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Abstract

We consider the standard model for an interacting system of screened electrons and
phonons in dimension d > 2. A localization operator L acting on the effective potential G 1s
introduced. It is proven that (1 — L)G is irrelevant. The relevant part LG is analyzed by a
renormalization group flow. It is shown that, when perturbation theory is truncated at any
finite order and the particle number symmetry is broken, to exclude the Goldstone boson,
the flow converges to a nontrivial fixed point determined by a BCS gap equation.
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I. Introduction and Overview

In this paper we consider the standard model for an interacting system of screened

electrons and phonons in dimension d > 2 given by the Hamiltonian

d?k
H = /W € (k) [a:TakT +a,1'lakl}

d%q + 1
+ Thw(q) [cq cq + E}

4
1 d%k; 5
LS Tl et + ko = s )00 — ) e
i=1

asﬁE{T,l}
d?k déq huw(q) 1/2 . )
= P e‘{;l}/ (2m)d (2m)@ ( ) ) O(wp — w(Q))a) g a%k,alcq + Ty

(I.1)

Here, € (k) = % is the dispersion relation for a free electron gas, w(q) is the jellium phonon

dispersion relation and U is the two body electron-electron potential. The last term represents
the electron-phonon interaction, in which (w) = 1,0 < w < %, = 0,w > 2, smoothly restricts
the interaction to phonons with frequency w(q) less than the Debye frequency wp.

The d and d + 1 dimensional Fourier transforms are defined by
O(k) = / dxe™ U (x)

and
P(k) = ./d‘rddxe“k'(f”‘))—yb(r,x)
with k = (ko, k) € R*?

(ky(myx))_- = —koT+k-x

respectively. We will frequently omit "~ and “when their presence is clearly indicated by the

context.

The model above is also formally characterized by the effective potential for the
external fields v¢,%° and =®

G(4° 9, 7%) =log 3 [ A IO o dup(r). (1.20)
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where the interaction

U(p,Pym) = Z / d?xdrdiydod(r,x,@)p(r, X, a)6(r — o)U(x — y)P(o,y,8)¢(0,y,B)
..Be{T 1}

+ Z /ddxdﬂ,b(-r x, a)P(r,x, a)Q(—iVy)mr(T,x)
ae{T,l}
(1.2b)

and 2 is the pseudodifferential operator given by

@@ = (2490) " o~ stape(a)

Here, duc(v,¥) is the fermionic Gaussian measure in the Grassmann variables

{4(6),9(8)|¢ = (1,x,0),7 € R,x € R%,0 € {1, |}} with covariance

C(&1,62) = (¥(&)¥(&2))
dot1L eilkié1—€2)- (1.3)

= 801,03 (2m)d+t iko — e(k)

where
k2
e(k) = o~ —p. (1.4)
For (11 —13) # 0 the integral (1.3) is conditionally convergent. The special case 71 — 72 = 0 is
defined as the limit 3 — 7, — 0 with 73 — 73 < 0. The chemical potential p in e(k) =€ (k) —p
determines the electron density of the model. Also, dvp is the Gaussian measure (for the free

phonons) with covariance

dd+ il E1—E2)_ 2w(CI)
D(ﬁhfz):/m (bt @ +w(q)?’

We now integrate out the phonon field, set i = 1 and suppress the external phonon

field 7€, which plays no role here. One obtains

G499 =log 7 [ F ol P, (1-50)

v h =3 > [ H( e (2n) 6 (bs by — ks = K s
a,G{T i}

(b1, k2|V |ks, ka) (k1,01 )(ka, a2 )p(ka, ca)th(ks, es) (1.5b)
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w(k3 - k1)2
(k3 iy kl )g + w(ks =4 k1)2

(kla klelk3,k4) = 0(1{3 = kl) = 720((4)D — W(k3 = kl))2 (I.5C)

Note that the second term, due to the phonon-electron interaction, is attractive.
We shall consider a general two-body interaction (ki,k2|V |ks, ks) sugh that, on the
support of §(ky + k2 — ks — ka),
St (k1 ko |V |ks, ka) = (—ks, ka[V| — k1, k)
ki, —ks|V|ks, —k2)

{
{
(—kgy —ka|V| — k1, —k2)
(2, k1 [V | kg, ks)
(

by = T~ o — B}

= (ks, ke|V |k, k2)

S2. (ki,k2|V|ks,ks) is real
S3. (Rky, Rk2|V|Rks, Rks) = (k1,k2|V|ks,ks) ,where R is any element of O(d) acting
on spatial components
S4. (Tky,Tk2|V|Tks,Tks) = (k1,k2|V|ks,ks), where T is time reversal i.e. T(ko,k) =
(—ko, k)
(1.6)

The interaction of (I.5) has all these symmetries for any real even rotation invariant
two-body potential U and phonon dispersion relation w. Later we will make a further as-
sumption that ensures that V is sufficiently attractive in the zero angular momentum sector.
See, Theorem I.3.

Our long term goal is to construct the effective potential G for the class of interac-
tions V described above. In this paper we consider the small field part of the construction.
Specifically, we define a localization operator L (1.99) and prove in Theorem I.1 that (1-L)G is
irrelevant. The relevant part LG is analyzed by a renormalization group flow (1.102), (I.124a).
The content of Theorem 1.2 is that, excluding the Goldstone boson (1.82), the flow converges
to a nontrivial superconducting fixed point determined by the (non-perturbative) BCS gap
equation (1.75), (1.80).
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The rest of the introduction is divided into two parts. The first motivates the
definition of L and discusses the associated flow near the “normal” ground state. The second
introduces a superconducting formalism, discusses the flow near the superconducting fixed
point and gives statements of our main results.

Ia. Background and Motivation

We will ultimately do perturbation theory around a covariance that reflects prop-
erties of the superconducting ground state. However, to motivate the definitions and con-
structions of Section Ib, we begin by analyzing the effective potential (I.5). This is done by
decomposing ¥(k), (k) into scales that reflect the distance of the vector momentum k from

the Fermi surface

{K|k| = kr} (I.7a)
where
kr = v/ 2mp. (1.7b)
Namely,
0 .
c= Y cW (I.8a)
j=—o0
where
) dit1p  ei<k€>_ .
C(J)(&) =&, 5 f(M_ZJe(k)z)
1,92 2 )d+1 4 _
(d:l)c o) ) (1.8b)
_ ik-x —|e(k)r| —2; 2y ) —xle T>
= b [ e 00N [ T
for 7 > 0 and
dd+1k ei<k,£>-
BN =4, .. h(e(k)?). 1.8
(€)= bosr [ Gy = M(€0") (1.8¢)
Here
-1
L=h(r)+ Y F(M~r) (1.8d)

j=—co
for all » > 0. Roughly speaking f(M~2/e(k)?) forces ||k| — kr| ~ M7. For the precise
definitions of h and f see (II.1) and the figure following (II.2). There is a corresponding

decomposition

dpc(¥,¥) = H dpci) (99, $9). (1.9)

_‘,'_—00
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The decomposition (I.8) differs from that of [FT§2] in that ko is not localized near
zero. This has the advantage that C(9) retains physical positivity (Osterwalder-Schrader
positivity).

Let us define the effective interaction at scale h,—1 > h > —o0, by

1 <o ;
G ($(SM)) .= logg—/e—”’“’ )T drow (69) (1.10)
. i>h
where
B = (g2 + M, + ) M) (I.11)
i<h i<h

and the constant Zj, is chosen so that G*(0) = 0. We have

g1 (glsh—1)) = log/exp W (M) dpcan (¢™) + log Z.Z—h (1.12)
h—1

for h < 0 and

GO ($(£0) = _AP(4(=9),

G=2) (%) = G(¢°)-
As expected the coefficients in the formal expansion of G(*) in powers of A diverge as h tends
to —oco. (See [FT§1].) A well-defined expansion is generated by a A-dependent chemical
potential, which we now explain.

The two-point function G,, defined by

G(¢°) = / A1 by Ca (€, £2)F° (€)% (€2) + O((4°)") (I.13a)

where

/dé::fddxdr >,

ce{T,l}

is the connected, amputated 2-point Green’s function and is related to the two point Schwinger

function by

Sy = C + CG,C = [iko — e(k) — £] ! (I.13b)

and to the proper self-energy ¥ by

Gz = B[1+ f:(cz)n]. (1.13¢)
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In perturbation theory, G, is the sum of all connected two-legged Feynman diagrams, except
the trivial ——, whose external free propagators are amputated and ¥ is the sum of all
two-legged, one-particle irreducible (with respect to electron lines) diagrams.

The renormalized effective potential, which by abuse of notation we continue to call

g, is defined by replacing the interaction —AV of (I.5) by —AV + 6§V where

V() = 650, ) / dEF(E)D(6)

to obtain
- 1 - - Z
0w, #) =log  [expl(-XV + V)b + 4%, + P Nduow,#)  (114)
Here é6p(), i) is a formal power series in A, uniquely determined by the condition that to all

orders in perturbation theory

S(k, &, Mlko=0,jx|=yZmE = 0 (1.15)

Hence the bare chemical potential yg, which determines the position of the free Fermi surface,
has been rewritten as po = p + §u(A, 1) where §u, which determines the position of the
interacting Fermi surface, has been placed in the interaction. Now the coefficients in the
expansion of the renormalized G(*) converge as h tends to —oo. This is the content of [FT,

Theorem VII.4]. We will not refer to the unrenormalized effective potential again.

