woetd = L [ o+ o [ VaRo ) (4A.19)
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Therefore, if we want to compute the infinitesimal form of the conformal anomaly for

the determinant of the laplacian

det’ A

slog T2 = f e iw / JgR6o + O(e) (4A.20)

The effective action for d scalar fields was written in lecture 4 as

(dft;'/?) i (4.8)

Therefore,

_ ’ _ d d
/ D1 oy X e SEALH50)0) f Dy Xe=5(X9) exp [87; f Vb0 + 1= / \/§R60+0(6)]

(4A.21)
If we want to compute instead the integrated change:
det' Aea —d/2
log ——M 87:»5 dt / d% fa+ dt f d? ngta+0(e) (4A.22)

o

Using (4A.12), we obtain

! - —d/2 ! -d/2
() - () "l e s e )
(4A.23)

which is the result quoted in section 4.1.

Similar results can be obtained for the (b, c) ghost system or for any set of anticom-

muting fields (b, ¢) with spins (j,1 — j) respectively. See for example [21, 22, 43].
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Lecture 5. Random Surfaces and

the Large N Limit in Field Theory

5.1. Introduction and Examples

Previous lectures have dealt with the study in the continuum of conformal field theories
and their coupling to two—dimensional gravity. We would like to find now some explicit
ways of computing effectively the integration over metrics on a two-dimensional surface,
which was reduced in lecture 4 to integrating over modular parameters and solving the
Liouville theory. We want to write the sum over geometries modulo diffeomorphisms
on a fixed topology in terms of discrete random triangulations (or mixed tesselations with
irregular polygons) of a surface. Furthermore, we want to include some statistical variables
on the sites or links of the lattice and study the critical behaviour of the combined matter

plus gravity system.

The model of discrete strings and two—dimensional gravity presented were introduced
in [59,60,61]. They were inspired by Regge calculus [62]. This work generated a good
deal of activity [63,64,65,66,67,68,69] together with some numerical work to explore
the non-perturbative properties of string theory. These studies also included in some
cases the contribution of the terms in (1.50) describing the extrinsic curvature. Since we
are not going to review the results of numerical simulations, a partial list of investiga-
tions and reviews which could help the reader find her/his way through the literature is
[70,71,72,73,74, 75,76, 77,78, 79,80, 81].

Before the results of KPZ appeared [2], there were several lattice models out of which
exact critical information was obtained which agree with the later work in [2]. These
include the pure gravity case [59,60], the Ising model on a random planar lattice [82,83],
the Q)-state Potts model [84,85], and an O(n) o-model [86]. The D = —2 string theory

in the planar limit was solved in [65,67,87,88]. After [2], exact results were also obtained
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for other values of ¢ of conformal field theories in random planar lattices, for example

89,90,91,5,9,92, 86, 93].

Obviously, we cannot give a thorough account of all these developments. To illustrate
the main ideas and technique, we have selected as representative examples in the rest of
these lectures the cases of ¢ = 0 (pure gravity), the Kazakov critical points [5], ¢ = 1/2
(Ising model), and ¢ = 1 string theory [91]. Even for these examples we shall not give a

full account of their properties. Further details can be found in the literature.

After this long digression on references, we start with the main theme of this lecture:

how to simulate random triangulations using large N field theory methods.

We begin by exploring the rudiments of simplicial geometry. Let S be a triangulation of

a surface with the topology of a sphere S2. We define V(S) = {vertices of S}, L(S) = {links
in S}, F(S) = {faces, or triangles in S}. If ny (respectively ny, np) is the number
of vertices (respectively links, faces) in S, the Euler number (a topological invariant) is
defined by X(S) = ny, — np + np = 2, independent of S. If we change the topology of
the underlying surface, then X'(S) changes. A given simplicial complex S may have a
non-trivial symmetry group G(S): the group of permutations of lines and vertices leaving
S unchanged. In continuum geometry, G(S) is the isometry group of the manifold. The
order of G(S) is denoted by |G(S)|, a standard notation in finite group theory. We define
an intrinsic metric on S by assigning the same length (=1) to each link of S, namely by
considering all triangles to be equilateral. If N; is the total number of triangles meeting at
site z, one can define the analogue of /7 as o; = N;/3. The total area of the surface S is
18| = % Z N; = number of triangles (5.1)

i€V (S)
The intrinsic curvature is concentrated at the vertices, and it is equal to the deficit angle.

At vertex z, the curvature is

(5.2)
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For a regular triangular lattice, N; = 6 for any i, and therefore R; = 0. In this case, we

can certainly draw the lattice on a flat plane. The deficit angle at vertex ¢ is clearly

J3R; = 2n (1 _ %) (5.3)

and the discrete form of the Gauss—Bonnet theorem becomes

> o (1 - %ri) =4r (5.4)

We can discretize the free string by including an action

HS,X)= Y (}'f’,-ﬁ)'('jf (5.5)
Li;€L(S)

where the sum runs over all the links of S. Hence, the discrete form of string theory is

-B|S -2 sresXi=X;)?
Z = Ze HIG(S)l / H(g,,-)dﬁ (i) (5.6)

We sum over all the simplices S and in the last exponent the nearest neighbour pairs

(¢,7) depend on the simplex S. This can also be written in terms of the connectivity (or

adjacency, or incidence) matrix G;;(S) of the simplex S:

Gii(S) = { i, j nearest neighbours on § (5.7)

0 otherWISe

Other examples are easy to construct. For instance, the Ising model on a random
planar lattice is

2(8,8) =3 Pl Z # Liusy 501

S

=Y e, G(ls z (cosh N T] (1 + tanh Boyo;)
S { i} (i,5)€S

(5.8)

The sum over S can be defined by summing first over simplices with n sites and then
summing over n, in principle with some other chemical potential for the number of sites.

In the thermodynamic limit, we want n — co. Later, we will also remove the constraint
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on the fixed topology of the simplices and this will bring us into string theory. For more

details and references on this subject, see [89, 94, 95, 96].

Another example which is important in the study of polymers is the O(n) model. In
the limit n — 0, one obtains the statistical mechanics of self-avoiding random walks. In
this model, one assigns spins 3; to each site, subject to the constraint s? = n. On a regular
honeycomb lattice (see figure 5.1), the partition function is

Zogw = [ T[ 5 [T+ -5 (59)
P

)

Figure 5.1. A possible configuration contributing to (5.9).

The spins §; have each n components, and each link appears only once in (5.9). It
is clear from (5.9) that only closed loop configurations can contribute, otherwise the ds;
integral over the boundary spins would vanish. Furthermore, if three links meet at a vertex,
again the O(n) integration with respect to the vertex spin will vanish. Hence, the closed
loops cannot intersect and (5.9) is an expansion in closed non-intersecting loops.:

7 — Z - Miinks , Noops (5.10)

loops

One can consider correlation functions in this case of fields ®p(z) representing a source

of p infinite non-intersecting lines at a point z. If we consider a random lattice with co-
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ordination number 3 (only three lines at each vertex), for any graph S we can define the

O(n) partition function as in (5.9), and the total partition function becomes

Zn(B, k) = Zs: IG(IS)le_mSIZO(n)(S) (5.11)

A configuration contributing to (5.11) appears in figure 5.2. The parameter § is the
cosmological constant, the variable conjugate to the area of the surface. The system has
two fugacities: k, related to the inverse temperature of the model, and e~ P , the lattice

fugacity.

Figure 5.2. A configuration contributing to (5.11).

One would like to compute the partition functions and critical exponents of the models
considered so far and many others as well. Anyone familiar with the solution to the Ising
model or other solvable models on a regular lattice may be ready at this point to give up and
abandon a problem where in principle one would have to solve first the Ising model (say)
for an arbitrary simplex S, and then sum over simplices. Since, generically, S will have no
symmetries, we do not worry now about computing |G(S)|. Actually, the apparent curse of
having to sum over simplices is a blessing in disguise. There are very powerful techniques
in quantum field theory to enumerate systematically graphs of arbitrary topology and
complexity. they are based on the large N limit of matrix field theories. Before returning
to models such as (5.6), (5.8) or (5.11), we present the tools in large N technology that

will be needed. These methods are so powerful that it is possible to solve the Ising model
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on a random planar lattice in the presence of an arbitrary constant magnetic field. We
will later analyze in some detail the correlation functions and the type of exponents used

in these theories.

5.2. Large N Expansions. Orthogonal Polynomials

The use of large N expansions in field theory is a rather large subject. It was started
by the seminal paper of G. 't Hooft [97]. The application to 0+0 and 0+1 dimensional
models was first carried out in [98]. A good reference on the the theory and applications of
random surfaces is [99]. The use of orthogonal polynomials to solve this problem appears
in [100,101,102]. We will follow mainly the very lucid presentation in [100]. The case
of two— and more— matrix models in the large N limit appears in {101,103, 104, 105, 106].

Many details and references on orthogonal polynomials can be found in [107].

To make the arguments as transparent as possible, let us study the simplest possible
case: a matrix field theory in 0 4 0 dimensions. The “field” is just an N x N matrix M;;
(¢, =1,---N). We take M to be hermitean, although the arguments can be generalized
easily to M complex, symmetric or antisymmetric. The partition function is just an

ordinary integral

Z = / dV' M exp|-BtrV(M)]

1 (5.12)
V(M) = 5M2 + Y g M*
k>3

We can compute Z using Feynman rules. For this, it is useful to introduce a double line
notation corresponding to the two indices of M. The lines are oriented because M is

hermitean and from a group-theoretical point of view, M can be thought of as a quark—
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antiquark pair. The Feynman rules will look as in figure 5.3.

Figure 5.3. Feynman rules for (5.12).

The advantage of the double line notation is that we do not have to write explicitly
all the indices on the matrices. To follow a particular index, all we have to do is to follow
the arrows. In perturbation theory we expand the interaction term in (5.12) and compute
the gaussian integrals:

oo

2 _1 2 1
2= [aVy AT 3D e Py (5.13)
p=>3 \n,=0 P
The propagator is
(M IMf) = p1sts] (5.14)

A generic graph for Z will have V), vertices of type p (gp tr MP). Since there are no
external lines, all lines will close to form a loop and for every loop the traces appearing in

the vertices will produce a factor of N (some graphs are shown in figure 5.4).

3
37

Figure 5.4. Some graphs appearing in (5.13).
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We want to show now that in the large N limit, if we expand Z in inverse powers of
N we obtain a topological expansion. A graph with V3 vertices of type 3, V4 vertices of

type 4,... will give a contribution proportional to
Vs V. I,—P
(g3°gy*---) N1g=PHY (5.15)

where I is the number of “index” loops, P is the number of propagators and V = "V},
is the total number of vertices. Now think of the diagram geometrically, as an abstract
simplex where the vertices are the vertices of the graph, the edges are the propagators and

the faces are the index loops. The Euler characteristic of this particular simplex is
X=2-2h=V-P+1 (5.16)

where h is the number of handles of the surface. For every closed graph, the total number

of lines emanating from all the vertices must be equal to twice the number of propagators:

2P ="V, (5.17)
P
Then (5.15) becomes

—h4P— V,(1-2 ~1\% ro- Vp(1-3
(o32gff ) N22hP=V g2 W(1=8) _ T (,n8-1) " w222 (-8 (5.18)
p>3

If we define g, = “ijl"p/Q i.e., if the potential V(M) takes the form
9p
V(M)=)" N%_ltr MP (5.19)
p>2

we can write the partition function as

7 - Z N2-2h Z 52;,‘/»(1—%) ! Hg;VP (5.20)
h Sh

1G(Sh)l

Equivalently, since we have not fixed the behaviour of 8 as N — oo, we can write

_ 2_9h 1 ]_\T— EPVP(g_l) -V,
2= 2N G (%) 1o (520
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Several things are worth pointing out about this formula:

1) For a fixed order in N (fixed k) we sum over all graphs S}, in the theory. We know
from standard field theory that the factorial factors in (5.13) do not cancel completely if
the graph S has some symmetry. What remains in the denominator is the order of the
symmetry group of the graph. This factor, needed in (5.6) and subsequent formulae is an

outcome of the large N computation.

2) The large N expansion is an expansion in genera. Thus if we want to keep only

spherical (planar) topology, it suffices to keep the leading term h = 0 in (5.20).

Figure 5.5. The solid line is a portion of a triangulation. The broken lines represent
the dual simplex.

3) There remains to understand the exponent in £ in (5.20) and why this expansion
is counting metrics modulo diffeomorphisms. This is clarified by noticing that the large
N expansion gives us the dual simplices to those considered in the previous section. Take
g4 = g5 =...=0. Now we only have ¢3 vertices. If we consider an arbitrary triangulation
of a surface (as in figure 5.5), its dual graph is a ¢3 diagram. In this case, the exponent
of # in (5.20) is —% > Vp. However, the number of vertices in the ¢3 graph is equal to
the number of triangles in the dual triangulation, and therefore it represents the area of
the surface if we let the length of every side of the triangles to be equal to 1. Thus the
factor } , Vp(p/2 —1) = |S| is the area of the triangulation. We can also define a distance

between triangulations. If G;;(S) and G;;(S’) are the adjacency matrices for the graphs
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S, S’ we define their distance as %Zij |Gi;(S)— Gij(S")|?. Configurations differing by the
flip of a single link as in figure 5.6 have d(S, S’) = 1. By flipping links, one can move in the
space of triangulations. This procedure has been implemented in Monte Carlo algorithms

to simulate random surfaces numerically.

Figure 5.6. Two configurations differing by the flip of a single link.