We now view (1.12) as defining a map from G to G(*~1) whose iterates flow in
the space of effective potentials. The renormalization condition (I.15) becomes a boundary
condition at A = —oo for this flow.

The map (I.12) may be rewritten as a difference equation

g(h-l)(qg(sh—l)) — g(h)(¢(5h—1)) + g(h)(g(h))(¢(sh—1)) + log ZZh (I1.16)

h—1
where

EM(U)(¢°) : = log ] exp U(¢™ + ¢%)dpom (¢M) — U(4°)

— [ 06D + $ior (49) ~ 0(#)

i I1.17
+ 3 ZEP@)) (e
n=2
=Y —EP@)($)
n=1
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where
EM(U)(¢°) = fU(s'S(") + ¢%)dpom (¢M) — U(4°) (I.17b)
and, for n > 2,
eM(U) = €M, ..., U), (I.17c)
an

Ay =0

P (T Un)(8) =

is the usual truncated expectation value. Qur boundary value problem may be solved by

log / exp[ | AUi(¢™ + ¢°)ducan (4°)

converting (I.16) into an “integral” equation in which (I.15) appears explicitly.
To do this we introduce a localization operator £. It is a projection defined for

monomials by

¢ [ a1 dE K (& — &)P(E)$(62) = K (ko = 0, k| = /2mp) / dEB(E)H(¢)

¢ j db1.dbn K (£1, ey €n)B(E1)-P(£n) = 0 for n > 2

£ const = const

(I.18)

and extended by linearity to all formal power series in 1,%. We ought to define £ to be

an orthogonal projection by Wick ordering the monomials 5q-b)(fl)%))(lﬁn) For pedagogical

purposes we delay doing so until Section III. In terms of £ the final value condition (I.15) is
0=, lim_e0M(p7) = lim ¢ [ dt1deaGE7 (6 - )P ()7 (6)
= lim Gk = 0,[k| = vBmp) [ (v (6t
= im0k =0,k = vama) [ F OO
=Dk =0, k| = M)/Je(g)w(g)dg

(1.19)

since C(ZM (kg = 0, |k| = v/2mp) = Z CU (ke = 0, |k| = v/2mpu) = 0 by construction.
i>h
The corresponding “integral” equation is

GM(9%) = =AV(8°) = 3 LED(GD($D +6%) + D _(1 - HED(GD (67 + 6%))

i<h i>h

+ 3 e (gd(0)) (1.20)

i<h
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Any solution of (1.20) obeys the difference equation (I.16). Furthermore, the boundary con-
ditions (I.19) and

GO ($°) = —AV(¢°) + (A, 1) ] dEP (£ (£), (I.21a)

where 8u(A, ) is defined by

Sp( X, 1) / dePe(€)ve(€) = — Y LED(GD (gD + 4°)). (1.21b)
i<0
are satisfied.

The integral equation (I.20) is solved to order n in X by iterating n times beginning
with G(M)(4¢) = —AV(¢°) for all h. At the same time (I1.21b) yields a closed expression for

the coefficient of A™ in the formal power series expansion of §u(A, ).

To elaborate, a single iteration of (I.20) produces terms in G(h)(qSe) of, for example,

the form

> (1 = DGO (™ + ¢))

i>h
— Z(l - g)g(i) (—)\V(qb(") +¢°) — Zeg(i)(g(j)) + Z(l — g)g(j)(g(j)) + const)
i>h i<i i>i

1 ; . o N
= ..+ Z(l - E)E Z Sg ) (—AV(qS(') + ¢°), —LEL (g, _pglia)(gli)),
i>h C i
o (I1.22)

(1- g)g(ja)(g(ja))) + ..

1 ; 1, . 1, (i ,
=t ) (1-05 Y, g8 (_Av,—aezz(“’(—)\v, —AV),——EEEEZ(J N=AV, =),

i>h J1<i
Jj2 <51
Ja>i

:11-,(1 — 0)EUD (=AY, AV, =AYV, —AV($12) 4 ¢ 4 ¢E)) + .

The multilinearity of E,(th)( Us,...,Uy) is used in the third and fourth lines. Repeated interation
of (I1.20) produces terms of arbitrary depth (that is, £’s within £’s within £’s ...) but with an

obvious tree structure, that is conveniently expressed by introducing the following notation.

Define



222 Feldman and Trubowitz H.P.A.

U, U, U

= ;11(1 — Ox(i > RE (UL (8 + ¢°), ..., Un(6) + ¢°))  (1.23a)

U U; Uy

= %(—f)x(i < REPDUL(D + 6°), e, Un(6P + %)) (I.23b)
h
U

= x(0 > h)U($°) (1.23¢)
h

In this notation the explicit term in (1.22) becomes

e

1:1.7.1 |j2 )j3
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The solution G(* of the integral equation (1.20) is just the sum over all planar trees (including
the trivial tree (1.23c)) constructed from the r and c forks given above, with root scale k and
“leaves” - AV. Similarly, §u(), ) is the coefficient of [ dép(€)¥(€) in the sum of all trees
whose lowest fork is of type (1.23b) with B =0,

It is shown in [FT§7] that (I1.21b) is a well-defined formal powers series in A, that is,
all the coefficients are finite. With this choice of §u(), ) the terms in the expansion of G(*

converge as h tends to —oco. More precisely, if

6P =YY o T ] dExd® (€x)) Gl (£rs v E2p) (1.24a)
k=1

p=1n=1 (Zp)!

then there exist constants K, and e such that

IG5 (€1 s €2 11,00 < Kpa™n! (1.24b)

where K, is independent of n and A and a is independent of p, A and n. Here

U (€151 €p)l1,00 = Sup{/d&---dfpwp(fl,---,fp)fl(fl)'--fp(fp)l Hfillze £ L[ fillze <1}

The limit of Gg’;?n as h — —oo exists and obeys the same bound. We shall give a simplified

self-contained derivation of this result in Section III.

(—o0)
2

p  asatempered distribution, not only as a formal

We wish to construct Gy, := G
power series in A\. The n! in (I.24) prevents us from directly controlling the sum over n. It is
therefore necessary to investigate exactly how this factor arises. There are two sources.

First, we did not, in our proof of (I.24), attempt to exploit the cancellations between

(k)

spn- Indeed, due to the Grassmann

the roughly (2r)! Feynman graphs contributing to G
nature of the measure duc, each graph is one term in a 2n x 2n determinant. We have grossly
overestimated the determinant by taking the absolute value of each term. To eliminate this
problem one exploits the antisymmetry of the determinant to estimate it as a whole.

The second, more subtle, source already appears in the simple graph
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whose value, for small transfer momentum ¢, has the logarithmic singularity log{ I q[ + Ev’-ggn—p}
Similarly, for small g, the (electron-electron) ladder

<+ + < *

(I.25)

grows like [log{lql + 2—\;%}]“, where n is the number of momentum loops. So, the value of
a single graph containing a ladder is of order n! due to the integral over q.

Somewhat surprisingly, however, the (electron-hole) ladder

(I.26)

is exponentially bounded. The example above is discussed in more detail in [FT§5]. In this
paper we show how to isolate and then remove the logarithmic singularity responsible for

anomously large graphs.
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We start by introducing a more refined localization process that acts nontrivially

on quartic monomials. The quartic part of G(*)

«——scale A+ 1
. Z o I |
11,0014 < a 1l
scale 2y — ;
! I L— scale i3
I
e |

HElE: iy L—— scale 124

_ Z ditly  ditls  gitlg FG) g 0 G
- LR (27)d+1 (2r)d+1 (2x)dH1 44,87 —t+3,p07 —s+$, A7 s+,
a?ﬂlyi‘\)l:'egf}!l}

1
E[k(h) (t’ 3, q)éasﬁéA)#‘ - k(h)(—t’ 8’ Q)SalﬂéA’ﬁ] (1'27)

has external fields of scale at most h and a kernel k(*) produced by integrating out internal
fields of scale at least h+ 1. Here, ¢, s and 2q are three independent momenta and the kernel

has been written in an explicitly antisymmetric, spin independent form where, necessarily,
k(h)(t,s,q) = k(h)(_t} -8, q)'

The localization process takes into account the separation between the scale h of the kernel
and the scales iy, ...,74 of the external legs.

Let

dd-l—l.t dd+1q 1 )
(27r)d+1 (27r)d+1 E[k(tas,Q)Ea,ﬁak,p — k(-1,s, q)aa,u"s)\,ﬁ]

Bk g, 90,0 9
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—gf2

B, « «— a,i3
_ .QQ>§M 29

Hy22

4—q/2 -

be a general quartic monomial. We define L(*),h < 0, by

A ) ( ) C (I1.29)
12

— gl

M---%[i"+h])‘;(i1) ,&(iz) ¢(i4) ,¢(i3)

dd+1t dd+1 dd+1
= / t+§vﬁ "t+%)i" —8+§,A B+-;,C!

(271')d+1 (27!')‘“‘1 (2 )d+1 P(|CI|

1
E[k((t'a s 0)ba,86x, — k(—t',s', 0)8a,ubx,8]

where
i* = max(i;,%2,%3,%4)

p(r) =1~ h(r)

and
t' = (0, T%'I'kp) = projection of ¢ onto the Fermi surface.

The localization operator evaluates the kernel k at zero transfer momentum and so
isolates the logarithmic singularity discussed above.

As before, set

L™ const = const (1.29b)
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L™ ] dé1dér K (& — &) (&) 1)(&) = £ j dg1dé K (& — &)U (&)%) (&)

= K(0, k| = v/2mpu) ] e (£)p ) (¢) (1.29¢)

L™ / dbr o dbnK (b1, )T (6) B (60) = 0 for n > 6 (1.294)

and extend by linearity to all formal power series in 1,%. Observe that

J ALY ACP I (ON

Once again, we ought to define L") to be an orthogonal projection by a scale dependent
Wick ordering of the monomials §' (&1)+ -3~ (€x). This is done in Section IIL.

The local part of a quartic monomial is not as complicated as it looks. Observe that
the function p restricts the transfer momentum to a ball of radius ~ M 3(+1) that shrinks
to zero in the infrared limit A — —oo thus effectively localizing q at zero. For technical
convenience we have cut q off at the scale midway between that of the kernel and the highest

field. This is somewhat arbitrary.
Let ¢° = (g0,0). If we approximate

7(i1)  7(iz) (ia) (is) 7(%1) 7.(i2) (i4) (i3)
¢t-|jq/2 ¢—:+q/2 ¢ st+gq/2 ¢a::q/2 by ¢t—t+}q°/2 ¢—:+q°/2 ¢:a+q0/2 1'[)sjq°/2

the local part becomes

dgo dit't ditls 1
> 7 [ o Gy g g i = P
a,B,A,u

(ia) (ia) (ie) (ia)
Pireos2.8 Votvqoszm Posrao/on Pateo2m

V= Lol ) )

F(t',s') =k(t,s',0).

As we will later explain, the most important case is i; = i = i3 = 14 = h. Then the last

expression reduces to

dgo d**'t d**ls (h) (k) e
; ] 2 zﬂ-)d+1 27r)d+1 F(t',s') -56"’*‘1’[)1+q°/2 ﬁ¢—t+q°/2,p¢—a+q°/z AT a4q%/2,
«, s )
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V = const M %k,

The local part of a quartic may be regarded as [(-1) a reduced interaction]. The discussion
above demonstrates that it is the analog in the functional integral setting of the usual BCS
reduced Hamiltonian (See [S], p. 37,(2-17))

Z e(k)a;sak,, + Z (ko, —k2|V]k;, —kl)a:ﬂaikzla"kllakﬁ.

k,s ki k2
To this point we have not discussed spin pairing.

The kernel F(t',s') defines an operator on L?(krpS*~!). By (1.6, S3) the operator F

commutes with the action of SO(d). Therefore the eigenspaces of F' coincide with the SO(d)
irreducible invariant subspaces of L?(kpS?~!). Recall that the space H™ of homogeneous

harmonic polynomials of degree n is an SO(d) irreducible invariant subspace and that
Lz(kFSd_l) = ®n20Hn.

It follows that
F(t',s') =Y Aama(t,s')
n>0
where 7, is the orthogonal projection onto H™ and A,,n > 0 is the spectrum of F. For ex-
ample when d = 3,m,(t',s') = (2n+1)kz"""P,((t', s')) where P, is the Legendre polynomial
of degree n. Substituting we obtain
dd+1t dd-l-ls

- 490 2R 7k (h) )
— A — ot .
4 ; a; u n‘/ 27 (27r)d+1 (2.".)03—}-1 ﬂ'n(t v )Sa’ﬁ‘sx'#q’bt‘?2;,3¢—t+1;»“¢—3+2;:)\¢3+1;‘,a

1 dqo ditly g+l B & 03
=7 Ag- | 5= t' s")2
V.2, | o e G I B 0 9 0 ¥,

1 dgo dt1t détis SRy (k) ) ")
== An rot )
Ty % / 2m (2m)4H1 (2m)dt] (', 8') ¢t+g;T¢—t+gz—T¢“3+5;T¢a+5;T

+1,5(h)o gﬂ(h) . ¢(h) ; ¢(h)

0
3= " e |~ | T a A |

5000 B o+ T 0 8D, 0 ¥ + 8%, 0 ¥ )

R TS N A NI R P L BT L A L

(1.30)

since
Wﬂ(_t'a 3’) = (_1)n7rn(t'a 3’)

and m,(t', —s") = (=1)"m,(¢',s').
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th angular

The eigenvalue ), is the coupling constant for the interaction in the n
momentum sector. In this paper we will ultimately consider a class of interactions, including
(I.5¢), in which Xy > 0,2y > |A,], n > 1. See Theorem 1.3, for the precise condition. Then

the, dominant, angular momentum zero contribution to the interaction is

Mo [dgo ¥t dMls oy o (k) ()
(—1)2"17/% (27)d+1 (27)d+2 'JH-q"/2T¢—t+q°/2l¢—a+q°/2l¢s+90/2T' (I.31)

As h approaches minus infinity particles of scale h have their momenta restricted to a shell
about the Fermi surface and “see” a spatial volume V ~ M™% since their covariance
|C")(z,y)| < const[1+ M"|z—y|]~". Thus, the local part of the interaction is effectively the
familiar BCS interaction (See [FW], p. 333, (37,43)). The factor  should not be interpreted
as a small coupling constant even though it tends to zero as h — —oo. Rather, it maintains
the power counting neutrality, i.e. dimensionlessness, of the interaction (I.31). Operationally

it compensates for the lack of decay between x and y in

dqo dd+1 t dd+1 8 'IZ;(h) /J;(h) ¢(h) ¢( h)
2r (2m)d+1 (27)d+! t+¢°/21 7 —t+4°/2] ¥ —s+¢°/2] " s+¢°/21

= /dT]ddx;Z(h)(x,T,T)‘;(h)(x,'r, l)fddy¢(h)(y9r)l)¢(h)(Y573 T)

As usual we have omitted the symbol for the Fourier transform on ";t(i)qﬂ ja1 €te.

We have seen that the solution G(® of the difference equation (1.16)

Zp
Ly

gh=1) — g(b) g(h)(g(h)) +log
obeying the final value condition (I.19)

lim ¢G™ =0

h——oc0

may be constructed as the sum of all trees built from the r,c forks (I.23a,b). It is clear that
the construction above is unchanged when £ is replaced everywhere by L(*). Doing so however
does not quite yield the desired model. The quadratic part of G(* will satisfy the final value
condition lim £G™ = 0, as required. But the quartic part of G(*) will also satisfy a final

h——o0

condition rather than the initial value condition

g(o)(‘;be)quartic = z /H d+1 (27r)d+16(k1 + k2 - k3 - ké)aal,a35a2,¢14
Q:E{T l}
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(k1, k2 |V |ks, ka)th(ky, 01 )b(ka, oz )b (ka, aq)ib(ks, 3) (1.32)
This defect is easily eliminated by changing the integral equation (I1.20) to

¢ (¢°) = — ALOV(4%) - Zgg(i) (g(i)(¢(i) +¢°%) + Z(L(i—l) — £ (g(i)(¢(i) +¢°))
i<h i>h
— M1 = LOYW(g%) + Z(l — LG (g(t’)(¢,(i) +6%)) + }: (@) (g(i)(qg(i)))

i>h i<h
(1.33)

Any solution of (I.33) obeys the difference equation (I.16), the initial condition (I.32) and the
final condition (I.19). Equation (I.33) is obtained from (I.20) by adding and subtracting the

quartic effective interaction at scale h

Z(L(i—l) _ g)g(i) (g(i)(¢(i) + ¢e)),

i>h

thus leaving G® unchanged.
Let

(1 - LED)x (i > R)ED (Uh (D + ¢°), ooy Un(¢D + ¢°))  (I.34a)

Z/ll Z/{2 z'{n

= %[—ﬂx(i < B)+ (L4 — 0)x(i > R)ED (U, ..., Us)) (I.34b)
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U
c
:= x(0 > h)L(OU(¢%) (1.34c)
h
U
R
:= x(0 > h)(1 — L) (¢°) | (1.34d)
h

The solution G(*) of the integral equation (I.33) is the sum of all planar trees (including the
trivial trees (I.34c,d)) constructed from the R and C forks with root scale h and “leaves” —AV.
The new and old trees differ only in that an effective interaction ZJ->1(LU‘1) — 0)EW(gL))
at scale ¢ is added and subtracted at each fork.

The operator L(*) isolates the logarithmic singularity that produces anomolously
large values (of order n!) for graphs containing ladders in the C forks of trees. To make
this precise let g{*)(¢°) be the sum of all planar trees (including the trivial trees (I.34c,d))
constructed from R (I.34a) and ¢ ((I.34b) forks with root scale h and “leaves” —AV. We
remark that the functional g{*(¢%) is the solution of the integral equation

g(h)(¢e) = —AV(¢°) — 235(5) (g(h)(¢(i) e ¢,e))

i<h
+ Z(l — LG-D)gl (g(i)(qg(i) +¢°) + Z £ (g(i)(¢(i))) (1.35)
i>h i<h
obtained from (I.33) by discarding the term Z(L(i_l) — 0)ED(GM). Write
i>h
R OEW I H( [ deed @ )otpEr, o ar) (1.36)
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The idea is that, in contrast to Gggn, (I.24), every graph contributing to gé’;?n should be

exponentially bound in n.