Finally, we should mention that the factor 1/|G(S)| is expected also in the space of
metrics modulo diffeomorphisms. This is due to the existence of orbifold points in the
moduli space of Riemann surfaces. In other words, some diffeomorphisms may have fixed
points for some metrics. If we have some manifold M and a group G acting on it, the
quotient space M/G, i.e., the space of orbits of M in G is again a a manifold, as long as G
acts freely on M. If G has fixed points, the quotient space will have singularities at these
points. Think for instance of M as the two—dimensional plane and G as the group with two
elements {1, P} where P(£) = —Z. The quotient M/G is a cone with a 30° opening angle.
The origin of the plane is a fixed point under G and this generates a conical singularity

when modding with respect to G.

There are also multi-matrix models, with a similar interpretation. In (5.12), there is a
single matrix field M. Take instead My a = 1,2,...,n. later, we will need also models of

the form

/HdN2Maexp ZVQ(M) antrMaMa_l_l (5.21)
a=1
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The Ising model on a random lattice, for example, is given by (5.21) with p = 2.

The most efficient method to evaluate (5.12) and (5.21) is in terms of orthogonal poly-
nomials. The theory has U(N) invariance, and the observables are simply the operators
trMP. Therefore, we would like to transform the integral in (5.12) over M into an inte-
gral over the eigenvalues of M. Since M is hermitean, it can be diagonalized by unitary

transformations. We can parametrize M as

Al
M=U"1 U=U"'DU (5.22)
AN
An infinitesimal change in M is
UdMU~! = dD + [D,duU!] (5.23)

or, in components,

(UdMU“l) = dXibij 4+ (M = Aj)wij(U)

ij

wij(U) = (dwU) (5.24)

i
The differential w;;(U) involves only angular variables. If E;; denotes the matrix unit

whose single non-vanishing entry is a 1 in position (7, j), we can write (5.24) as
d\iE;; + (N — /\j)w,'jEij (5.25)

Then the volume element dV’ M will take the form [99]

N
V' 0 =TT driu(U) JT i = 1) (5.26)
i=1 i<j

The measure over the angular variables u(U) will be ignored in the computation of Z and

in the computation of U(/N)-invariant expectation values. We obtain
4= / [T dnia2(r)e? 2V

1o o
V(A) = 3A +§9p’*p (5.27)
pz

A) =[] = 2j)?

i<j
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The free energy or ground-state energy Ep(g) is defined by
7 — —N?En(9) (5.28)

where we have factored out a power of N2 in the exponent to normalize the planar (genus
zero) diagrams:

exp—N*En(g) = Jim [ T]ax i]}j(xi APep—AY V) (5.29)
In the large N limit, we can use steepest descent to evaluate the integral. Equation (5.29)
should be thought of as the statistical mechanics of N charged particles on a line in the

presence of a potential:

exp —N2En(g) = /HdAieprZlog =2 - B3 VO (5.30)

i#j
The steepest descent equations are
1
W=2%" 5.31

This problem can be solved in the large N limit by going to a continuum approxima-
tion [98]. We will use a different method to find Z. This is the method of orthogonal

polynomials [100, 101].

The interpretation of (5.30) as a Coulomb gas is due to Dyson. We have a Coulomb gas
at a temperature 87! in an external potential V(A;). At very low temperature gl ~1/N,
N — o0, the charges are very weak and the attractive potential balances the Coulomb
repulsion. In this situation, the Dyson gas freezes into a solid whose equilibrium positions

are given by the minimum of the energy E(g) and satisfy (5.31).

To evaluate (5.27), we introduce orthogonal polynomials with respect to the measure

du(\) = dre BV (5.32)
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By Gramm-Schmidt orthogonalization, we start with the basic monomials 1, A, A2 ...
and construct monic polynomials (a polynomial is monic if the coefficient of the leading
term is 1):
Pa(N) = A"+ appn 1At anpod® 2 4 (5.33)
Then
[ N PAOYP(Y) = b (5.34)
It is clear then that P,()) is orthogonal to A™ (m < n). These polynomials satisfy a

two-step recursion relation

A.Pn = Pﬂ+1 + SnPn + RnPn_l (5-35)
'To prove this, we write
n—2
APy = Ppy1+ SnPn+ RnPay + ) AaPa (5.36)
a=0

Multiplying by Py (a < n—2) and integrating with du(}), the integrals of P, 1Py, PnPo,
P, _1 Py vanish, and AP, P, = Pn()\c‘+1 4+ ---). Since @ < n — 2 and Py is orthogonal to
A™ m < n-—1, we obtain Ao =0, « =0,1,...,n — 2. An explicit representation of Pn(A)

once R, and S, are known is

A =5 1 0
Ry A—=5] 1 0 e
0 R A—S 1 0 e
Poy1(N) = : - (5.37)
Rp1 A—=S5p-1 1
n A—Sn

Expanding in minors with respect to the last row,
A—3Sp 1
Ry A=-5 1
Pn+1 =()‘ - Sn) -
Rp1 A=5n1
A—Sp I

R A-=-S i 5.38
— Ry, 1 1 (5.38)

Rp—9 A—Sp—2

Z(A - Sn)Pn - RnPn_l
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Next, notice that A(});) is a Van der Monde determinant

1 1 1

Al ,\2 AN
H(Ai"’\j)= : g :
i<j ,\i\f—l Aé\’-—l . /\%—1

From (5.33), we can write the above expression (5.39) as

A(N) = o %et NP,'_I(/\J')
Li=1,",
Define the “one-body” wave functions
$i(2) = PPV

Then we can construct the N-body fermionic wave—function

U N (i) = dethi_1(Af)

corresponding to the ground state of N fermions. Then Z is the norm of ¥ y:

Z=(wyly) = [ 0w

In this form, Z is the norm of a Slater determinant:
N-1

Z =N![] ki
1=0

Using

hn = /d#(A)Pn—IAP = /d#(’\)Pn—l(Pn-{—l + SnPn + RnPp—1) = Rphn—1

we obtain

hn = RaRp_1--- RoRyhg
N-1

z=nNn{ I] R
i=1

Finally, we obtain two basic identities:

0= [ NP PN = 3 [ VPR = 8 [ du)V ()RR

H.P.A.

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)
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and
d
de(A)Pn—laPn =nhp_1 (5.48)
Integrating by parts and using the orthogonality of P, and dP,_1/dA, we obtain

n

- 5.49
ﬁhn 1 ( )

[ ) Pas V)P =

The two equations
/ dp(MV'(MP2 =0
[ W) PaaV )Py =

g
are known as the string equations [6,7,8]. Combining (5.35) and (5.50) we can obtain a

(5.50)

set of equations for R, and S, known as the staircase equations [100]. Let us consider

some examples first.

In the simplest non-trival case, V() = A2/2 and P, are the Hermite polynomials:
J O ParV P = [ du(3) Pa-1APa = R
and hence for the purely Gaussian theory
Rn=2 (5.51)

Also, Sp = 0, which is generic for the case of even potentials V(X)) = V(=2A).

Consider next the potential V(¢) = go¢? + g4¢*, which is also even and thus S, = 0.
We need

1
hn-1

1
[ N = Pa VNP = [ a0 Pa1(200A + 45000 Py (5.52)
n-—-

The first term is easy to compute and it yields 2g9 Rn. For the second one, we have to
use (5.35) three times; we always have to start with P, and end with P,_1, so as to make

(5.52) different from zero. The answer is

494Rn(Rn41 + Rn + Rn—1) (5.53)
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and hence

n
2g9Rn + 49‘4Rn(Rn+1 + R, + Rn—l) = E (5-54)

The general pattern can be understood if we define an operator 7i such that nP, = nPy,
and shift operators. Similarly, we also define R(71) and S(#). If Uy |n) = |n £ 1), then
(5.35) can be written as

A\ = (Us + U_R(n)) (5.55)

Notice that the operator is defined acting on the monic polynomials P,. We can define

the operator also with respect to an orthonormal basis
= ;1/2}:)” (5.56)

In this case,

Xpn - h;l/Q(Pn-}.l + SnPn + RnPn—l)

h (B
i o= n+1pn+1 + Snpn + Rn —n_l"’Pn_l (5'57)
hn hﬂ
= R11+17311-}-1 + SnPn + v RpPp_1

Hence, in this basis

A = /R(R)Us + S() + U—+/R(#) (5.58)
and the string equations become
n
[ aPa sV (3P0 =
BV En (5.59)

[ du)V' (VPR = 0

Define the states |n) and |n) according to
(Aln) = Pa(X) {Aln) = Pn(A)

n) = ki /?In)

(5.60)

Therefore, we can write (5.50) as

(n| V() |n) =0
- (5.61)

BvVRn

(n=1V'(A)In) =
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Graphically, these expressions can be computed in terms of a “staircase” diagram. Think
of a staircase where each step is labelled in order 1,2,3 ...,n,n + 1,... To compute the
contribution {n — 1| AP |n), we start from step n and apply A p times in such a way as to

end up at the (n — 1)-st step. The rules of this ladder game are

n+1 n
e = /Rpy41 AN =Ry n—on=25, (562)
1

n n -+

For even potentials, the last term is not there.

Acting instead on the basis [n), we have equivalently

n+1 n
n n+1

Consider for example the graphical computation of (n — 1| A3 |n) with even potentials.

The contributing diagrams (paths) are shown in figure 5.7.

N+3 e ® ° @
n+2 e ® ° °
n+1e T

Figure 5.7. Staircase paths contributing to {n — 1| A3 |n).

Using the rules (5.62), we find the contributions
I: \/Rpt1v/Roy1V Rn
II: +/Rav/Rn/Rn (5.64)
II: +/Ryv/En1VEn
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Inserting these expressions into (5.61) leads immediately to (5.54).

QOur third and last example is based on the cubic potential V(\) = goA? + g3/\3;
VI(A) = 2g9) + 3g3A2. Now we have to use (5.62) with Sy # 0. As before, the 2¢g2) term

contributes 2g9+/R,. The staircase graphs contributing to A? are shown in figure 5.8.

- n-1
Figure 5.8. Paths contributing to (n — 1| 22 |n).

The two of them together yield 6535,/ Rpn, so the total is

n

AV Rn

We also need to compute (n| V/(A) |n) . The staircase paths now start and end at level n:

(299 + 6935r )/ Rn =

(5.65)

{n| V'(A) In) = 2G9Sn + 393(S2 + Ryt1+ Ra) =0 (5.66)

In general, if we take V(A) = V(—X), the form of the string equation is

n — —
5 = WaRn+ > 2gsp Y Rs--Rs, (5.67)
p>1 staircase )
paths

The staircase paths are obtained from (n — 1| A2?~1 |n) or from h;:l(n— 1]A2P~1|n). Using

(5.63):
\r-l — (U, + U_R(n))%1 (5.68)
In order that the expectation value (n — 1| A2P~!|n) be non-vanishing, p steps must be

taken downwards and (p — 1) upwards. The number of contributing terms is (2Pp— 1) =
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(2p — 1)!/pl(p — 1)!. If we can solve the staircase equations for R,, then the free energy

follows from

_ =1 Zn(g)
Ey = N2 log Zn(0)
N
N k=1 N

(5.69)
Ri(0) N ®ho(0)

where the argument g = 0 means the restriction to the gaussian model.

Before concluding this lecture, we quote a result due to Mehta which allows us to work
also with multi-matrix models of the form (5.21). (The proof can be found in [103] and

[104], although the result was also found in a different form in [101].) The result is

/dN2Be'V(B)+QCtrAB = const. X /d)\l -edAy a(d) exp (—V()\,') + ZCZ /\i,u,,')
1

A(p)
(5.70)

where the A;’s (respectively the p;’s) are the eigenvalues of B (respectively of A), and

AN = J]d =) A(p) = ] (mi — 1) (5.71)

1< 1<j

Now we have the tools to analyze statistical models on random triangulated surfaces.
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Lecture 6. Pure Gravity. Kazakov Critical Points.

A First Look at the Double Scaling Limit

After all the machinery built in the last lecture, we would like to obtain a number
of interesting results concerning pure gravity in two dimensions and also verify some of
the formulae of Knizhnik, Polyakov and Zamolodchikov (KPZ). The arguments in this
lecture will be rather elementary, but conceptually they are important for understanding
how the continuum two-dimensional gravity theory is obtained from the sum over random
triangulations. In the following lecture, we will explain in more detail the critical exponents

and ambiguities in the construction of the coupling of matter to 2D—gravity.