We now recall how a tree is expressed as a sum of graphs. Consider a tree 7

contributing to gg;?n. Such a tree has n “leaves” —AV. Introduce a vertex

al,kl < <+ a3,k3

= 60!1,035&2:0!45(]91 +ky — ks — k4)

(k17k2|V|k3ak4) ’ (I.37a)

for each leaf. Then, form graphs by connecting outgoing legse——— to incoming legse——

pairwise in all possible ways leaving p outgoing and p incoming external legs

S0
2 (1.37b)
*r—— = z)be(k)
To simplify the combinatorics regard all legs as distinguishable so that the graphs above are
distinct.
Next, we assign scales to the internal lines of a graph G consistent with the structure
of 7. Let
s(T) = {ig|f a fork of T} (1.38)

and I a map from the internal lines of G to s(7") such that, for each fork f € 7, the subgraph
G} = {lines £ € G and connecting vertices |I(€) = ip, f' > f} (I.39)

is connected. We denote the graph G with scale assignments I by G%. The set of subgraphs

G,

labelled graphs G? is denoted I',(7).
The value Val{G7) of the labelled graph G in momentum space is computed by the

when ordered by inclusion, form a tree isomorphic to 7. The set of all consistently

following rules.
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(i) To each internal line £ assign the covariance

1——k4—

T(F) = i

= CU(k) (1.37¢)

of scale iy. Assign vertices and external legs the values given in (1.37a,b). (I.40z)
(ii) For each ¢,r,C, R fork f we respectively apply the operator

1.,
—;;;x(zf Sin(n))t
S x(is > ing)(1—£)
1 ) ) e ) .
;J;{x(zf < impy))(=8) + (LD — O)x(is > in())}

1 .
L 5 (ig—1)
nf!x(tf > teepy)(1 — LY

to the subgraph G’I . Here m(f) is the fork immediately below f in the tree and ny

is the upward branching number of f. Of course trees contributing to ggp) do not
contain r,C forks. (1.40¢7)
(iii) Integrate [ (2—1‘5—;%3 for all internal lines £ and multiply by
(—1)mumber of fermion loops.
(1403i)

These rules are derived and discussed in greater detail in [FT§VI]. Finally
h
g = M > Val(@h). (1.41)
trees 7 with n leaves I'5,(7)

We now indicate why a graph contributing to gzp ,, should be exponentially bounded.
It follows from (1.29a) that

dd+1t dd-i—l dd-i-l ..
(h) 2 : 9 gG1)  7(ia) (i) (z )
1-1L ){ /(27r d+1 (27‘. d+1 ( )d+1 ¢t-l—1-§,,6¢—:+1 Tfl’—s+1 A a:%,a
o8,k

1
5 [k(t, 3, Q)Ea,ﬂ‘s/\,p: = k(_t) S, Q)ﬁa,pak,ﬁ]}
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Z dd+1t dd+13 dd+1q (11) 1’5(12) d’(‘ (13)
27r)d+1 21r)d+1 (27r)d+1 t+1,B —t+4,u s+4,) a+§,a

ao,B,A,u
S P t,5,0)6a980s — FP(~, 8,00 bra]l  (L41a)
where
F®(t,s,q) = k(t,s,q)[1 — p(la|M T+ i (1.41b)
+[k(t,5,q) — k(t,5,0)]p(Ja| M~ FH) (I.41c)
+1k(t,5,0) — k(¢', ', 0)]p(|q| M ~317FH), (1.41d)

We shall see that when at least one of (£t + 2)o, (£ + £)o is bigger than M3l +h]
the corresponding field 4,1 acts as if it were of scale %[z”“ + h] rather than i; to produce an

extra factor

MR i < g3 (A=)

So consider |to|, |so|,|go| < M3[*+Al, Then the last term is small since || +t+q/2| - kpl,
|| 5+ a/2| — kr| < O(M®) and |q| < O(MEE"+H) imply |t — ¢'],|s — s'| < O(MEE+H),
Estimating the difference by |V k||t —t'| + |V,k||s — s'|, the gradients produce an M —* which
combines with M [ +4] to yield the exponentially small M —%[A=#"], Just as in the discussion
following (1.31), p(|q|M -3l +4]), does not produce an additional small factor even though it
severely restricts the domain of integration for q. That the term (I.41c) is small is also seen
by Taylor expanding.

The first term (I1.41b) is more subtle. By construction +t + q/2 and +s + q/2 lie
in a shell of thickness O(M*") about the Fermi surface. However, 1 — p(|q|M~3["+A]) forces
the transfer momentum q to be relatively large with the result that s and t are constrained

to small regions of momentum space. Precisely, it is shown in Lemma IV.2 that
vol{t e R% : || £t + q/2| — k| < O(MT)}

< O(M~3F="Nyvol{t € R?: ||t| — kx| < O(M™)}

when |q| > O(M 3+,



Vol. 64, 1991 Feldman and Trubowitz 235

To give a physical interpretation to the last estimate consider a pair of particles (or
holes) with momenta k; and k;. As a composite particle the pair has momentum q = k; +k,.
In the physically interesting case k; and k, are in a thin shell about the Fermi surface and
the estimate is a quantitative statement that q is usually small, or equivalently k, ~ —k;.
In other words the composite particle is a Cooper pair.

The intuition above is exploited in the superconducting context and formalized as
Theorem 1.1 below. Thus, the mechanism responsible for anomolously large graphs is localized
in the quartic contributions to the C forks of trees, which, incidentally justifies approximating

the full interaction by the BCS reduced interaction

Z (k2 ? _k2 |V|k1 ? _kl )5(1,}'36)"",0-:2 ,aa'Ig ,)\a_kl 1“ak1 B
ky,k;
a,f,\p

Thus g (1.35) should now be constructed nonperturbatively by exploiting cancellations arising
from the Grassman antisymmetry. The quartic contributions to the C forks are treated by
means of a renormalization group flow.

Our discussion of 1 — L(*) is finished for the moment. We now treat the quartic
contributions to the C forks by means of a flow that nonperturbatively resums anomolously

large graphs to an exponentially bounded effective interaction. Set

FRGED, 905 <h) = (LD - OGD(Y §9, 3 9)

i<h i<h

1 dd+18 dd+lt dd+lq Sirore
— —3(i*+h)
= LZ 1) G g e ol )

11,i2,t3,ta <h
Q1,02 |a31a4€{T’l}

[F(h)(t',s')5al,aséa2'a4 - F(h)('—tra5')6011.11450:3,&3]
AQ 7(32) (is) (i)
¢1(1-|}3/2,011¢—:+q/2,a3¢::+q/2,a4'§b,.iq/2'a3- (I42)

In particular

A du!—l-ls di+1s di+1 . iy ; .
(0 _ _Z2 (0) _ g4 7(a) (i2) (i4) (i)
F T4 Z (L E)f (211')d+1 (27\“)‘“‘1 (2.“.):14—1 d)t-l-lq/Z,alll'[)——:-l-q/Z,az¢—:+q/2,a4¢a—:q/2,a3
BRI

q q q
{(t+ 5’ —t+ §|V|3+%1_3+ %)501,03602,04 - (“t+—§’t+ ‘g'IV|3+ g, i 5)601@45&2‘03}
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(la|M %)

X [ ditls  gitlp i+l
X =5 (2m)aH (2r)art (2m)ert P

il :iﬂ |i3|i4 SO

i —t'V]|s', —8"V6a, a.banas — (=1 ¥ |V|s', —8"Y0u, & 0ay,a5 }
? ’ 1903 2,04 1,04 [}

’J(il) J’(iz) ¢(i4) ,(/)(ia) (I_43)

t+q/2,01 7 —t+q /2,03 ¥ —s+q/2,as T s+q/2,03"

Note that
FM(¢ 8"y = F (¢, —s")

FM(Rt',Rs') = F(M(¢',s') for all R € S0(d) (I.44)
FM (¢ 6" = F (s, 1)
The first two parts of (1.44) follow immediately from antisymmetry and rotation invariance.

The third is proven following (1.95).
Apply L(A=1) _ £ to (1.16) to obtain

F(h-1) _ (L(h—l) _ E)T(h) fs (L(h—l) _ g)g(h) (]:(h) +(1- L™ 4 e)g(")) (1.45)
since
(L(h-—l) _ g)g(h) — (L(h—-l) _ g)(L(h) — g)g(h)_

It follows that F(*) is the solution of the difference (flow) equation

4

(h—1) _ g(h)
S Dy

[antisymmetric kernel of

(L(h—l) — g)g(h)(g(h)) evaluated at a; = a3 =T,0; = oy =|] (I.46a)

with initial value

FO® 8" = Mt —t'|V|s', —s'). (1.46b)

We remark that (L(A=1) — £)€(A)(G(M) has a unique kernel antisymmetric under the exchange

?:1 iz 7:3 i4
a; | & | a2 | and under the exchange | a3 | & | a4 |.
1 —1 S —8

Substituting

(L(i—l) _ E)E(t) .: f(i—l) _ (L(iml) _ e)]:'(i)
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into (I.33) and telescoping the sum

0
—ALOV 4+ 3 (L6 - g)e®
i=h+1

0
= =ALOY + Y [FED (6D - ) FO)

i=h+1

0
= _ALOyp 4 FR) 4 E (L) — LE-)F( _ (L —
i=h+1

0
= Fm 4 Z (LA — LG F®
i=h+1

we obtain the coupled system

gM = FM 4 (LD — LE-D)F® _ 3" g0 (gP) — A1 - LO)Y

i>h i<h
=1y (D) Zht1 7
+ 2(1 — LY EW(G'™) + log 7 (1.47a)
i>h 4
FO-U = (LD _ g)F® 4 (L= _ g®)(gh), GEATH]

with boundary conditions

(projection onto nonquadratic part of GOy = -y (I.48a)
FO ") = —X(¢t', —t'|V]s', —s") (I.48b)
Jim G =0 (I.48c¢)