6.1. Remarks on Asymptotic Estimates

In lecture 4 we introduced the string susceptibility 74 in terms of the “microcanonical”
partition function with fixed area A. This coefficient also determines the divergence of the
partition function Z(f) as the cosmological constant approaches a critical value f.. For
later convenience and also to agree with standard notation, we define the bare cosmological

constant Ag as

B =eln (6.1)

Since we have set the length of the elementary links to one, there are no units in the
exponent in (6.1). The full partition function can be written as a sum:
o0
Zn(Ap) =Y Zy(N)e~ A8l (6.2)
N=0
where Zj(N) is the partition function for fixed area A, and h is the genus of the surface
considered. In general, (6.2) will be convergent for some values Ag # A, and it will diverge

at the critical cosmological constant Ac. The asymptotic behaviour of (6.2) is determined

by the behaviour of Zy(N) as N — oo:

Zh(N) ~ oo ANNTS (6.3)
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Then A = efe and the behaviour of Zpas Ag — Ag is

Zn(Ap) = > ANNT=3eABN — N 13~ (As—Ac)N
oo N (6.4)
~ / dr zY3e—(AB—Ac)z (Ag — Ac)2—7ﬂ

The string susceptibility is defined as

8%z

X==
2
9%,

~ (A — A)~™ (6.5)

The average area of the string world-sheet behaves as

(Area) = _Bf—Bz,, ~ (Ap — A7 (6.6)

If instead we look at the two—point function of some operator ®, in the limit of large

‘area N:

e_ABNZq,‘q)(N) ~ N2-2he+7,—3 ,—(Ap—A)N (6.7)
and the behaviour of Zgg(Apg) near A. is
Zga(f) ~ (Ap — M)~ ™ (6.8)

where hg is the dressed dimension of the operator ¢ according to the KPZ definition. For

pure gravity (D = 0) the formulae of lecture 4 imply

_D-1-+/(D-1)(D-25) _ 1
Vst = 12 Wi (6.9)

Hence, the string susceptibility is directly related to the divergence of the partition func-

tion. We want to derive (6.9) starting with one-matrix models in the large N limit.

6.2. ®* Planar Theory

To derive (6.8), we begin with the staircase equations for a quartic potential:

n
E = 2§2Rn + 4§4Rn(Rn+1 + Rn -+ Rn—l) (6'10)
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Dividing by N as N — oo, using go = g2, g4 = g4/N and redefining R, — R, /N, with
z=n/N and ¢ = 1/N, we find

x

292R(z) + 404 R(®)[R(z + €) + R(x) + R(z — )] (6.11)

=)

In the large N limit, we can neglect ¢ and we end up with an algebraic equation for the
coefficient R(z):

e A8z = 29 R(x) + 1294 R*(2) (6.12)

whose solution is

—2¢g9 \/4g22, + 4894e“AB:c
Bl &) = 54g; (6.13)

We can normalize g9 = 1, and we see that the critical behaviour is found for g4 = —1/12,

A¢; = 0. The scaling region appears for z ~ 1:

R=1-v1—e48z (6.14)

The sign choice in (6.14) is due to the fact that R is always positive. This solution follows by
requiring the polynomial in (6.12) to have a double zero at £ = 1 for Ag ~ 0. Substituting

(6.14) into (5.69) we obtain the free energy [59, 60]:

1

R ERED)

Agp —A. 243 + analytic 6.15
B

and we disregard the analytic terms, which can be accounted for by the appropriate coun-
terterms. We have also included A, in the final answer (6.15), from which we can read

immediately v5(D = 0) = —1/2 in agreement with the KPZ formula.

6.3. Kazakov Multi-critical Points

We can consider now an arbitrary potential V(¢#) and study other possible critical
behaviours as we tune the couplings [5]. In the naive large N (planar) limit for an even

potential of order 2k, the staircase equations will give in (6.12) a polynomial of order k.
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From (5.67) we can write
k
n _ s 2p -1 P
5= Zngi’p ( " ) R (6.16)
p=1
Again redefining R — R/N, z = n/N, o, = g2p/NP~1, B = €25, we obtain

e 2Bz = Wi(R)

k 6.17
Wim = o (1) R (6.17)

p=1 P
We can write W(R) in terms of the original potential via an integral representation,

which the reader is invited to verify:
dz _, R
— 4 &= = 6.18
W(R) = § 55V + ) (619)
and its inverse
ld
V(e = [ W - we) (6.19)
0

In the pure gravity case, z ~ 1 is the critical point, where W(R) has a double zero. Tuning
the couplings, we can require W(R) to have a zero of order k. Hence, the k—th multi-critical
point appears when

W(R) = [1 (- R)k] F(R) (6.20)
Since F(R) is analytic and non-vanishing in the critical region, for all practical purposes

we may ignore the explicit form of this effectively constant term. Now we have
e ABr=1—_(1-R)F (6.21)
R(z)=1—(1-eAng)l/k (6.22)

Note that we can absorb F(0) into the definition of Ag. Substituting (6.22) into (5.69),

we obtain

1 -1 ;
E = CERP=yTopn k_l)(AB — AP 4+ analytic (6.23)

Therefore, in this case we obtain

1
= _ = 6.24
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When W(R) takes the form (6.20), we can compute the potential Uk(¢2) according to

(6.19):
Ue(6) = Z( 1yt g (6.25)
For instance,
U(9) = 54
Us(¢) = ¢* - 1—12454 (6.26)

_ 3.9 14 15
Ug(¢) = 58— 7% T 55¢
Several comments are now in order:

1) It si very important to realize that the sum over triangulations is playing the role of
a dynamical variable, namely the world-sheet metric g;;, and also that our main goal is to
reproduce the sum over geometries in the continuum limit. Therefore, it is not sufficient
to compute the partition function in the large N limit, we have to look for critical points.
Near them, we find scaling behaviour and the onset of the continuum limit. This is an
illustration of the arguments advanced in lecture 2 on the renormalization group. Near a
second—order phase transition, we find scaling behaviour and the memory of the discrete
structures is lost. If we look only for W(R) or R = R(z), then we are only counting graphs
in the large N limit. This is an important problem solved by Bessis, Itzykson and Zuber
[88] using orthogonal polynomials, but it is not the problem we wish to solve. We are
not only using the large N methods to simulate triangulations, we also want the sum to

become critical in order to recover the original continuum theory we were interested in.

2) We have not yet specified how Ap approaches A;. This would require introducing
some scale, a renormalized cosmological constant and various scaling variables. Often, we
are not interested in any relation between the two limit Ag — A, and N — oo; thus we take
N — oo, restrict ourselves to planar graphs and then look for possible continuum limits.
For the applications to statistical mechanics this suffices. One is most often interested

only in planar topology for the fluctuating surfaces. If one also wants to obtain solutions
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to string theories, then one has to sum the partition functions for each genera to obtain
the full string partition function. This is the beauty of the double scaling limit. By tuning
carefully the two limits N — oo and Ag — A., we obtain the sum over all genera in a

single step. The next section is devoted to a first exploration of the double scaling limit.

6.4. A Primer on the Double Scaling Limit
Before taking the N — oo limit, recall from the previous lecture that the free energy
has an expansion

E(Ap;g) = N2Eg+ Ey + N"2Ey + - + N2 E) 4 ... (6.27)

where Ej, is the sum over all graphs with the topology of a Riemann surface of genus h. If
we consider the dependence on a single coupling, for instance Apg, the singularity nearest
to the the origin occurs at the same location p. at every order in 1/N. Its position depends
only on the potential V. This is the behaviour we found in lecture 4, where the partition

function for fixed area A and fixed genus k in the limit A — oo behaves according to

e ABAZ,(4) = ATIHTIR) ~(A=Ao)4 (6.28)

Hence the singularity in (Ag — A¢) for Zy(Ap) is
o
N

A Ap— A 30N

(6.29)
= (Ag — A,)Z—7)(1-h)
25 -d Q- 2_8
N=r=2-Q , @=\—— , 7= 24
3 2
In the discrete case, the behaviour
2= =(2-)1-h) (6.30)

has been verified in several explicit examples. Hence the behaviour of a generic term in
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(6.27) for large N and small (Ag — A;) is
Ej(Ag) = N2 2h(Ap — A,)Z-%)(1-h)
1 2h—2 (6.31)
B [N(A g Ac)l—m/?l

The term in brackets is therefore the string coupling constant i.e., the parameter which

counts the number of string loops in

Zstring = »_ K222 (6.32)
h

1
K=
N(Ap — Ag)1—7st/2

Thus if we want to obtain a sum of this form, we have to take the limits N — co and

(6.33)

Ap — A in such a way as to leave the string coupling constant « different from zero.

To take the continuum limit, we introduce an explicit constant a with dimensions of
length to play the role of the cut—off. This means that the length of the basic links in
the triangulations are taken to be all equal to a @ instead of 1. Next, we introduce a in
the expressions above and then take the dominant terms as a — 0. The renormalized

cosmological constant is defined according to

_AB“AC

Ap 3

(6.34)

a
and Ap is kept fixed by tuning (Ag — A;) as a — 0. We can think of Ag as the action
per polygon and a? as the area per polygon, so that Ap represents the action per unit
area. The continuum limit is taken to be the first non-analytic term in pp which satisfies
the correct scaling relations. There are some analytic contributions in pgp to Eg. These
are the remnants of the cut—off and can be subtracted if desired in the definition of the

renormalized free energy. The double scaling limit is obtained by requiring [6, 7, 8]
k1 = N(a2) = m/2p L/ (6.35)

to remain constant, i.e.,

Na?~ 7 = \~1 = constant (6.36)
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For critical strings, the string coupling constant is dimensionless (it is just the dilaton
expectation value), while here it has a well-defined dimension. This is one of the many
features distinguishing between critical and sub-critical strings. It also makes clear the
fact that we cannot expand about Ap = 0. Since physical quantities will depend on &, we
see that a change in the string coupling constant A can be compensated by a change in
ApR. To obtain the equations governing the continuum limit, we first blow up the scaling
region (z ~ 1):

e @ Ary — ¢~ABgy =1 o2 (6.37)

Now, for z € [0,1], ¢ € [a~2, Ag], and the derivatives with respect to  become

e e - (6.38)
In the planar limit, we would have
W=1-(1-RFf=eM8r=1-d% (6.39)
It is convenient to introduce the scaling function
1-R=d*f(1) (6.40)

and now we solve the string equation to leading order for the case of pure gravity, k = 2:

ze™ B = R4 4g4R(c)(R(z +¢) + R(z) + R(z —€))

J\2 (6.41)
= R+ 12g4R% + 494R (63—;> R(z)+ -
(recall e = 1/N). For k = 2, we have
R(z) =1-af(t)
d i 1/2 3 —_1— (6.42)
T T @ 0 "T T
d
1-a’t=1—4° fz(t)+ 1y2g2 dt{ +0(a%) (6.43)
Finally,
2
t= f4t) - Lyd/ (6.44)

37 dt?
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we obtain the Painlevé equation of the first kind, or Painlevé-I for short. This is a re-
markable result [6,7,8]. In quantum field theory, we should not have any right to expect
such a simple answer. It should be wonderful to be able to compute the (g — 2) factor of
the electron as a function of the fine structure constant « in terms of the solution to a
non-linear ordinary differential equation. The double scaling limit has shown us, however,

that the free energy of string theory can be obtained from (6.44).

In the derivation of (6.44) we have made some simplifications. For example, we have
taken the k-th Kazakov critical point to be of the form Wi(R) = 1 — (1 — R)F. We could
instead choose a more general parametrization Wi(R) = 1— a(R. — R)F, but by redefining
f and t the final result would again be (6.44). This is expected from universality. It is
a good exercise to verify it. We can solve (6.44) as a power series expansion. Since the

/2

expansion parameter is fc2, from (6.35) it follows that K2 = )\21\};5 and, in the planar

limit f(t) = t}/2 we can write
f)y=t/2%" 4, (,\21:‘5/ 2) ’ (6.45)
h=0

Upon substitution into (6.44), we obtain a recurrence relation for the coefficients Ap:

1 1 Z
m4n=h+41
m,n>0

and asymptotically A, ~ (24/25)~"(2R)!. This series is divergent, and its behaviour is such
that non—perturbative effects are expected to be stronger than in field theory. In field the-
ory, large orders of perturbation theory grow like h!, which can be traced to singularities of
the form exp—A/g?, with g the coupling constant. The behaviour (2h)! leads, on the other
hand, to singularities like exp—A/g. For small g, this is much stronger than exp—A/g?,
and hence one should suspect that non-perturbative effects in string theory play a very
important role [108]. In the next two lectures we will pursue in more detail the properties

of the double scaling limit. Since the series (6.45) is divergent and not Borel-summable, it
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is an important question whether 2d-gravity can be defined non—perturbatively. Several
attempts towards this goal can be found in [109,110,111,112,113,114,115,116, 117, 118].
The universality properties of the double scaling limit for the one-matrix models are stud-
ied using heat kernel methods in [119]. We will have more to say about some of these

topics in the last lecture.
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Lecture 7. Statistical Systems on Random Surfaces

7.1. General Considerations. Critical Exponents

In this lecture we want to explore in more detail the properties of statistical systems
coupled to random triangulations. In lecture 5, we presented the basic definitions but did
not study in detail either the critical exponents or the many subtleties associated with the
integration measure, or the role of irrelevant operators, etc. The first part of this lecture
is devoted to these issues: we follow closely [64]. Later we whall turn to some examples

other than pure gravity.

We begin with an arbitrary triangulation S with adjacency matrix G;;(.S). Recall that
we have analogues of several geometrical quantities in the continuum limit. If at site 2
there are N; incident triangles, the volume element ,/g and curvature R are defined at ¢

according to
N.
Vi =re=5
6 — N;
R—R;=m N, :
= Ny
\/§R--> O’iRi = 27T§——6——1

-

VIR - '37\,-_(6 — N;)?
1

(7.1)

The discrete action for a D-dimensional string on the triangulation S is

1
S:a(z)(X!—XJ)Q-{-AZGz (72)
i,j i

If instead of triangulations we look at more complicated simplicial approximations to the
surface, V; in (7.1) has to be replaced by the co-ordination number g; of the point ¢. For
triangulations, ¢; = IN; obviously. The pure gravity action may contain terms other than

the surface area:

1
Sgravity = AlS| + pX + Z §aiR? B (7.3)
i
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In this expression, | S| is the area of the triangulation and X’ its Euler number. The measure
over X; 1s

pj2 dPX;
Hai (27'-)—1)/2 (74)

The term cr?/ ? has to be included in the quantization of a scalar field in the presence of
a gravitational background to account for the correct conformal properties. As pointed
out by David, we can combine the measure factor and the higher curvature terms in (7.3)
into an arbitrary exponent for ;. We can replace D/2 by some exponent «, and up to

constants we may write

- Z logoi/2 =) oi(l+ —?)log(l + %) (7.5)

The first term in the expansion of (7.5) is proportional to the area of the triangulation.
The second term gives a correction proportional to the Euler character. Next, we have
aiR?, etc. One expects that the continuum limit should not depend on curvature squared
and higher-order terms. This is difficult to test analytically, but there is some evidence
based on strong coupling expansions and Monte Carlo simulations. We can write for the
partition function

Z(e,8,D) = %: @'II"S‘_I ga?e-ﬁmzw, D)

D) (1.)

'
dPx; 1 9
Z = Paiirie: 10 o X: — X
€S (7)
The prime in the last measure indicates that we should remove the zero mode 6X; = C.
We found a similar phenomenon in the continuum version in lecture 4. In lecture 5, we

argued that we can replace the sum over triangulations by a large N #® or ¢* field theory.

Let us make these arguments more concrete now.
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‘By a duality transformation, we can write Z(S) in terms of the dual lattice S* which

is a ¢3 diagram. This is done as follows. First introduce a new set of link variables

(”) =F o= X;.‘ (7.7)

For any triangle (:jk) in S, the variables V(I:j) satisfy
»u —
Vi + Vi * Vien = © (78)

Denoting by *, j*, etc. the sites of the dual graph S*, we can define link variables in the

. . . # _ l_‘
dual graph by the identification V(z’*j*) = V(ij)

to each other. Since the three dual links to those appearing in (7.8) meet at the point

whenever the links (ij) and (:*5*) are dual

dual to the tringle (ijk), (7.8) can be written in terms of a set of Lagrange multipliers X

associated to each site of the dual lattice:

_ 1 Dy XD Ve
EV”) _(%)D/d Xee j (7.9)

Now (7.6) can be written as an integral over the link variables V ( or V i g ) subject

to the constraint (7.9). Performing the gaussian integral over VU, we obtain a gaussian
action on the X;. variables i.e., a free field action on the dual lattice. Thus the string

partition function becomes

hm [DX exp —N Tr{ [dDmdDye(r_y)2/2<I’(:c)<I’(y) - %g/dDa:‘1>3($)} (7.10)

Similar arguments can be carried out for other simplicial lattices. The difference between
the theory defined on the @ graphs and the original one (7.6) stems from the measure
contribution []; o or more concretely, in the higher curvature terms. Hence the theories
we can solve using large N techniques are those with a = 0 in (7.3). To include an

a—dependence, other methods have to be invoked.

Another example of the same duality transformation is the Ising model on a trian-

gulated (or “quadrangulated”) surface. The duality transformation then transforms the
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theory into an Ising model on a lattice with fixed co-ordination number. Suppose we have
a lattice with n vertices and planar topology, built out of irregular squares. The partition

function is

2(8,5)= Y & Lo ClS)eies (7.11)

oi=%1
iEV(S)

Using the strong coupling expansion, we find

z(8,5) =" [[(cosh B + sinh Bo;a;) (7.12)
{o:} (i5)

The product can be expanded in terms of closed loops, where each link is traversed only

once. Then

Z(8,S) =Y (coshB)Ve (1 + tanh Bojo;)

{0’.} (U) (7.13)
= 2lVv (cosh B)NE Z (tanh ﬂ)length
loops

In the dual simplex S* we introduce spin u;+ = 41, and we assign the relative value of two
nearest neighbours p;+, pj to be —1 if the link dual to (:*;*) is occupied by the contours

and +1 otherwise. Then we can write
1
length = (Z) 5(1— pie ) (7.14)
zUJ*

and hence

2(B,S) = 2" (cosh B)VE(tank B)NE/2 37 ¢T3 08 1RA Lipesey ik

{#i*}
7.15)
Ni/2 . B (
= 2Mv (%sinh 2[3) > & 2is) Hitt
{mi€S*}
with
tanhf=e"2" ;  sinh2@sinh28* =1 (7.16)

Then using Ny = Np«, N[, = Ny«, Np = Ny«, and the formula for the Euler number

X = Ny — Np + Np = Ny» — N;» + Np«, and since the dual graph is a ¢* graph
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4Ny« = 2N+, we can cancel 2Mv and 2_NL/2, leading to

2(8,5) = (sinh g7y~ Nel? 3 o Lo #iks (7.17)
pi==l1
1ES*

again showing that (7.12) is equivalent to a theory on a simplicial lattice with co-ordination

number four.

The correlation functions for a string moving in D-dimensional space are defined by
pinning down N points to pre-assigned positions X1, X39,...,Xn. We can carry out the
argument in the continuum because it is essentially the same as in the lattice. By definition

then

G(X1,...,Xn) = < f d261V/9(€1) - - d*n"/9(En) [ 6° (X (&1) —Xz-)> (7.18)
1=1

Assuuming the D-dimensional space to be flat euclidean (or Minkowski) space, we compute
the Fourier transform of FI(Xq,...,X,). The integration over the zero mode of the X#(¢)

field enforces momentum conservation. Hence
Gn(PL,..., Pa) = /deie"f’f'xia(xl, LX)

=(2m)Pé()_ P) <]d2§1\/9(€1 deny/g(Em)e! 2n X(&)>
=(2m)P5(> " py) <H V(Pi)>
i=1

(7.19)

Where we have introduced the operators

P [ a2 \/g(E)e P X(©) (7.20)

which are known in string theory as vertex operators. For example, the two—point function

takes the form

G(P,Ap) =

"A|54 / ofd X e SN grapetP Ke=Xe) (797
5 egS) (2”)D/2 ij
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Since ) o = |S|, we learn that the string susceptibility X is given by

_ 9%Z(Ap)

- (7.22)
P=0 oAy

X(Ap) = G(P,Ap)

Another important quantity is the m,ass gap m(Apg). It determines the behaviour of
the two—point function at large X:
Go(X) ~ e mAn)IX]| (7.23)
| X| — o0
At the critical point, the mass gap may or may not vanish. If it does, then we define the
critical exponent v accodring to
m(A) ~ (A=Ap)” (7.24)
— ¢

Then for Ag ~ A¢, m(A) is small, and for | X| large we expect
Go(X) ~ |X|2~D-1e—mA)IX] (7.25)

which defines the critical exponent 7.

Finally, other interesting quantities are the mean square extent of the surface and its
Hausdorff dimension. The mean square extent of the surface is defined as
Y oioi(Xi — X;)? (7.26)
i,JEV(S)
where the average is taken with respect to the matter action. The sum over X with fixed
S amounts to averaging over the embeddings of S in space-time. To eliminate the zero

mode, the center of mass of the embedded surface is fixed i.e., Xom = |S|7! Y 0iX; =

F _ 1 fl_.[z (g:))g-;—ze—S(X,S)é(XCM) [Ei,j aiaj(Xi o XJ)?]
SR JTL; %6"55(}%1\4)

Next, define a generating function

Z(4,X7) = Z S)l _ABISI/ HU 27r)D/2 509 X% (428}

(7.27)
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which we can expand in terms of the area,

Z(A,X2%) =) e ™BZ,(X2) (7.29)

n

For large area n:

Zn(X2) ~ AP 3 (7.30)

Considering the ratio of the asymptotic behaviour (7.30) to that of the partition function
X2 ~nosoo 0?7 (7.31)

we find

b 2
X% ~jsjmoo 1S, dp = (7.32)

Y=y
with d the Hausdorff dimension of the surface. If we define correlation functions for fixed

area |S|, then —)@ can be constructed from

1 log(X*)g
dg = = lm ——A18 7.33
H=3 5000 logS| (7.33)
—  [dPX XG5 (X) F)
X% = = —D—— log G |(P? (7.34)
57 [dDXGg(X) op? si( )P=0

where G|g|(X) is the two—point function for fixed area.

We can derive a scaling relation among 7, ¥ and v as follows:

Go(P)| = / dP X Gy(X)
P=0
N /00 TD_]‘dT r2—D—nc—m(A)r (7.35)
Near A,
GalP )‘ =X =(Ag—Ae)™ ~ (Ap — Ac)11?) (7.36)
P=0

and therefore

y=v(2-1) (7.37)
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which is one of the standard scaling relations. Similarly,

%GQ(P)‘ = [ dPX|X12Go(X) ~ (Ap — Acf) ™D ~ (Ap —A)™" (7.38)
, P=0
and
y = v(r —n)
v=v(2-n) (7.39)
2 1
o= Y=o v

These relations are independent of a.

Next, we will become more acquainted with the large N methods developed so far.
In lecture 4, we learned that ¢ = 1 is a very special point. It is the boundary between
two very different regions. For ¢ < 1, we have a reasonably good understanding of the
coupling of conformal field theories to gravity. For ¢ > 1, on the other hand, it seems
that the analytic methods presented are incapable of leading to any physical insight. We
know from rather simple arguments that an instability must set in beyond ¢ = 1. In string
theory, the lowest-lying state has a square mass proportional to (1 — d). For d < 1 this
state is massive. At d = 1, the state becomes massless (signal of a Kosterlitz—Thouless
phase transition) and for d > 1 the state is tachyonic. This is a signal for an instability.
In spontaneously broken field theories we have learned how to deal with similar situations.
When a scalar field has a potential energy V(¢) = A(¢% — a?)?, expanding about ¢ = 0
would imply the appearance of a tachyon in the spectrum. No one in her/his right mind
would insist on defining the full theory about the ¢ = 0 unstable state. The true ground
state appears at |¢| = a. If we prepared an initial state concentrated about ¢ = o in
a large space-time region, it would decay to the true vacuum via the emission of some
radiation. Our understanding of string theory is so incomplete at the moment that for
d > 1 we do not know the stable ground state. However, it seems likely that the picture of
a world-sheet looking like a smooth surface will have to be given up. What are the correct

variables describing the ¢ > 1 phase is a deep outstanding problem which remains to be
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solved. Since we cannot yet venture into the uncharted ¢ > 1 territory, we will consider in

some detail the ¢ = 1 theories.

7.2. Strings at ¢ = 1. Planar Limit

In many respects, this theory is simpler than the ¢ < 1 theories and the Kazakov critical
points for one-matrix models. As we showed in the previous section, at D = 1 we have
to consider a matrix—valued field ®(¢) with a gaussian propagator simulating the string
action \/jg"j 0;X08;X. In this form, the model cannot be solved. If instead of a gaussian
propagator G(X) ~ exp —X? corresponding in momentum space to G(p) ~ exp p?, we
choose G(X) = exp —|X| (i.e., G(p) = (14 p?)~! in momentum space), the discrete action
would contain a sum over links of |X; — X|, whose continuum form is 9" 8; X 9; X |1/ Z,
This change should not affect the critical properties. Since field theories in 0+ 1 dimensions
are well-behaved in the ultra-violet, only the short distance non-universal behaviour of
the theory will be affected. It should be legitimate to invoke universality to believe that
at the critical point the two actions lead to the same physics. In spite of these plausibility
arguments and the compelling use of universality, there is no proof of equivalence, and
although unlikely, surprises might arise. The large N analysis of this model was carried
out in [98], and its critical properties in the planar limit were first studied in [91]. For
a detailed recent study of the ¢ = 1 theory in the planar and double scaling limits, with

references, see [120].
The partition function is taken to be
T N, (1.9
Z(g,9;) = /D‘P(t) exp—f dt—tr (-2-@ + U(@))
0 g

U(gis®) = ) 9p®”
p22

(7.40)

To write Z in a tractable way, we diagonalize ®:

3 =QfAQ
(7.41)
Qt =1 X =diag(A,...,AyN)
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Then ) . ;
Qdat = A+, 0077
trd? = Z A2 4 Z(z, — zj)?| 451 (7.42)
t,J
. df
1
Ajj ij = _(QQ )1_1 = dt

The change of variables in D®(¢) again takes the form of a van der Monde determinant:

DY(t) = H’DA D) [] [T — Ai(1))? (7.43)

t i<j

The invariant measure DS)(t) is just an integration over A;; (an anti-hermitean N x N

matrix):
290 = [ PAOPRT T4 307
1<)
exp~— (ZA2 ZZA(t t))2|Au|2)

(7.44)

If we naively carry out the integration over A it seems that all the van der Monde

ijs

determinants drop out of sight. To obtain the right answer, however, we should discretize

t. The kinetic term will have a contribution of the form
> tr®(n)®(n + 1) (7.45)
n
Diagonalizing ®(n) at each time step,
d(n) = Q1 (n)A(n)Yn) (7.46)
and then
tr®(n)®(n + 1) = tr (/\(n)ﬂ(n)ﬂ Yn 4+ 1)A(n + D)Qn + 1) (n )) (7.47)

Near the continuum limit, T = Me with M — oo, ¢ — 0, and we can define the gauge
field A(n) as
U2 (n +1) 21— A(n) + 5 A%(n) + -+ (7.48)
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with A(n) anti-hermitean. Substituting into tr®(n)®(n + 1), we find

tr A(n) (1 —A(n) + %A(n)2 + = ) AMn+1) (1 + A(n) + %A(n)2 e )
=trA(n)A(n + 1) + tr [-A(n)A(n)A(n + 1) + ApA(n + 1)A(n)]
1 1 (7.49)

+tr [«»A(n)A(n))\(n +1)A(n) + Ek(n)A(n)%\(n +1)+ §A(n))\(n + 1)A(n)2]

= trAA(n+ 1) + Y _[Ni(n) = Aj(m)](n + 1) = Aj(r + D)4/
i,j
As e — 0, M — oo, we can write A;(n) = A;(t), Ai(n + 1) = Aj(t + €). The coefficient of
lAij|2 1s then

D N(0) = AONA(E + €) = At + )]l Ayl (7.50)

Therefore, integrating over A;; produces AA@)"IAM(E + €))L, But from the measure
we have a factor [, A(A(t))?, so all the van der Monde determinants cancel except for the

ends,at t =0and t = T

Zn(g,9;) = const. / DA)A(A0)A(MT)) exp —— / dt ( Z A () Z > gp)\p)
(7.51)
Two things should be noticed in (7.51):

1) The eigenvalues A;(t) decouple completely, so the system described by Zy(g,g;) is

equivalent to a gas of non-interacting particles subject to the potential V/(}).