Equation (1.47a) is a decomposition of G(* into a quadratic piece (— Zﬂg(i)), a

i<k
quartic effective interaction (.7:'(") -+ Z(L(j) - L(j“l))]-'(j)) and, by the discussion of 1 — L(®)
i>h
: ; VA
above,an ”irrelevant” piece {—/\(1 - LYy ¢ Z(l — LED)e® 4 1og —-;Ll} The term
h
i>h

Z(LU) — LU= F() arises from the scale dependent nature of our localization process and
i>h
does not appear in standard field theory models. It may be helpful to visualize
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Ei Z(L(J’) — LU F@
i>h

- E l] s dit't dd+1q "l;(il_i_ T/;(iz) ; ¢(i4) ; ¢(i3)%
- d+1 d+1 d+1 "t+d,a1 P —t+ 0z —s+ 1,047 s+ @
i 4 /) (2m) (27) (27) 1 2 + 3

a; €{T,1}

{p(’qIM_%[I.-'-h])[F(h)(t', '9‘)501;&36&2)‘14 - F(h)(-tl’sl)aalyadéaﬂaafi]

0
Z pi'+i(|q|)[F(j)(t" ‘9')601#3502,04 - F(j)(_t"3')601,0!460!2,0!3]} (I'49)
j=h+1

where pi(a) = p(lalM~*/2) — p(|q|M~(¥=1)/2), as a spy-glass.

When h is decreased by one the outside shell of p(|q|M~3("+R))[F(R) (¢! 4)..] detaches, is
0

added to Z ..., and stops flowing. Iterating, we obtain an infinitely extended spy-glass.
j:h+1
The structure of the coupled system (1.47) allows us to express G(*) as a formal

power series in the infinitely many variables (running coupling “constants”) F(*) hr < 0.

Precisely, G is the sum of all trees of root scale h constructed from the forks
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U, U, U,

= T (=0x( < RED QL (3 + 8°), s Un(6D + 6°)) (1.50a)

Uy U, U,

b= ni!(l — L9 D)y (i > B)ED Uy (¢ + 6°), ..., Un($D) + 6°)) (1.50D)

h

R
i= —x(h < 0)(1 = LO)AV(¢°) (I.50c)

h

f’
= x(h < O)[FM(g°) + Y () — LE-D)F(ge)] (£.50d)

i>h
h

One expects to prove that G(X, F(),i < 0) = lima—_oo G (A, F, ..., FM) is holomorphic
on a suitable infinite polydisc. Here, by abuse of notation (X, F(®, F(1) ) is any vector in
the polydisc - not necessarily the solution of (1.47b). If (I.47b) has a solution (X, F) in the
polydisc, then the effective potential is G(A, F).
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We now investigate the solvability of (I.47b), or equivalently (I.46a). To second

order

(LD — )e®(g®) = (LD — gD (GM) + eGP, M),

Taking Wick ordering into account s{h)(g(h)) = 0. To evaluate the second term observe that

[the quartic part of %5§h)(g(h), M) =

SOMOEEEI OO\

‘2 &L &L

(1.51)

where % is the antisymmetric kernel of the quartic part of G(*). In Section IV we
show (again using Lemma IV.2) that the last three diagrams are irrelevant for all kernels that
are suitably smooth and uniformly bounded in h. For this reason we begin by considering
the ladder approximation and retain only the first diagram.

All quartic terms on the right hand side of (I.47a) other than the first vanish for

g = 0 so that
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antisymmetric kernel of

=

=

= antisymmetric kernel of

1 d*tp YU -1¢ S Y] O TEFANGAY 2 (O TR
- Z (27r)d+1 [F (t P )F (P 8 )801,03602.04 -F (—t ' P )F (P 38 )6a1,a46a2,a3]

[CER (p)C =M (—p) — ¢ (p)C <M (—p)]. (1.52)

Here C(SM)(C(<M) denotes Z CY), The effect of Wick ordering on the evaluation of
i<h
(3<h)

the electron lines is to replace C(*)(p)C(*)(—p) by the last bracket. Thus, in the ladder

approximation, (I.46a) becomes

dd+1
F(h_l)(t',s') - F(h)(t',.s') i d j ‘(‘i;’jj%‘F(h)(t’aP')F(h)(P’:3’)[IC(Sh)(P)|2 _ |C(h)(p)|2]
= FO, )+ 6 [y FO, 1) PO, o)
(1.53)
where
dpodlp| [|p|]*"
}B(h) = / (2:.)d!+1 [EI;—! [lc(sh)(P)lz - |C(<h)(1’)]2]
dlp! |p| - 1 2 —2(h+1) 7,2 2 —2h 2 (1.54(1)
=] @ |ke] 29 [p (M e(p )) —p* (M~ e(p ))]
is nonnegative, independentof p', and approaches the limit
§= e [ dut [0 (M72) — 2] (1.54b)
(2m)kr Jo )
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as h — —oo.
By (1.44) F(®) is a self-adjoint rotation invariant operator and may be decomposed
into spherical harmonics
FO(, ') = Y APma(t, ')
n>0
with real eigenvalues Ag'),n > 0. Recall that 7, (t',s') is the projection in L?(krS%~1) onto
the space H™ of homogeneous harmonic polynomials of degree n. This decomposition converts

1.53) into the equivalent decoupled system
(1.53) q pled sy

AB=D = x®) 4 gAY 5 > 0 . (1.55)
with initial data determined by

Z )«Sf)arn(t',s') = =X({t',=t'|V]s', —s').
n>0

If A > 0 the iterates /\S;h),h < 0, generated by (1.55) diverge to infinity faster
than AS;O)(I + ﬂ,(,,o))|h|. This paper is devoted to a class of models in which Af,") > 0 but
Agu) > sup |A(?|, for example (I.5¢) with v, wp large enough. They are driven by the full flow

n>0
(I.47b) to a nontrivial superconducting fixed point.

On the other hand if A < 0 then the iterates

)\(0)
A0 i
1+ 28k + O(en|h))

converge to zero as h — —oo. In particular, the vector (,\S,"), n > 0) tends to zero as h — —oo
when (t', —#'|V|s', —s) is the kernel of a positive definite operator on L?(krS?~!). However,
for a smooth kernel Ay = O(n~N) for all N > 0, which can be a source of instability .
Coupling a higher order term to (1.53) may cause some /\Szh), with n very large, to change sign
after a few iterations. In that event the leading term takes over and drives AP to infinity.

This effect may be seen by starting (1.55) from the effective interaction
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Xt =2 |V]s', —o')+ Q( )( " t’) ; ( + 0 (
g=20

Ib) Superconducting formalism and statement of results.

The rest of the introduction concerns the superconducting state. It is useful, fol-

lowing Nambu [N], to make the change of variables from {%x1, Py, Pit,¥kl, k € R4} to

o, = [g:,:] - [ g_k:l] (1.56a)
U= (U1, Wh| = [Prrs¥-kl] - (1.56b)

Let
et Sl A e

be the Pauli matrices. We have
V0" = Prrtorr — Pk P_k|
Vo' W = PrrPok) + Pk et
Cro? Wy = —i[PrrP_i| — Yop Pr1)
U0’ W) = Dprtorr + Pk Pkl

(1.58)

The covariance C = [iko — e(k)]™! correspond to the quadratic form

ditip . ;
[ W[iko — e(k)][Drrir + Pr1¥rl]

ditle _ 3
= W‘I’khkOI - e(k)ﬂ' ]\I’k

so that, in the new variables, the Grassman Gaussian measure becomes dug, (¥, ®) with

covariance matrix
Co(€1,€2) = (T(61)T(&2))
- / 4™k e'kti—€)- [k, 1 — e(k)o®] !

(2m)d+1 (1.59)
d . 3
= ] ij-l_ke“krfl—fﬂ— (_1)2’9021 + e(k)O'
(2m)ett k2 + e(k)?
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and (T(&)®(&2)) = (P(£1)FT(£2)) = 0. Once again the special case 7, — 72 = 0 is defined by
a limit, namely, 1y — 13 — 0— for (Cy)1,1 and 71 — 72 — 0+ for (Cy)2,2-

The interaction becomes

dd+1t dd+18 dd—{-—l q

(271,),14.1 (27{')‘“’1 (ﬂ’)d+1 (t + e _|V| + s+ 5)601,03502.04

o E{T 1}

¢t+q/2,a1¢-t+q/2,ag¢—a+q/2.ot4¢a+q/2,a3

1 dd+1t dd+1 dd+1
)T s ey (Feran Peraa)(t+

q q
—t+ %IVls + E’_S+ =)

2
('I’_t+q/20' ‘I’_,+q/2) (IBOG)
and the (renormalized) effective potential (I.14)
- 1 - = -
g(¥e, ¥°) = log Z /exp[(—)\V + V(¥ + ¥°, ¥ + ¥¢)|duc, (¥, P) (1.60b)
where
v = 6u(\ u) [ 6RO (E) (1.60¢)
The particle number symmetry
% — e
o (I.61a)
b e
or equivalently .
¥ e'e 0 i8oa
— 0 e__te ¥ = ¥
i -8 o . (1.61b)
v - ¥ 0 | = Pe

that forces (Cg)12 = (Co)21 = 0 is broken in the superconducting state. Therefore we attempt
to construct a superconducting model by perturbing about the Grassman Gaussian measure

with covariance

C = Ca = [ikol — e(k)o® — Ao — Azo?]™!
ikol + e(k)o® + Ao + Dsyo? (1.62a)
ki + E(k)?

where A = Ay + 1/, and
E(k)? = e(k)? + |A]. (1.620)
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The corresponding quadratic form

ditik

(2m)eH ————T(k)[iky — e(k)o® — Ayo? — DNyo?|F(k)

is the mean field approximation to (minus) the action of the BCS model (see (1.31))

ditik

W[iko — e(k)][Prrtbrt + PrPry]

Ag f qu dd+1 dd+1

2V | o (2m)dtt (2m)et PertarPorr e Vit Vor oy

Observe that
(eigas‘l"i’e_igaa)a = (‘I"i’)eziea. (1.63)

In other words the U(1) symmetry (I1.61) moves us around a circle of equivalent states. We
may therefore assume, without loss of generality that A is real i.e. A, = 0 and positive.

The effective potential (I.60b) is expressed in terms of Ca by
= 1 = =
G(¥,¥°) = log-z- ]exp[(—)\v + V(P + ¥, ¥ + ¥°)|duc,

= Lo /exp [( AV + §V) (¥ + ©°, & + T°) — Af (dd);fl \Il(k)al\l'(h)]

d+1
exp [A/(i’r%l—\i'(k)allll(k)} duc,
log—z—, f exp [( AV 4+ 86V) (¥ + &, % + $°) - A / (z‘fd; — T (k)o B (h )] duc, (1.64)

It is more convenient to use the effective potential

= 1 - -
G(P°,¥°) =log Z /exp [(——AV + 6V)(P + ¢, ¥ + T°)

_A / (‘fz]ﬁ (T + )0l (T + xpe)] duc, (1.65)

By abuse of notation, we drop the ' on Z and continue to call the effective potential G.
Expanding (I.60b) in powers of ¥¢, ¥® generates the connected Green’s functions amputated
by Co. Expanding (1.65) generates the same connected Green’s functions but now amputated

by Ca.
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To understand perturbation theory about duc, we begin by considering the model

whose effective potential is
1
log A / exp[—AV + 8V]dpc, . o (1.66)

The perturbation expansion in powers of ) is well-defined since [iky — e(k)o® — Ao?']™! =
O (%) when kg = 0 and |k| = kr. However, each terms diverges as A tends to zero. This is
unsatisfactory because A must ultimately be chosen nonperturbatively small.

To produce an expansion that is uniform in A we must renormalize. Let

6V = 8u(h, 1) [ deR(€)s* ¥(e) (1.670)
D= D(\u,8) [ deR(©)o ¥ (E) (1.678)
Also let
S = (Sij)ijeqroy = (¥F) (1.68a)
and
2=Czl-5§"1 (1.68b)

be, respectively, the two point Schwinger function and proper self-energy for the, possibly

non-physical, effective potential
W(T*, T°) = log % / exp[(=AV + 6V + D)(¥ + T°, T + T)|duc, (¥,T).  (1.69)
The proper self-energy is a linear combination
(k) = ro(k)1 + r1(k)o? + ra(k)o? + rs(k)o® (1.70)

of the Pauli matrices.

The measure duc, and interaction —AY + 6V + D are invariant under
W, — (W), Py — i(T) (I.71a)

Therefore
(TpTr) = —((p)"(Tr)) = (TxT,)’ (1.71b)
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and energy momentum conservation further implies
S(k) = S(k).
It follows from (I.68b) that £(k)* = E(k), or equivalently
B(k) = ro(k)1 4 ri(k)a’ + r3(k)o.

The measure duc, and interation —AV + §V + D are also invariant under

W, — az(i’_k)t,‘i‘k — —(G‘”z‘:[’_._t..,)t (I.72a)
so that
(B,84) = —(0* (T, (0 ¥_4)!) = —0* (¥ T_p)'0? (1.720)
and hence
ro(k) = —ro(—k)
r1(k) =ri(—k)
Ts(k) = 7‘3(—]0).
Denote by
Sir) = [ dtxe=s((x,7),(0,0))
the partial Fourier transform of S. Since Ca(k,7) is real and invariant under k — Rk := -k

and the interaction satisfied (52), (S3) and (S4) we find that 7y(k,7),71(k,7) and 73(k,T)

are real and invariant under k — —k. Finally
(ko = 0,k) = r1(0,k)o" + r3(0,k)o® (1.73)

with r1(0,k) and 73(0, k) real.
We are now in a position to renormalize. Identity (I.73) and an “integral” equation
completely analogous to (I.20) ensure that §u(A,p,A) and D(A,p,A) are uniquely deter-

mined as formal power series in A by the renormalization condition
B(ko =0, k| = kr) = 71(0, k| = kr)o* + 75(0, |k| = kp)o® = 0. (I.74)

(See (I.15) and (I.21).) We shall show in Section III that the coeflicients in the expansion

of the counterterms 6y and D are finite, uniformly bounded in A and converge as A — 0.
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Furthermore, the obvious analogue of (I1.24b) holds uniformly in A. Let us remark that the
renormalization condition (I.74) determined kr as the zero of Tr(c*S ™ (ko = 0, [k|)) and A
as —3Tr(c? S~ (ko = 0, [k| = kp)).

We now have a perturbation expansion that is uniform in A for the effective poten-
tion W. In order to recover the physical effective potential G, (1.65), from W we impose the
constraint

A =—D(M\p,A). (I.75)

To first order in A

D(A,,u,A):—%Tr[al( ng «&«L ) ko=0,|k|=k]

A 1 dd+1p 3 3
:ETT[O' W(k,prlp, k)O’ CA(p)U Ik0=0,|k|=kﬁ‘]

d+1 A (176)
=3 [ g by PV I, R) oo s
(271')d+1 b ] pg +E(p)2 o—VY, =KF
dd+1p A
=% f B, R[] e
@mer o R IVIP =P s

where k' = (O,kpﬁ) and (S1) (I.6) is used in the last line. Therefore, to first order, the

constraint (1.75) is

dd+1p A

! !
(21‘_)0{4_1 (k ’ k |V!p! p)p% _+_ E(p)2

A=—X (1.77)

which one recognizes as the BCS gap equation. Here it appears as the Hartree-Fock approx-
imation.

For each pg, |p| the kernel (k', —k'|V|p, —p) defines a rotation invariant, self-adjoint
operator on L?(krS%~!). Expanding

MK, —K[VIp,~p) = 3 Anlpo, [P)Ta(', )
n>0

one finds

dd+1p

3 A ditip A
(27r)d+1

AR, NV . N I slic W . N
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If Xo(0,k7) > 0 and, for example, [ (%;%IAO(PO,P)I < 00, then, as is well-known, (1.77) has

a unique solution A > 0 provided |}A| is sufficiently small. Moreover A ~ exp — [%ﬁ] . This
. . dd-{-lp 1
follows from the simple observation that / ipol<€  (2m)3H p2 ¥ E(p)?

llp|l-kr|<€
decreasing and logarithmically divergent at A = 0. Later in this section, (1.75) is solved, in

is mononotonically

conjunction with the relevant flow, to any order in A.

The dispersion relation E(k) = 1/e(k)? + A? of the free action

dd—Hk _
W‘P(k)[iku — e(k)o® — Act|®(k) (1.78)

is bounded below by A. In particular, there is no spectrum in the interval (0,A). Observe
that (I.78) is not invariant under the continuous particle number symmetry (1.61).

On the other hand, the full action of (I.69) with constraint (I.75) is invariant under
(1.61) with the result that the gap (0, A) in the energy spectrum typically disappears, due
to the presence of a “Goldstone boson”. However, the gap should persist for the Coulomb
interaction because of the Higgs mechanism. Here we do not treat screening and spontaneous
mass generation. They will be discussed in another paper. Rather we mimic the Higgs

mechanism by adding the external field

d+1
J (%E-F%@(k)alw(k), (1.79)

which breaks the symmetry. Equivalently, we replace the constraint (1.75) by

A—J=-D()p,A). (1.80)

To explain the difficulties that can be caused by Goldstone bosons and to understand
the effect of (I.80) we evaluate the ladders

/\f(t,s) =

<+ < +

D505 - 5% C

»- > > L
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for an interaction obeying (¢, —t|V|s,—s) = w(t)w(s), where w(t) = x(|e(t)] < w). Under
appropriate hypotheses we will flow to interactions of essentially this type. We remark that
in the Nambu formalism A} is no more regular than the usual A of (I.25c), because the

direction of the particle lines is given a new meaning. We have

AZ(t,8) = —dw(t)(AE)"0® @ oPw(s)

where
K /‘ ditig w(k)? | o 5 tkg +2e(k)0'8 + Lot & |o® +ikg -{—ze(k)a3 + Ad?
(2m)d+1 kg + E(k)? kg + E(k)?
Let
+E(k) + e(k)o® + Aot
Exlke) =
Further calculation yields
d’k
A% = 2k) o5 @ o3, (K) ® Ex(K) + £ (k) ® £4())