2) The statistics of these particles is fermionic as a consequence of the initial and final

van der Monde determinants, which are totally antisymmetric.

A simple consequence of 1) and 2) is that there is no need to use orthogonal polynomials
to solve (7.51). We have to study a non-interacting Fermi gas where every “electron” is

subject to the same one-body potential V(). The lagrangian for each particle is

N {1 /d\?
with hamiltonian
g N _ N,
H=sor+ V), p="0i (7.53)



Vol. 64, 1991 Alvarez-Gaumé 485

If e1,...,epy are the N lowest energy levels of H, the ground state energy is simply > e;,
and ey = ep is the Fermi energy (e] < eg < --- < ey = ep). For large T and large N,

the leading term in log Z is —N2E(g):
N2E, = Zeke(ep —er)
k

(7.54)
N=> f(ep—ep)
k

where 6(z) is the Heaviside step function.

Next we want to evaluate (7.54) and find the values of the coupling constants leading
to non—analytic behaviour of the partition function and to the continuum limit. This large
N problem was first solved in the pioneering paper of Brézin et ¢l.[98] and their result
was used to study a ¢ = 1 theory coupled to gravity by V. Kazakov and A.A. Migdal
[91]. Notice that in writing (7.40), we have changed the conventions of previous lectures
slightly. There is no need to rescale the couplings g, with powers of N, and a graph with
V = )" Vp vertices, P propagators and F index loops has automatically a factor

NQXgZ? Vo(5-1) H g;,/" X propagators (7.55)
p

In the large N limit the potential energy becomes large, the characteristic length scale

becomes of order N1/2 and t};e enrgy scale is of order N. This is a typical situation in

which the WKB approximation can be used. To find the critical behaviour, we proceed as

follows. Define the hamiltonian

R RN (7.56)
252 N2

The N first energy levels of h are e; < eg < ... < ey = pup (notice that E; = fe;).

Introducing the density of states

o(e) = 5 3 8(ei =) (7.57)
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The constraints (7.54) become

N HF
=2 [ o

- (7.58)
E, = f#* /0# ep(e)de

As in previous cases, the signal for reaching the continuum limit is that E, becomes a
singular function of the cosmological constant. This can be achieved by adjusting the
couplings of the model. If V(A) has a local maximum p. = Viax, off criticality we start
with a Fermi level below p.. As N — oo, the probability of tunnelling through the barrier
is suppressed with an exponential proportional t.o N, hence in the planar limit the system
is stable under tunnelling. If we let g = pe—pp — 07, in the limit the state can simply roll
to the other side of the barrier and we should expect the renormalized coupling constant
A = geritical = ¢ to be a singular function of u. Choosing (without loss of generality)

ge = 1, we find gArea ~ (1 — A)Area o o—AArea g expected. Differentiating (7.58) with

respect to u:

P —p(pF)
oF,
e _ -—{32,up (7.59)
dg
= f2up—
p(pF) HE g, o

In the WKB limit the total number of states with energy smaller than or equal to E is

given by

N(E) = / d;:fp 0(E — H(p,z)) (7.60)

and the density of states follows from ON(E)/JE. In our case,

(7.61)

=1 2
AT E ) Ve -V )

We are very near to the top of the barier y., close to the continuum limit, and +.
represent the turning points i.e., po = V(£A.). The singularity at e = pp occurs when

p — 0. Near the top of the barier, we have generically V(A) ~ ge—2(Ac—A)2 (we normalize
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U"(X\¢) = —4 as in [121]). Then

1
plurp) = e log pt + regular (7.62)
Therefore dg/0p ~ log i, A ~ —plog u. Then as N — oo we get the estimates
(up) ~ —o=1o
p(pr 5~ log i

ﬂ2A2 N2A2
logA  logA

(7.63)

Eg ~ —

consistent with the KPZ relation E, ~2 A2~ %t for 45 = 0. The logarithmic singularity is
probably due to the existence of a massless mode in the continuum string theory, and one
expects real infra-red divergences to appear in higher topologies when massless tadpoles
can be coupled to tori or other surfaces. Working by analogy with the pure gravity case,

we can identify the string coupling constant from the leading term (7.63) as

2 log A

Istring = 27rﬂ2.A2 (7.64)

and the genus h contribution is then expected to have a leading behaviour like gs?t}:ing (log A)h.
Hence, the perturbative expansion (topological expansion) will have severe infra-red diver-
gences and one may wonder whether we have a sensible theory at ¢ = 1. It was found by
Gross and Miljkovié¢ [121] that the theory can nevertheless be constructed in a strong cou-
pling expansion in the the double scaling limit. This could correspond to a new stable non-
perturbative ground state whose physical meaning remains to be elucidated. The result
(7.63) is universal as long as the potential is a local maximum V = pc—2(A.—)2. If we tune

the couplings so that the first (k — 1) derivatives vanish at the maximum, then one easily

shows that dg/0u ~ ,u_%+% and this leads to a string susceptibility vst— = (k—2)/(k+2)

because 5 5
o . 2 ) (7.65)
3x VAW, oA AT

The meaning of these critical points is not yet clear.
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7.3. Ising Model on a Random Planar Lattice

Using the KPZ formulas, we know what to expect in this case for the string suscepti-

bility and the gravitationally—dressed dimensions:

1 2 1

Vst = ~3 A(Q,l) = 3 A(l’g) = 3 (7.66)

These results were first derived on planar lattices [82,83].

One of the advantages of working with a random planar lattice is that the Ising model
can be solved exactly, including a constant external magnetic field. We consider a random
lattice with co-ordination number four (a general ¢* graph) which we know is dual to a
covering of the surface with irregular squares. The partition function for a lattice with n
sites and co-ordination number four is

Zn(B, H) = Z Zeg >t j=1Gii(S)oios+H 30 o (7.67)

{57} {s}

Since the graphs are those of a ¢* theory, the number of vertices is related to the number of
propagators 2P = 4n, P = 2n, and the area of S™ according to the definitions in lecture 5 is
n. Hence, Zyn(8, H) can be thought of as the area microcanonical ensemble. Summing over
n with a chemical potential equal to the cosmological constant generates the full partition
function. We have thus three parameters (), 8, H) in the theory, and depending on how
the continuum limit is approached we may have a point in parameter space where two—
dimensional gravity becomes critical (yielding the exponents of pure gravity) or another
one where both the lattice and the spin system become critical. This is the case we are

interested in to reproduce (7.66).

The computation of (7.67) can be carried out in terms of a two—matrix model in the

large N limit. Define the partition function as the integral

N2 N2 9 2 el _y e g
Z(gye, H) = /d Qid" P_exp(tr|—®5 — P2 +2c8,P_ - IN ®s—g I o3l
(7.68)
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There are two types of ®* vertices: we identify $ with spin up and &_ with spin down.

For a graph with n = ny 4+ n_ vertices, we will have a contribution

gt ((na—n)H _ on (ny—n_)H (7.69)

There are three types of propagators:

1 1
P(®4,24) = <ﬁtr¢’3-> = 5 = Pyy

1-c¢
/Ll s\ _ 1 (7.70)
P((I)__,(I)_) = <—N—tr¢'_> = 1—(:2 = I—_
P(®,,8_)=P($_,84) = ——=Py_=P_,

1—c?
We may identify the propagators with the link factors e #E++, ¢=#E—- e PE+- = ¢=BE—+,
the Boltzmann factors associated to links. In the low temperature expansion of (7.67) the

lowest energy state is the one with all spins pointing along the magnetic field H. Comparing

the low temperature expansion of the Ising model and the perturbative expansion of (7.68)

we find
20,6, = 3 (%57 ) 20l D) (7.1)
with
c=e28 (7.72)

Using (5.70), we can evaluate (7.68) in terms of orthogonal polynomials. First write

Z(g,p,H) as
2= [ ] Goidysu(ai, 1)) A(=)50) (7.73)

where {z;}, {y;} are the eigenvalues of ®; and ®_, respectively, A(z) and A(y) are van

der Monde determinants and w(z,y) is the measure:

9 Hyt _ 9 —H 1

w(z,y) = exp [mx2 — y2 + 2czy — N N

Az) = [J(zi — zj)

1<j

(7.74)
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We can define monic polynomials

Pi#) = u* +p() ol -

(7.75)
| Qi(y) =v' +qf.)y o e
orthogonal with respect to the measure (7.74):
[ dedyo(e,»)P)Q1w) = hidi (7.76)
Since
Alg) = o det Pi—l(mj)
,7=1,...,N (7.77)
A(y)=  det Qi-1(y;)
,j=1,...,N
we obtain as in the one—matrix model
N-1
Z =N! H hi(B, g, H) (7.78)
The recursion relation for P;, Q; takes the form
Py =Py +riPi_1 +siPi3+---
(7.79)

yQi = Qiy1 + Qi1 +uiQi—3 +---

Since the measure satisfies w(—z,—y) = w(z,y), the polynomials P; and Q; have well-
defined parity. If H = 0, then w(z,y) = w(y, ) and P;(z) = Q;(z), but when H # 0 this
is no longer true. The analogues of the string equations follow from the identities
d Py a(2
/dwdyw(m o 1( Pi1(2) 0. (a) =
[ dsdvuta, y)—[Pi(w) — 21)Qi_1(y) =0 (7.80)

dP;_3(x
[ dstyate, =200 = 0
and the equations obtained by exchangmg z « y and P « Q. The equations (7.80) lead

to the recursion relations
H

. |
hi |1+ 29~]\7(r£+1 + 15+ 7':‘—1)] —ctihi—1 =0

e 1
hi— {7'1 %+ 29‘ [33+2 + si41 + i +ri(rip1 +ri i 1)]} —ch; = -2-ih,-_1 (7.81)

el
ZQ-Fh,' —cuzh;_3=0
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and three other equations obtained by exchanging H «+ —H, r; « t;, s; < u;. defining
fi = hi/H;_1 and taking the large N limit,

m=ifu~ﬁrm:ﬁ

EH i Ui
N N s(z)~ — t(z) = N u(zr) ~ (7.82)

N
we are led to a set of algebraic equations
f (1 +6geHr) —ct=0
f (1 +6ge_Ht) —er=0
(ZQEH/C) fou=0
(Qge"H/c) f-s=0

1
r+6geH(s+r2)—cf—§:c=0

(7.83)

1
t+6ge H(u+t?)—cf — 5% =0
Boulatov and Kazakov [83] introduced the parameter z = 6gf/c and found an explicit

representation for the free energy:

R z/f”dz e ‘*/3%'_ 0 7.84
with 1 1 B
2 Z
9(z) = 962z3 e [———(1 Y ¢ + A=g 22)2] (7.85)

B =2(coshH — 1)

When H = 0 (pure Ising) the singularities in the free energy are determined by the zeroes

of ¢'(2). They are given by

1
Z0 = -3
d(z,H=0)=0= { 215 = 21 Fi/\/c) (7.86)
Ve EING

In the physical interval of temperatures 0 < ¢ < 1, only zp and z; define the asymptotics

of F. The critical couplings

’ m 9 (7.87)

91 = 2 VAVE - 1D(VE+2)
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become equal at ¢ = 1/4. This is the critical temperature of the spin-ordering phase
transition. As z changes from 0 to —oo, 0 < ¢ < 1/4, we encounter first the singularity

at gg. For 1/4 < ¢ < 1 the singularities gy and g; are interchanged. The asymptotics of

Zn(c) are
¢) o b [ Aeg0(e) 17" c
Zn(c) [ 1) 0<c<1/4 759
Zn(c) ~n~? [—(—‘;‘%1—6(-%)5 1/4<c<1

The critical temperature §* = log2 corresponds to ¢ = 1/4. When ¢ # 1/4, the string
susceptibility is ygt = —1/2 = —b + 3 whereas at ¢ = 1/4, 75t = —1/3 as expected from
(7.66). Similar arguments can be carried out when H # 0, and one obtains the dressed
dimensions in (7.66). Details can be found in the original paper by D.V. Boulatov and
V.A. Kazakov [83].