(2m)¢ 2E(k)
dik w(k)® ; 41 A, e 4 By B g
= [ G s @5 1Fr e+ (5 v 5) e (5 + 5) |

— _) d’k  w(k)®1 3@ o 31+-A 2) ® il_{_'éz
= e e 2 \FT %7 T \E T EC E-TEC

The matrix

“1+iso? =
FEE =y e

A 1 e A
E E E

" ; : ) . 1
has eigenvalues £ + z-% with corresponding eigenvectors [ :!:']' Therefore the tensor prod-
)

e A e. A A A\’
t _1 -_ 2 e ._ 2 . iy — - -__ .th
uc (E +2EJ)®(E1+2EJ) has eigenvalues (E—I_zE) 5 (E o) w1
corresponding eigenvectors [1] ® [1] " [1] ® [_12] s [_12] ® [ ] and { ] [ 1 ] Also,

=[]

are eigenvectors of 0® @ o of eigenvalue +1. It follows that b, is an eigenvector of eigenvalue

1
1 for — {420' ® (%1 + i%az) ® (%1 + i%a’z)} and of eigenvalue
d%k 1

¥=-A m——
le()|<w (27)% 2E(k)

(1.83)
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for A%. Furthermore all other eigenvalues of A* have magnitude strictly smaller than +.
The sum of the ladders is given by

3 AZ(t5) = —Mx(le(t)] < w)[1 — A%] 0% @ o x(Je(s)] < w). (I.84)

n=0
When A is determined by (I.77), ¥ = 1 and (1.84) is marginally divergent. On the other hand
when A is determined by the first order approximation to (1.80), v = % < 1 and (1.84)
converges for A >> J > 0. One can show directly, by means of a Ward identity, that, under
the constraint (I.75), the particle number symmetry (I.61) forces A* to have an eigenvector
of eigenvalue one ([N]§4, [S] p. 235-236):

To make the formal discussion above precise we return to the flow. As before we

decompose the covariance

0
C=Cx= Z C(AJ) (A real and positive) (I.85a)

j=—oc0

where

; d+1 g 5
CR(€) = [ omgaree O lika1 - e(k)o* - Ao (M HE(KP)

4% e s sa(E@L+ ()04 A0

== We c 2E(k) I (k)°)

d+1
ng) (f) = f (;i‘n'-;-dfl ei(k,f)— [ikol — e(k)gs _ Aa’ll—lh(M_sz(k)2)

3 (s (K)o 1 . (1.85¢)

- (%;C)—Jeik‘xe*'g(k)lﬁ 58 ( )E(k);;_(k()k) + A h(M_zJE(k)z)

L=h(r)+ Y S(M~)
for all » > 0 (see (I1.2)) and

E(k)? = e(k)? + A2 (1.620b)

Note that f(M~2*E?(k)) = 0 unless M* > A. In other words, /A imposes a deep infrared

cutoff. From this point of view there are only finitely many scales. But the number of scales

__const

Al
(I.77)). To be precise the scales are restricted to the interval

grows unboundedly as A tends to zero since A ~ exp ( ) (see the discussion following

const

0> 3 > const log A =—W

(I.85d)
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Let

- 1 - s o p
W(h)('I'(Sh), T = 1og —Z—hfexp[_Av 186V + ’D](\I!(SO), T(0) H d”cg)(‘p(J)’ o),
i>h
(1.86)

where 6§V, D are given by (1.67a,b) and

PEH Z gl 1 T @
—oc0<j<h

with ¥(=°°) .= ¥* an external field.
The analog of (I1.18) is evident. This is not the case for (1.29) because the quartic

Nambu monomials

(‘I’kldi‘I’kB)(\i’hO’j‘I’k‘l) 0 S ‘L,J S 3 (187)

obscure the dependence on the physical fields ¥x1,%_k|,Pr1,¥—k|. For this reason we, tem-
porarily, work with the physical fields.

A priori there are 4* = 256 independent quartic monomials in the fields

Prty P—kls Pits Pkl

The superconducting effective potential.(I.SB) is not invariant under (I.61). It is, however,

invariant under

P, — eie‘I’k § ¥, — e_ie‘ilk. (1.88)
Therefore the quartic monomials that appear are necessarily the 16 possible products of

- | -
’l/)pT'l,ka = E‘I’P(UO + 0'3)‘I’k pe= ‘I’p‘TO‘I’k

_ 1_ _
P_pl_k = E‘I’p(ao — )Ty =T, T,
; (1.89)
'q[)pT'l,[)_kl = E‘i';,(a'l + i02)\1’;¢ — ‘i’p‘rl‘I’k

1= ) -
T/)_pl’(,ka = -Z-‘I'p(a'l = 20'2)‘I'k = ‘I’p‘rz‘l’k.
(Note that %, 71,72 and 7% are 2 x 2 matrices. Tau’s with subscripts will denote various

times.) It follows that a quartic monomial M in W has a representation

3

/dd“kl d 1k, ditlky ditlky

1
M=3 (2m)3HT (2m)F (2m)dH (27)4H

(2m)4 1 8(key + ky — kg — k)

m,n=0
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Frnn(kry bz, ks k) (e, 7 T (¥, 7" T, )

We now show that four of these kernels determine the remaining twelve.

255

(1.90a)

The kernels f,, , are uniquely determined on the support of §(ky + k2 — ks — k4) by

the condition that N
Z fm,n(kl ) k2a k37 k‘i)("-m)anaa (Tn)az yOq

m,n=0

(1.90b)

be antisymmetric under (k;, ;) < (kz,a3) and (ks3,as) « (ks,s). We make the antisym-

metry condition explicit. The kernels f,, , must satisfy:
a) fii(k1,ks,ks,ks) is antisymmetric under k; < k, and k3 — k4
b) fos(k1, k2, ks, ka) = — f1,2(k1, k2, ks, ks)
= —f2,1(k2, k1, ks, ks)
= f3,0(k2, k1,ka, k3)
cl) fo(k1, ko, ks ka) = f1,0(k2, k1, ks, k3)
fou(R1, ks, ks, k) and fi o(k, ka, ks, ke) aze antisymmetric under &, < ks

c2) fo2(k1,ka, ks, ke) = fa,0(k2, k1, ks, ks)

fo2(k1, k2, ks, ks) and fo o(k1, ks, ks, ks) are antisymmetric under k3 < ks

¢3) f1,3(k1,ka, ks, ka) = f3,1(k2, k1, ks, ks)
f1,3(k1, k2, ks, ke) and f3,1(k1, k2, ks, ks) are antisymmetric under ks « k4

c4) f2,3(k1,ka ks ka) = f3,2(k2, k1, ks, ks)
f2,3(k1,k2, ks, ks) and f3 2(k1, k2, ks, ks) are antisymmetric under k; < ks

Since M is invariant under
T —i(Tr) O — T}
‘I’k b 0'2(‘1’_k)t ‘i’k — ——(0’2‘I’_k)t
¥, — Uh ¥, — Up, forallREO(d)
the kernels obey
fm,n(kla k2’k3) k4) = f?’f(m),"r(n)(k37 k‘h kl, k2)

where 7 is the permutation (0) (1,2) (3),

fm,n(klg kz, k3,k4) — (—1)6m'1+6m’2+6n'1+6n’2fp(m),p(n)(_k.'i, _k4, _kl’ __kz)

(1.90c¢)

(I.91a)
(1.91b)

(1.91¢)

(1.92a)

(1.92b)
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where p is the permutation (0,3) (1) (2) and
frmn(k1, ko, ks, ka) = frmn(Rk1, Rk, Rks, Rks), R € O(d). (1.92¢)
Combining the three parts of (1.92) yeilds
Frm(k1s kg kg, k) = (=1)0matbmatbantbnng o o (Tky,Tky,Tks,Tky)  (1.92d)

where the product pr is the permutation (0,3) (1,2) and T'(ko, k) = (—ko, k) is time reversal.

In particular

.fm,n ((0) kl)a (Oa kZ)? (0, k3)? (0’ k4))

= (_1)6m’1+6m'2+6“’1+6m2fp‘rr(m),p-;r(n) ((05 ki1),(0, k2), (0,ks), (0, k4)) (1.92e)
Observe that the antisymmetry conditions imply that the nine kernels

foo fono foz fos

fia f1a
o2 fas
f3,3
determine the others. It follows from (I.92a) that the six kernels
foo fou fos
fin fis
f3,3

determine the others. Finally (I1.92b) implies that only the four kernels fo0 fo,1 fo,3 fi,1 are
independent.

Let the group SU(2) act on the fields ¥, ¥, by

0 2Ft
& [ a b] ) _‘I'k — a¥y + ibo* ¥’ | (1.93a)

-b a| ¥_, —a¥_; —ibPliol
or equivalently on the physical fields ¥, ¥ by

][z
Yy Py (1.93b)
[Prty Pry] — [Prr, Pry] A%
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Observe that the transformation (I.93) sends the term

ditig
5 [ Grmr b E) 2 E(k)

di+ig
= | Gy d) rrdou + $oabu]

d 1
/(2 ;dflg(k){(a¢kT+b¢kl)( bkt + aPry) + (—bP—ir + a_is )@ty + bibry )}
d+1
‘“Af(;i )dfly(k) [PrrP—k) + Y—k1¥r1]

when g(k) = g(—k). Consequently the effective potential W(*) and the associated connected
amputated Green’s functions are invariant under the action of SU(2).