This concludes our analysis of models on planar lattices. Many other examples can
be found in the literature. Next, we analyze these models and some others in the double

scaling limit, where they can be identified as non—critical strings.
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Lecture 8. Double Scaling Limit. Selected Topics

In this last lecture we will explore a number of results obtained during the last year in
the exploration of the properties of the double scaling limit and sub-critical strings. It is vir-
tually impossible to give a comprehensive review of the vast literature on this subject, and
therefore choices must be made according to the taste and expertise of the author. The only
explicit examples we present are the one-matrix models, the two-dimensional Ising model
and the ¢ = 1 theory. We will present the loop equation approach to two-dimensional
gravity and the Virasoro constraints on the non-—critical string partition functions. This
result is quite mysterious and it is likely that important progress on the subject will come
from an understanding of these constraints. There is also an important connection be-
tween D < 1 non—critical strings and integrable systems, and we have decided to present
the double scaling limit of the Kazakov critical points from this viewpoint. This approach
gives an alternative understanding of the Douglas equations [9] and the appearance of the

reduced KP (Kadomtsev—Petyashvily) hierarchies in the double scaling limit.

8.1. Discrete Integrable Systems

The aim of this section is to show that the one-matrix models are equivalent to well-
known discrete integrable systems together with some special initial conditions. These in-
tegrable systems are the Toda and Volterra latices 122, 123, 124, 125]. We will follow in this
section the presentation in [123]. If the potential V(@) is generic i.e., V(®) = > 4> gp®F
we are led to the Toda hierarchy [124,125]. If, on the other hand, we consider only even
potentials, V(®) = Zkzl g1 ®2F we obtain instead the Volterra hierarchy. We believe tat
there are some pedagogical advantages to studying the even potential case, and we will
concentrate in what follows mostly on this case. The generalization to Toda hierarchies is
straightforward. All these systems are completely integrable by inverse scattering meth-
ods. Some useful general references on integrable systems and KdV and KP hierarchies

are [126,127,128,129, 130, 131, 132].
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Let H(g;,p;) ¢t =1,...,n be a hamiltonian describing the dynamics of n particles. A
classic theorem of Liouville states that the system is completely integrable if one can find n
integrals of motion I;(p, ¢) in involution i.e., with vanishing Poisson brackets. This means
that we can find the action—angle variables in the problem and write the general solution
to the equations of motion. A useful way to implement integrability was found by Lax.
Suppose that we can find two matrices L and B such that the equations of motion are
equivalent to

dL

= =[B,1] (8.1)

(For example, L and B are n x n matrices, although this theory generalizes to the case
when L and B are operators.) If L is a symmetric matrix, then B is antisymmetric. In

this cases, the conserved quantities are given by

I, = %trLk (8.2)

and the eigenvalues of L are time-independent. We can construct an orthogonal matrix

U, UTU =1, defined by
dU

Y BU (8.3)
such that
L(t) = UL(0)U~! (8.4)
Then
Ln¢n(t) = Anén(?) (8.5)

and A, are t-independent. Since ¢n(t) = Bén(0), we can write the Lax pair in terms of

an auxiliary iso-spectral problem

L(t)¢(t) = Ag(t)
dé (8.6)

= = Be(t)

Requring that the spectrum of A be time-independent we are led to (8.1). For each case

we have to check whether the eigenvalues A; have commuting Poisson brackets. When this
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is the case, we have complete integrability. The basic non-trivial example is the Toda

lattice [130], defined by the hamiltonian

B e = an+2( ~(gn41~qn) _1)

dn = Pn (8.7)
I')n — e_(‘In_anl) _ e_(Q'n-i—l—qﬂ)
Following Flaschka, we introduce the variables (for references see [130])
an frd le%(QR_qﬂ+1)
.8
L1 (88)
n = 2Pn
Then the equations of motion becomes
ap = an(bn - bn+1)
" (8.9)
bn = 2(a}_; — a7)
and they admit a Lax pair representation:
by a
ap by ap
b
p=|? @ b 9 (8.10)
bn-1 ap-1
an-1 bn
0 —-a
aip 0 —a9
0 0 —
B= 2 43 (8.11)
0 —an-1
an—1 0

This is the case with free boundary conditions. If we want to impose periodic boundary

conditions, then L and B become

0 0 --- 0 apn 0 0 -+ 0 an
0

r=|"? 3 0 o 5 : (8.12)
an 0 e 0 0 —an 0 M 0 0

We can write L and B in terms of matrix units,
n—1 n
L aib+ 3o hB
i=1 i=1

B=— Z 6B
t<n—1

(8.13)
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where
(Eij)mn = 5im5jn
N (8.14)
Eij = E;j + Ej;
It is possible to show that in this case the eigenvalues of L Poisson—commute, and it is

possible to write the exact solution for a;(¢) and b;(t) as functions of the initial conditions.

Since we will not need the explicit form of the solution, we shall not write it down.

To understand the analogy between the Toda lattice and the one-matrix models, we

write the auxiliary linear problem (8.6) in components:

Apn = (L‘ﬁ)n = an+1¢n+1 + bndn + an—16n-1
(8.15)

& = $n = an_1¢n-1 — anbnt1
which is reminiscent of the recursion relation for orthogonal polynomials. We will see
that this analogy is not a mere coincidence. Although we have written the simplest time
evolution equations (8.7,8.8,8.9), after noticing that the hamiltonian H = Hy = tr L2/2,
we could instead define the time evolution in terms of the higher conservation laws Hy.

These evolution equations are known as the “higher flows” for the Toda hierarchy

dan

a(: = {Hk’a'n}

8bk (8.16)
n —

6_tk = {Hkabn}

In the case of even potentials, by, = 0 and (8.15) is inconsistent. This means that we must
instead consider the flow equations with respect to a higher hamiltonian. To get some
familiarity with the structures involved, consider the b, = 0 case and borrow the notation

from the orthogonal polynomials in lecture 5:

Aon = (Ld)n = v/ Bnt16n41 + VRabn-1 (8.17)

that is to say

L=) VREf (8.18)

k>1
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Now trL?Pt]l = 0, and the simplest Lax pair representation for an integrable evolution is

obtained from
B=Y VRiRep1Eg,y (8.19)
k

This form of B follows from the second Toda flow where one can consistently set b, = 0

and still obtain non-trivial equations of motion:

0

An important property of (8.20) is that in the naive continuum limit (and up to a galilean

transformation on t), Ry ~ 1 — a?u(z), and (8.20) becomes the KdV equation

ou_ g0
ot “ax"am3

(8.21)
which is a well-known classical integrable system. We would expect that many of its

properties also hold for the system (8.18,8.19), known as the Volterra equation (or Volterra

hierarchy). The first three conserved quantites are

1
= é-trLQ ZRn
1
Hy = Zmur;‘1 Z 1R2 4 RuRuyt (8.22)

H3 = Z ('B'Rg + Ran+1 + RﬂRTH—l + Ran+1Rn+2)

n

The hamiltonian structure which out of H; produces the Volterra equation (8.20) is

{Bn,Rm}1 = RnRp (5n,m+1 - 5n,m—1) (8.23)

It is left as an exercise to verify the Jacobi identity for (8.23).

To compute the explicit form of Hj and other quantities we shall need later, we must
have a procedure to evaluate the matrix elements of L. This is done by generalizing the
staircase quations. Since L;; # 0 only for | — j| < 1 and L is symmetric, we say that

L is a Jacobi matrix of locality one. L involves only Ek,k 41> but L? will involve Ek,k +9
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and Eg’k, and L3 will contain pieces proportional to E]':'k 431 E,'c" k41 In general, LP has a
matrix structure proportional to Ei:tk +p’ ;:’ ktp—20 * Ei:k 41 (for p odd), or Ep (for p
even). To compute the coefficient of E:'k o in LP, we draw all staircase paths from k to

k 4+ n in p steps according to the rules (5.62).

Using these rules, one easily obtains

L=) VRE}, (8.24)
k
I?= zk: VR R E 0+ ) (R + Ri_1)Ei (8.25)
k
L} = ij VR Rk 1 Rig2 By g + zk: VERi(Res1+ Re + Re_D)Bf . (8:26)
I'= Zk:{(RkRkﬂRHzRHs)%EE k4
+ (RiRis1)(Ripa + Ryt + Bi + B DEL, (8.27)

+ (ReReq1 + Rp_1Ry_g + Ry + R} + ZRkRk—ﬂEkk}
etcetera. Now we prove the following
Theorem 1 [123]. The k-th flow of the Volterra hierarchy can be written as a Lax
pair
— = L 8.28
Oty [(L )+ ’ ] ( )
where (L2F), is the antisymmetric matrix whose upper triangular part coincides with

L2k,

A first check that this theorem is reasonable is to verify that the only non—vanishing
entries in the right-hand side of (8.28) are [(LQ'Fc )+ Llm m+1 as required by the fact that

OL/0tj, only contains matrices of the form E;l m+1- The proof goes as follows:

15] 1 2%k
1 1 . N (8.29)
= "o {Rm’(R‘el : “REZk)z} By p41 Bl o
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Using the general properties of Poisson brackets, equation (8.23), and the cyclicity of the
trace, equation (8.29) becomes

ORm 1 1 + 3 4 2k—1

(8.30)
— 2k
= tr Emy1m [(L )+ ,L]
where the last equality uses only the definition of (sz)+. We can also write
1
Ofm _ lp  rs®p 21
Ot 2 (8.31)

W, _pb ot i gt

Theorem 2. There is a second hamiltonian structure [131] for the Volterra hierarchy

compatible with the first one:

{Rn, Rm}os =RnRm(Rn + Rm)(bn.m+1 — 6nm—1)
(8.32)
+ RnR1n(6n,m+2Rm+l = 6n,m—2Rm—l)

Since (8.32) is antisymmetric, we have to check the Jacobi identity. This is an unpleas-
ant algebraic exercise. Using that the only non-trivial brackets are
{Rm+la Rm}2 = RmRm+1(Rm -+ Rm+1)
{Rm—la Rm}? = —'RmRm—l(Rm i Rm—l)
(8.33)
{Rm-}-?a Rm}? == RmRm+1Rm+2
{Rm—2a Rm}? = "'RmRm——lRm—2
it 1s not difficult to check that the non—trivial relations implied by the Jacobi identity such

as

{Rm, {Rm+1, Rmy2}2}o + cyclic permutations = 0 (8.34)

are satisfied. The compatibility between the two Poisson structures is equivalent to the

statement that
{Rq, Rm},\,u = )\{Rn’ Rfm}l + H{Rn, Rm}o (8'35)

again satisfies the Jacobi identity. Its proof follows after a lengthy algebraic exercise.
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Theorem 3 [123]. The following identity (analogous to the Gel’fand-Dikii [133] rela-

tion for the KdV hierarchy) is satisfied:

{Hn,Rm}2 = {Hn+1va}l (836)

Define the flows with respect to the second hamiltonian structure according to

ORm
bt H
aTk {Rm, n}2
1 1
N N (8.37)
- an—l(Rm + Rm—l)E;;—l,m i RmRm+1R12n+2E:1+2,m+3
i
— RmRm_lszn—2Ef—;—2,m—l] L1
Writing
O Rpm=trsOp 120+ _ oL 60 [ p20-1 (8.38)
Otn+1
one obtains after some simple computations
_10Rm OR 1
1 _ -1 m — 2 2 2n—1 = .
2 (Rm e — R —_Btn+1) 2RZ, ([L E ]) —— (8.39)

Theorems 1, 2 and 3 capture completely the integrability property of the model. Notice
that given H| and assuming homogeneity of H9 as a function of the Ry’s, we can use (8.36)
to compute Hg from Hj. Once Hy is known, we can use (8.36) again to compute H3 and
so on. These hamiltonians are all commuting, again as a consequence of the theorems. For
instance,

{Hy, H1} 1 = {H,H1}2 =0
(8.40)
{H3, Hi}1 = {Ha,H1} = —{H1, Ha}y = —{H, H3}, = 0

Hence two compatible Poisson structures satsifying the Gel’fand-Dikii relation (8.36)

generate all the higher flows from Hj. These properties will play an important role later,

when we analyze the continuum limit. We only point out now that the continuum limit of

the second Poisson structure gives the Virasoro algebra, an observation made some years
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ago by Fadeev and Takhtajan in the context of classical Liouville theory [53]. Similar

results can be worked out for the Toda theory.

8.2. One—matrix Models as Integrable Systems

Given some even potential V() = 3" gpA?? and a basis of orthonormal polynomials
Pp()\) with respect to the measure e~V (%) the operation of multiplication by X is repre-
sented by a Jacobi matrix L of the same form as (8.18). As we change the couplings g;,

the polynomials P,()) also change:

oP,
= ; 8.41
agi (Ma)nEPZ ( )

Since A is independent of the couplings, differentiating AP, = L,,; P we obtain

aL
— = [M; 42
69‘5 [ ‘hL] (8 )

The couplings g¢; are all independent and therefore, we can vary them independently,

implying that the g;—flows commute. In terms of the matrices M; this implies

g g
M — LMy — (M, M) =0 8.43

In the space of couplings A = M;dg* represents a flat O(n) gauge field and (8.42) means
that L changes by parallel transport in the presence of the gauge connection A(g). The
matrices M; are antisymmetric and they should be local to have a continuum limit. In
this context, locality means that (M;)mn = 0 for |m — n| > p finite. We could modify M;
by adding a symmetric matrix X. However, the symmetry of L/0¢; requires [X, L] = 0.
If L is generic (all its eigenvalues are distinct) then X has to be a polynomial in L and
therefore it is irrelevant in the construction of the flows. The matrices M; are determined
by the conditions (1) M; is antisymmetric, (2) [M;, L] is a Jacobi matrix of locality one,
and (3) M; is homogeneous of degree 2i in the matrix elements of L. This is so because

YV = ng)\2p is unchanged under A — a) accompanied by g — gpa_2p. These three
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conditions fix M; to be given by L?,j, the matrices defined in the previous section:

BL _ 2
7g. = ILH 1] (8.44)

The flows are generated only by the even powers Lg_". We know that the only non—vanishing
matrix elements of [L%_",L] are (m,m * 1). If instead we considered [L?i_i"'l,L], only the
diagonal matrix elements would be different from zero. Consequently, L_%_"- generates flows
and L_2+_’-"'1 provides initial conditions. This canot be seen so clearly in the continuum limit,

where the operators generated by [L?’_“, L] and [L?}_"'H, L] differ only by a total derivative.

In conclusion, L(g;) is an orbit of the Volterra flows. What is left to do is to determine
the initial conditions for the flows. If V(1)) is a polynomial, then the operator d/dA is also

local (in the Jacobi sense), and it can be chosen antisymmetric. Write

d
P = Y NioPr (8.45)

Then
0= / d)\;)—\ (e”VPkPg)

(8.46)
__ / e~ VOV (A PPy + Npg + Not

and hence N — V/(L)/2 is antisymmetric, and if n =degree(V), then N, = 0 unless
|k —r| <n—1. We can choose N to be antisymmetric. Therefore, we can expand N as a
linear combination of Lﬂ_. Since [N, L] = 1, this means that only odd powers of p appear,

and therefore [V, L] = 1 becomes a set of initial conditions for the Volterrra hierarchy

.

n
. (0)rr25-1
2_795- )[L+j A | (8.47)
i=1
In conclusion, the generic one-matrix model is equivalent to a Volterra hierarchy with a
particular initial condition (8.47). It is possible to show that this initial condition does not

intersect any of the multi-soliton sectors of the Volterra equation. To study the mechanical

properties of this system, we may define a Volterra equation with a finite number of points,
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instead of considering the equation on the semi-infinite line. For a finite number of particles

the initial condition (8.47) becomes

1
0
0

oo
Ll = =]

[N, L] = (8.48)
(:) ; —n+1

The converse of this result can also be proven. Starting with the Volterra hierarchy and

taking into account that R, > 0, we can use Favard’s theorem [107] which guarantees

that, given a set ¢,(A) (VN > 0) satisfying Adn = ¢p41 + Rndbn—1 with R, > 0, we can

always find a measure die~V (%) making the ¢, orthogonal. This measure is unique up

to an overall constant depending on the normalization of the ¢5’s. The initial condition

(8.47) implies that V() = 3 91(90))\21: . The string equations can be written in hamiltonian

form:

. OH; _
> 2Jijma_R.J_ =mA~! (8.49)
. m
J

where, as in previous lectures, we have taken the potential to be V(\) = 8>, gpA2P with
B = eMrB, and A B the bare cosmological constant. In terms of the partition function

Z =[], RY~", equation (8.49) becomes

. OlogZ —1
ngj . =mf
J

Um = log Rm

(8.50)

Next, we want to show that in the double scaling limit the Volterra hierarchy turns
into the KdV hierarchy. In this way, we will reproduce directly the results in the original
papers on the double scaling limit. The strategy is to use the fact that in the KdV
hierarchy we also have a Gel’fand-Dikii [133] relation giving recursion relations among
different members of the hierarchy. We recapitulate these results here. The original KdV

equation is defined in terms of a Schrédinger operator

2
& = E(i—fl — u(z) (8.51)



504 Alvarez-Gaumé H.P.A.

and a Lax pair representation

oL
— =(B,L 8.52
= (B,1) (8:52)
with B a third-order differential operator
B=D3——~z—uD——z—u’
P , bu (8.53)
D=_— = —
Oz v Oz
For the higher flows it can be shown in general that
oL n+%
— L 8.54
=) (859

where L% is defined as the pseudo-differential operator with expansion
L7=D+qD 14D 2+... (8.55)

and for any pseudo-differential operator @, Q4+ means that we keep only its differential
part. Notice that in the scaling limit the operator of multiplication by A becomes a
second—order differential operator. The two-step recursion relation is a discrete version of
the Schrodinger operator (8.51). The equations (8.54) can also be derived from a collection

of commuting hamiltonians Hy. There are again two Poisson structures. The first one is

(0z — By) 6(z — y) (8.56)

N | =

{u(z),u(y)} =

and the second one is the classical version of the Virasoro algebra:

{u(z),u(y)}y = (%D3 + 2uD + u') 5(z —y) (8.57)

These two Poisson structures are compatible and we can construct the commuting hamil-
tonians using the analogue of the Gel’fand-Dikii relation. Using the first hamiltonian

structure,

Ou _ 6Hp _
o, = DSu(m) = DRy 41[u] (8.58)

and the Gel’fand-Dikii relation now implies

DRy = (%133 — 2uD — u') Ri(u) (8.59)
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Starting with the simplest possible Ry = 1, we obtain all others R} = —u, Rg = %u2 - %u" ,

etc. From lecture 6 we know that Ry, is not a good scaling variable. For the k-th multi-
critical point we had

Ly g“z—f"‘?t
7 e TN — ] +
B (8.60)

R=1-f % f(2)

In terms of the variable um, = log Rm and setting A = g~ 1/2k+1

, the first Poisson structure

{un,um} = 6n,m+1 — bnm—1 (8.61)

becomes in the continuum limit wm — —A2 fr, — —A2f(2):
{0, f(E)h = lim X*{fn, fm) (862)

Next we construct the scaling limit of the second Poisson structure. To obtain a
second Poisson structure with good scaling properties, we have to subtract the first Poisson
structure with a coefficient depending appropriately on the scaling parameter A. This is
legitimate because the two hamiltonian structures are compatible for any value of A. thus

the second hamiltonian structure becomes in the continuum limit:

(.10 = (30° - 20D - f ) ate ~¢) (8.63)
and now we can immediately construct the combination of hamiltonians Hy, with the good
scaling properties (with respect to (8.60)). These hamiltonians are the ones which will
give the string equations at each of the multi-critical points:

k
He =Y 25" H; (8.64)

j=1
where ﬁgk) are the couplings chosen to give good scaling properties. We actually do not
need to do any work to find the explicit form of Hj. It is given automatically by the
Gel’fand-Dikii relation in the continuum limit. For the k—th multi-critical point the string

equation (8.49) is written as

OH; _ OH
> 27 T = T (8.65)
j m
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which in the scaling limit becomes, up to some constants,

§Hi /85 ()

and H; is the KdV hamiltonian containing a term proportional to fk. Hence the string

equation for the k—th Kazakov multi-critical point becomes
Ri[fl=t (8.66)

Defining now D = d/dt, we can also differentiate (8.66) to obtain

of

7, = DRlf] = (8.67)

and using the Lax pair representation of the KdV hierarchy this implies

1
%Ik; —(fti =1 (8.68)

s : o k+1 .
Hence, in the continuum limit the operator d/d\ becomes L ++2. If we write

L
Q=L P=L'" (8.69)
then (8.68) takes the form of a Heisenberg algebra
[P,Q] =1 (8.70)

The string equations were written in this form for all multi-matrix models in a beautiful
paper by M. Douglas [9]7. Once we know the scaling operators Hy, we can perturb the

critical point by adding them with arbitrary couplings

(k) B'Hk s
% mey (B mpB~! (8.71)

where the constants agk)(ﬂ) have a well-defined scaling limit. The answer one obtains is

then
o0

> (2n 4+ 1)tnRpfu] = —t (8.72)

n=1

t The string equations (8.70) can be derived from an action principle [134].
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where t, = —1/(2k + 1), t, = 0 for n # k, defines the k—th critical point.

Before we write explicitly the form of (8.66) for the first few values of k, we sould like
to comment on Douglas’s derivation of (8.70) [9]. The starting point is a chainof p N x N

matrix partition functions:

-1
Zy = / H M(t) exp ( Ztr Vi(M(t)) + Z estr M(t)M(t + 1)) (8.73)
t=1
Using (5.70), Z, becomes

zp= [ TIM®ACAC) exp = 3 SiM
it it

(8.74)
St[A] = Vi(A(1)) + ee A(B)A(t + 1)
In the basis of orthogonal polynomials Pp(z), Qm(y)
'/d#(Al, .o ,Ap)Pn(Al)Qm(Ap) - hn&n’m
(8.75)

au(3i) = ([T dx) exp— 3 Sl
t

we can again construct the operators of multiplication by A and differentiation with re-
spect to it, d/d\. For polynomial potentials V;(M) we will obtain local Jacobi matrix
representations for A and d/d)\, and in the continuum limit they will become differential
operators satisfying (8.70). If we choose two relatively prime integers (p,q) with p > g,

the operator A will be represented by an operator

Q=D+ uq_qu—2 4 rsm oy (8.76)
and we can take
= (Qr/4 8.77
(@#7), (8.77)
since
[Q”/Q,Q] &5l (8.78)

This gives a set of non-linear differential equations in the coefficients uy,...ug_9, which
should represent the string equations for the (g, p) minimal models coupled to two—dimensional

gravity.
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There is a subtlety here which is important to stress. The string susceﬁtibility is the
ratio of the scaling dimension of u4_9 to that of the string equation involving ¢, equation
(8.66). If we take p = ¢ + 1 as in the minimal unitary models, the answer agrees with the

KPZ formula sy = —1/q. However, if we take p # ¢ + 1, matrix models lead us to

2
-z 8.79
Vst pt+qg—1 ( )
which disagrees with the KPZ formula
;|
Vst = —E(p —q) (8.80)

The two values agree under the assumption that the most relevant parameter controlling
shifts of ¢ couples to the operator with the most negative dimension. When p = ¢ + 1,
the lowest dimension operator is the identity and there is no problem. For non-unitary
theories, however, a better understanding of the origin of the disagreement between (8.79)
and (8.80) would be most welcome. Very recently, I. Kostov [93] has solved the planar limit
of strings embedded in Dynkin diagrams (the Pasquier IRF or RSOS models [135] coupled
to two—dimensional gravity) and has been able to show independently of matrix models
that the KPZ table of dressed conformal dimensions for the (p,q) models is reproduced
exactly. Hence, in this construction of the non-unitary (p,¢)-models, the cosmological
constant is coupled to the identiyy and not to the operator of minimal dimension. It
would be very interesting to work out these models over non—planar topologies to see if

any instabilities set in.

To finish this long section, we give a few examples of string equations. The computation
of the coefficients Ry [f] can be carried out by iterating the Gel’fand-Dikii relation starting
with the simplest case. They can also be obtained in terms of the coefficients of the heat—

kernel expansion of the operator —d?/dt2 + f(t). We give only the answer, details can be
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found in the literature:
bl feg
5 Ia
k=2 d=Ff——F
3
e T 1
- — 3 = - e ()]
iy
. . 3. .
k=4 t=f'—2ff 2f f 4 S+ S f O 4 o f 5O — 50

(8.81)

A very intriguing property of the partition function of multi-critical points is that it
satisfies a set of Virasoro constraints. They were found by Fukuma, Kawai and Nakayama
[136], and by Dijkgraaf, Verlinde and Verlinde [137]. Without going into much detail, the
statement is that Z(tg,?1,t9,...), t.e., the partition function including all scaling opera-

tions, is the square of the 7—function for the KdV hierarchy:

Z(tg,t1,...) = Tz(to,tl,...) th=t (8.82)

A function 7(tg,...) is said to be a r—function for the KdV hierarchy if u = 2D?logT

(D = d/dtg) is a solution to the KdV flows du/8t, = DRy 41[u]. Hence

D? logr = (-;—D?’ + 2uD + Du) DilogT (8.83)
n

a7t11+1

The string equations can be written as

L_ 11':0

1, (8.84)
= —t
g, = Z i )t at e
Using the fact that 7 satisfies (8.83), it is possible furthermore to show that
Lyr=10 n> -1 (8.85)
with the L, operators defined as
0 1,
m=1
o 1
Ly = )t — 8.86
o= St bingl 4 50

L Z t 9 li i

m=0
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It i1s an easy exercise to verify that
[Ln, Lm] = (n = m)Ln+m n,m 2 1 (8.87)

and the conditions (8.85) are due to the fact that the KdV relation (8.83) implies the

recursion relation

D? (5’31“1—7) = (%133 +2uD + Du) D (ﬂ) (8.88)

T T
This, together with the string equation (8.84), implies (8.85). The expressions (8.86)

have the same form as the Virasoro generators of a Zg-twisted free scalar field ¢(z) i.e.,

satisfying ¢(627” ) = —¢(z). Expanding ¢ in modes,
PP
op(z) =) _ a, e (8.89)
neZ

The corresponding conformal energy-momentum tensor is
T(z) = —6¢(z)2 +— ¥ L (8.90)

Making the correspondences

a_ . _1 — ('n + _)tn
" " (8.91)

(]!n_l_% — a:;
we obtain (8.86) from (8.90). For multi-matrix models, the Virasoro constraints seem to be

replaced by W-algebra constraints [136,137,138]. It seems that the correct interpretation
of the twisted field ¢(z) is a string field for d < 1 strings. A lot of effort is now being

directed towards the understanding of the Virasoro constraints [139, 140, 141, 15, 142].

The double scaling limit for ¢ = 1 and the Ising model are presented in the next two
sections. Later, we sill study in more detail the Painlevé equation for pure gravity and the
loop space approach to string theory, which will allow us to gain some understanding of

the non-perturbative constraints fixing the solution to this equation.

8.3. Double Scaling Limit for ¢ =1
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The literature on the ¢ = 1 theory in the double scaling limit is large and grow-
ing. THe planar limit [91] was presented in the previous lecture. A probably incomplete
list of investigations on this particular subject is [143,144,121,145], [146,147, 148, 149],
[150,151,152,153], [154, 155, 156, 157).

After the discovery of the double scaling limit for matrix models, several papers ap-
peared dealing with the double scaling limit of the ¢ = 1 theory. Continuing the analysis
of the previous lecture, we have to take N — oo and A — 0 so that g5 is kept fixed.
From the pure gravity case we expect the genus h contribution to behave according to

N2 A=)k yp to logarithmic corrections.

In the planar limit we found the singularity in the density of states to be sensitive
only to the behaviour of the potential near its maximum. Now we represent the density of

states by

1 i)
_ S 8.92

where h is defined in (7.56). Expanding the denominator about the maximum of the
potential, y = A\¢ — A, we find

. 1 92
h—pp~ T +p—2y% 4+ 0(y°) (8.93)

In the scaling limit § — oo, u ~ 1/8 and hence for y? ~ 1/8 the cubic and higher terms
may be neglected and we are left with the computation of p(uf) for an inverted harmonic

oscillator. A simple way of obtaining p(up) is to analytically continue in frequency the

answer for a standard harmonic oscillator. With the convention U”(A¢) = —4 we have
p(ur) = ~Re > W (8.94)
s = n+ 1+ 1B

Even though this expression is divergent, its divergence is p—independent and we can
choose a finite renormalization such that as § — oo, p(up) ~ —(27) " llogu as in the

planar case. The answer is then

plur) = %Re [C (1, 24 iﬁu) - 00] (8.95)
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where

Uz9) =) (n+9) " (8.96)

n=0

Expanding in 1/34 and defining the divergent series Y (2n + 1)"’ in terms of (—functions,

we have
2k
plier) = ( 10g#+22( o AR R ) I CED

which can be expressed in terms of Bernouilli numbers:

pler) = 2% [— logu+ Y (21 -1) [Bi’"l ( ﬂ:)?m] (8.98)
m=1

Since |Bgy,| ~ (2m)! as m — oo, we obtain a divergent behaviour similar to the one found

for pure gravity in lecture 6. Using

oA — )
o~ HE (8.99)

OE, = ﬁ2 + regular

one obtains
o0
1 1 |Bom| 1

o _ = .100
- 27 g mz—l (2 1) m(2m1l) (Bu)2m (2100

Writing 4 = —27A/logu + f(Bu)/Blog p iteratively, we can solve for u as a function of
A

=] . (8.101)
1 =5 Z Z €n mgstrmg( log A)m

n=1m=1

1

gstrmg

and the coefficients ¢p m, €n,m can be computed iteratively by inverting the representation
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A= Ap).

P S
AN \
o/

Figure 8.1. The propagator in the tadpoles behaves as G(p = 0) ~logA as § = 0 in
the continuum limit.

From the point of view of string theory we can identify the infra-red divergences with
graphs having multiple tadpoles (see figure 8.1). The weak coupling expansion is ill-
defined. It cannot be used as an asymptotic expansion because no matter how small gt
is chosen, gst log A blows up in the continuum limit. Recall that p(pp) was expanded in
powers of 1/Bu, but in the scaling limit (8u)~! ~ (log A)/BA gg/— log & and there is no
region where this parameter can be taken to be small. One way to deal with this problem
was found by Gross and Miljkovié, who realized that the exact representation of p(up)

can be used to explore the theory for large Bu. Expanding p(pp) as a power series in [y,

o0

1 | 1 1
p(pp) = —=—logp + —Re Z . (8.102)
27 T n:02n+11+2%2_€,|.
yields
A Pl o fj(—l)’“ (1-27%"Y) c@k+1)(B0)*  (8.103)
Ou ¥ or CeH T =] '

Since ((z) — 1 when z — oo, this series is well-behaved and absolutely convergent for

|Bp| < 1. In the continuum limit we expect Bu to be small. We can invert the previous
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series to find p = u(A) and E, = Eo(A):

2 A o ﬁ2A2 " i
o= —logA 14 Z Z dnm (@') (log A)

n=1m=n+l1

: (8.104)

1 e 1
E.ire = 1+ €
dre= 143 Y enmy—s
string n=1m=n+1 string i

Both series are very well-behaved. thus, we have found a consistent non—perturbative
solution with no infra-red divergences at ¢ = 1. This solution does not admit, nevertheless,
a weak coupling expansion nor, consequently, an interpretation as a genus expansion. The
interpretation in terms of two-dimensional surfaces is probably not appropriate either.
Note also that the original weak coupling series is not Borel-summable: > A™(2m)!.
Nevertheless, the strong coupling expansion is convergent. Hence, in the strong coupling
expansion we have found a prescription to analytically continue the Borel transform to the

physical region. The meaning of this prescription remains to be elucidated.

When we look at the double scaling limit of theories with a k—th order maximum, a pro-
cedure similar to the one outlined here yields an expansion of E, in terms of GztringA(k_m/ (k+2)
which vanishes in the continuum limit A — 0, and thus these theories become trivial. The

physical interpretation of these models is very unclear.

8.4. Ising Model in the Double Scaling Limit

We will be rather brief in the description of the double scaling limit of the Ising model.
This limit was constructed in [158,159,160]. From the previous lecture we obtain, before

taking N — oo, the equations
cR(z) = f(z)[14+29(R(z — ) + R(z) + R(z + ¢))]
cf(@)= -5 +R()[1+29(R(z —€) + R() + R(z +¢))]
(8.105)
+2¢(S(z)+ S(z +¢€) + S(z + 2¢))

cS(z) = 29f(z)f(z — €)f(z — 2e)
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where ¢ = 1/N and f is related to the free energy in the scaling limit 82F/d¢2? = N2f(1)

for g ~ g.. Introducing
Ap=(9- gc)/a2

_3 2/3
f=z (1+a%%)
_6 2/3 7
R=< (1 +a?R) (8.106)
5 /3)\2 2/3 &
1—a2z = e (AB—A)g
The renormalized strong coupling becomes A = a~7/3 /N, which is kept fixed as a — 0 and

N — oo. Substituting (8.106) into (8.105) and rescaling A one obtains
__ pnr3 r3lli 9 712 £
z2=6f°+9ff +§f +f (8.107)

Solving (8.107), one finds again a behaviour ~ (2h)! for genus h, as for pure gravity. This
is a generic feature of all these theories. Equations like (8.107), Ri[f] = t, and their
generalizations can be studied in general using the theory of iso-monodromy deformations
of differential operators ([161] and references therein). Since we know the genus zero
result (lecture 7), we can linearize (8.107) around this solution. This yields a fourth—order
linear equation with two exponentially growing and two exponentially decreasing solutions,
therefore it would seem that there are two free non-perturbative parameters. In the case of
pure gravity, we could have carried out the same argument and we would have found a free
non-perturbative parameter. If true, this would be very important: only non—perturbative
effects could fix these parameters. The way to analyze this question is to study the loop
equation formulation of two-dimensional gravity [162]. This is in fact the way the Kazakov
multi-critical points were found [5]. The Painlevé I equation (or generalizations thereof)
is only a small part of the theory. We want to first write down the Schwinger—-Dyson
equations for the theory and see what type of solutions to the string equations are implied
by them. We are also forced to look beyond the string equations because the non—Borel

summability of the weak coupling expansion implies that we must add non—perturbative
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prescriptions to define the theory.

8.5. Non-perturbative Effects in Pure Gravity

The arguments of this section apply in principle to many models, but for simplicity
and definiteness we will restrict our attention to the simplest pure gravity case. We follow
the analysis of F. David [114,115,163]. We have concerned ourselves almost exclusively
with partition functions until now. In terms of matrix models we can naturally think of
microscopic and macroscopic loop operators. The operator tr®? for fixed p represents a
loop (in the direct lattice) made of p links. In the scaling limit this loop has zero length and
tr®? will be proportional to the puncture operator P. If on the other hand we let p — oo

and N — oo, a — 0, we can obtain an operator creating a loop of fixed length £. Since

Na?~7 = constant, this implies £ = pN~— 1/5 = constant. We may consider operators of
the form
W(L) = trel?® (8.108)
or its Laplace transform
# 1 )
W(p) = g = /0 dLe”PLW (L) (8.109)

The expectation value of the product of W(p)’ s is

<W(p1) W(pn) fHdA A()2e= PV H Z

=1 zlpI_“

(8.110)

Banks et al.[164] introduced a non-relativistic many-body fermionic field

P(A) =D anPu(N)e 7PV =3 " anpn()) (8.111)

where P, () are orthonormal polynomials. Then the ground state is the fixed Fermi sea

|F'} with N fermions, and (8.110) can be written as

(W(pl) : --W(pn)> (Flwf

) (8.112)
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and L stands as usual for the operation of multiplication by A. In the matrix model the
correlators of loop operators satisfy the Schwinger-Dyson equation which can be deduced

directly from the representation

(W(L)) = / d@eFVirel® (8.113)
For a single loop one obtains
L
V' (37 ) @) = [ dLy W)Wz - L) (8.114)

This equation was written down by Kazakov from phenomenological arguments, thus lead-
ing to the original discovery of the Kazakov multi-critical points. Geometrically, (8.114)
has a simple interpretation which is shown in figure 8.2: a local perturbation at a point on
the boundary of the loop of length £ is represented by V. In principle, this deformation
may lead to a self-touching of the loop, and this is represented by the right-hand side of
(8.114).

PN
\

Figure 8.2. Geometrical interpretation of the loop equation (8.114).

After taking the double scaling limit, the Laplace transform W(p) satisfies

ap® —bpz + (P) = (W(p)) + (W)W () (8.115)

with a and b constants, and (P) = 0F/0z the expectation value of the puncture operator.
The subscript ¢ means connected correlation function. One can derive similar equations

for arbitrary n—point correlators. These Schwinger-Dyson equations should be expected
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to be valid beyond perturbation theory. They are the “quantum equation of motion” of
the system. Hence, to understand what solutions to the string equations are physically
acceptable, we should require them to be compatible with the Schwinger-Dyson equations.
Recall that for pure gravity we have the Painlevé I equation. Rescaling the cosmological

constant, we must study

2 1 n
U " —=-u =2
3

(8.116)
u(z) = vz , T—o00

This equation has the Painlevé property i.e., its movable singularities are poles. Since the
free energy should be real, we should like to look for real solutions to (8.116). Any real
solution to (8.116) has an infinite series of double poles on the real axis, accumulating at

xr = —oo (see figure 8.3).

Y

VAN >
X2 X1 XO

AW

Figure 8.3. Schematic behaviour of u(z).

Near a double pole z,

2 _ .
(z — z0)?

u(z) ~

9) ((;c - 560)2) (8.117)

and hence the partition function has a double zero at each pole. This is a very strange be-
haviour in statistical mechanics, where all Boltzmann weights give a positive contribution.
Since we know that u(z) ~ \/z when z — oo, the position of the largest pole completely

determines the solution. Solutions differing by the position of the first pole will differ as
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T — oo by exponentially small terms. From the point of view of the Schrédinger oper-
ator H = —aﬁ-g + u(z), the singularity of u is strong enough to prevent tunnelling from
one side of the pole to the other. The eigenfunctions of H behave as (z — ()2 near the
pole. One might be tempted to define the correlation functions (8.112) in terms of the
propagator (z|(p — H)™! |y) which vanishes at zg. Since there is no tunnelling through
the pole, everything would seem to work well. Unfortunately, it was shown by F. David
[114] that these real solutions do not satisfy the loop equations. The only way out is to
have a potential u(z) with no poles and a behaviour at infinity smooth enough that H has
a continuous spectrum. No real solution of (8.116) exists which satisfies this requirement.
This can be done only if we look for complex solutions. This is not completely surprising,.
In pure gravity we are looking at integrals of the form
oo 12, 4

I(g) = ./-—oo dz exp (—§$ + gz ) (8.118)
for Img =0, g > 0. In order to define I(g), we have to evaluate the integral in the complex
g-plane and then try to analytically continue back to the real, positive g-axis. One should

expect in general that this process leads to non—vanishing imaginary parts.

Introducing the variables X = %:1:5/ VX)) = x_%u(z), the Painlevé equation becomes

(8.119)
For large X we obtain the differential equation satisfied by the Weierstrall p—function,
V2 —V"/3 = 1. We have three possibilites:

i) The general solution to V2 — V"/3 = 1 has double poles on an infinite two-

dimensional latttice on the complex plane. This lattice defines a two—torus.

ii) If one of the periods of the lattice vanishes, then we obtain a solution with a single

string of poles.

iii) The trivial solution V2 = 1 is always good.
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It was shown by Boutroux that these families of solutions to the Weilerstrass equation
have close analogues for the Painlevé equation [165]. If u(z) is a solution to Painlevé, then
u(z) = e~47/5y(e27/5z) is also a solution. The analogue of (i) has an infinite number
of poles in the complex z—plane. There is a family of truncated solutions analogous to
(ii) having no poles at infinity in two out of five sectors (say for —27/5 < Argz < 27/5),
but an infinite number of poles in the other sectors. There is finally a “triply truncated

solution” which asymptotically contains poles only in one sector out of five. Using the

27 /5 rotation, it corresponds to two complex conjugate solutions Uy satisfying
u+(z) ~z—00 VT

A reasonable conjecture formulated by David is that the loop amplitudes constructed

(8.120)

with this solution satisfy the Schwinger-Dyson equation. Intensive work on settling this

conjecture is in progress.
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