Set
Q(t',s") == —fos(t, 8,8t (1.94a)

where once again t' = (0, kFﬁT) Then by direct calculation SU(2) invariance forces
foo(t',—t',s',—s") = [Q(t,s") — Q(—t',s')]. (I.95a)
Moreover by antisymmetry and (1.93e)
fO,O(t'1 _tla 3'1 _3') == f3,3(t', '—t': 3’, _3')
=R, - Q(—t,s)

fo,s(t', 8,8, t") = fa0(t',s',8",t")

(1.95b)

= —fl‘g(t’, S', t', 8,)

= _f2,1(t,) S’,t’, 8')

= —Q(t',")
and
Qt's') = Qs',t') = Q(—¢',—") (1.95¢)
Define an involution * on the Grassman algebra by
‘I’; = Wy

(1.96)

Uy = Ury
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and by complex conjugation of scalars. One easily sees that
W(Te, &) = W(Te, T°). (1.97)

Consequently

fm,‘n.(kl y kZ) kS; k4) = fm,n(Tkl 9 TkZ, TkSs Tk4)' (I.QS)

In particular, Q(#',s') is real and therefore the kernel of a self-adjoint operator on L%(krS%~1).
The localization operator L(® h < 0, is now defined by the self-evident analogs of
(I.29b-d)

L™ const = const (1.99a)
L® ] de1de T (6)K (6 — &)T(E)
—¢ ] dé1dE; T (61)K (6 — &)T(&2)

= [ ae¥© &k =0, k| = vEmR)%(6)
where K = K1 + Ky0' + Kz0% + K30° (1.995)

L™ ] A dbn Ky i (1, o) B (62). B (6) = O
forn > 4,1;=1,2 (1.99¢)

and
dé+1k. (G "
L(® f 11 W(zw)d“a(h + ky — ks — k) frmn(ky, kay ks, g (\pﬁc;)rm\pg;))

(i) =0 (1.999)

for (m,n) #(0,0), (3,3), (0,3), (3,0), (1,2), (2,1),
dd+1t dd+1 8 dd+1 q

(z.n.)d+1 (21r)d+1 (27r)d+1

I,(i1) _mg(a) 3, (i2) (i4)
(‘I't-;q/ZT ‘I‘a-:-q/2) (‘P—:+q/2Tn‘Il-—z+q/2)

q q q q
Jmn(t + E,—t+§,3+§,—3 + E)

LA

dd+1t dd+1 dd+1 T
:/ ; q (IqIM_Eh +h])fm.n(t'$_t')5’7“‘5')

(2m)aHT (2m)dHT (2x)dti?
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T,(i1) _mg(is) (i2) )
(‘I’Hq/z"' ‘I’a-:q/2) ('i'—H-q/zT \Il_‘+q/2) (1.99¢)

for (m,n) = (0,0), (3,3) and

dd+1t dd+13 dd—Hq

L
(2m)dt1 (2m)d+r (2m)d+l

9, 9,.9, 19
fm,n(t+§73_2,3+2)t 2)

5 (i) (43) I (i2) (i)
(\I't-:q/ZTm\I‘at:q/z) (‘I':—zqﬁrn‘l’t:q/z)

dd+1t dd—H s dd+1 q

- —1[i*+h] N PR
(271')d+1 (271’)d+1 (21[')d+1 p(lqlM )f ) ( ,3,3 )

= (i1) m ., (i3) = (iz) n o (ia)
(‘I'Hq/zf ‘I’.+q/2) (‘1’,_9/27 ‘I't_m) (1.99f)

for (m,n) = (0,3), (3,0) and

q q 1
E,t—'z_,s_"é')

L / dHly  dHls  ditlg
(

g
m,n t a1
e e CTh

5, (1) __mg,(ia) i, (i2) nyyt
(‘I’tfl—q/ZT ‘I,t—aq/2) (‘I'a—z-q/ZT ‘I’:Fq/2)
dd+1t dd+13 dd+1q

= —3[7 44 m,n t'a '7t" '
(27)3+T (2m)4t1 (2r)d+1 p(la|lM )fman(t'ss s')

g (i) _mg(ia) =(i3) _ng,(is)
(\I’t:'quT ‘I,ti—aq/2) (‘I’,_zq/z‘r ‘I's+q/2) (I.ggg)

for (m,n) = (1,2), (2,1) where, as before,

+* = max(iy,2,%3,%4)

p(r) =1 — h(r).

One may visualize the flow of momentum in (1.99) by



258

Nambu fields

Nambu fields

DL€

Feldman and Trubowitz

Physical fields

Physical fields

i T 5131
q/a q/2
i2 | tig ]
i | S iy |
q/a q/2
i 1 A

H.P.A.
(man) = (050)
(m,n) =(3,3)
(1.99¢)
(m,n)=(0,3)
(m,n) = (3,0)

(1.99f)



Vol. 64, 1991 Feldman and Trubowitz

Nambu fields Physical fields

T e el
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t /2 Gz =02
g il et il 7 i
q/a < ) @2 :
12 N * ’l'4 z.1 l \4/ 13 T
S
q/t q/2 (m,n) =(2,1)
127 /'5‘\ i |
(1.999)
Set
QM(T® w5 < p) := (LM — Hw® (Z 1S »1:“)) (1.100)
i<h i<h

Observe that kernels appearing in the range of L(*)
of Q. Consequently there exist kernels Q(*)(¢',s'),h < 0, such that

dd+1 { dd+ 1 dd+

(h)
Q (2m)d+1 (27)d+ (27 )d+1p(|q|

—%[i‘+h])

7'1 ,12 :33 a"'-l < h

{8 00 - o®(-t,)] (#5,m93,,) (2

(m,n)=(0,0),(3,3)

h (1) _mg(is) (i2) _ng(ia)
+ Z (“1)Q( )(t' )(‘I,t-:q/z ‘I’at-la-q/z) (‘I’a 29/2 ‘I’tMQ/z

(mln)=(0!3)!(3i0)

+ X

(m,n)=(1,2),(2,1)

QM

) (B u,) (2, 95,) |

— £ can, by (I.95), be expressed in terms

(14)
t+q/2 ulis s+q/2)
(1.101a)
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dd+1t dd+1 dd+1
(zw)d+1 (2‘.'? d+1 (2 )d-f—

: g_p(lq|M 3T+
11,l2,13,t4<h
1 j(i) i) (ia) (ia)
E [Q(h)( )+ Q(h)( t i3 )] d’t—}-q/z'[ —:+q/21¢—:+Q/21¢3+(I/2T
dd+1t dd+1 dd+1

> / @n)# @n)T (2n )d+1p(|q|M-%“'+"])%[Q(h)(t',s')—c.z(’”(—t',s')}

iy 11'21"317'4<h

() 7(i3) (i4) (ia) (31) (1 ) (i4) (3)
{¢t-:q/2T —:+9/2T¢—:+‘1/2T¢‘:‘1/2T +1’1;t+19/2l —:+q/2l¢—:+Q/2l¢s+q/2l

1 [5G0 7o (i) 7(ia) (ia) (i) (4 (ia)
+35 [¢t+q/21¢—z+q/21 + ’/’tfq/zl’wb—i-rq/n] [1/’—a+t1/2l"‘ba+3-';/2T¢*a+q/2T¢a+q/2l]} (1.101)
Expression (I.101b) should be compared with the decomposition (I.30) into even orbital
angular momentum singlet spin states arid odd orbital angular momentum triplet spin states.
As explained before these combinations are the Cooper pairs.

The effective potentials W(*) (1.86) are analyzed using the same strategy. We applied

to

- 1 - PRS
G (M, $I<W) = log - j exp[-AV + 8V)(» <D, $0) [ | duce (#2,9). (1.14)
h :
i>h
Just as before, W*) is the sum of all planar trees (including the trivial trees (I.34c,d))
constructed from R and C forks (I.34a,b) with root scale h and leaves —AV. Now, however,
the localization operators £ and L(*) are replaced by the operators £ (1.99) and L(® (1.99).

The graphs contributing to the perturbation series for
1
log 7 exp[—AV]dpc,

are, as remarked above, bounded by (consta)™ because [tky — e(k)o® — Ac!]™? = O (-i—)
As A tends to zero mass subdiagrams diverge and arrays of four-legged subdiagrams produce
anomolously large values. The addition of counterterms §V,D in W, (1.69), yields a perturba-
tion series uniform in A. Still, as A tends to zero, anomolously large graphs appear. However
they are uniformly localized by L(® — £in Q(®), (1.100). Precisely, the content of Theorem
1 below is that graphs contributing to trees containing no quartic C forks are exponentially

bounded, uniformly in A.
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The derivations of (1.47) and (1.48) may be applied verbatim to the effective poten-

tials W(?) and effective interactions Q(*) to yield the coupled system

Wk — ok 4 Z(L(i) _ L(i—l))Q(i) _ Z(g(i)(w(i))
i>h i<h

+ =21 =LY + 3 (1 - LED)EOWD)| +1og Zg““ (1.102a)
h

Qr-1) (L(h—l) _ t)Q(") +i(>£(h—1) _ t)g(h)(w(h))' (1.102b)
and the boundary conditions
(projection onto nonquadratic part of W(®) = -V (1.103a)
QO(t',s') = —A{t', —t'|V|s', —s") (1.103b)
Jim ovih = o, (1.103¢)

Bear in mind that the truncated expectation £(*) (1.17) is now with respect to the covariance
Ca.

Given an arbitrary sequence of quartic monomials Q(*, iteration of (I.102a) gener-
ates W(*) as the sum of all planar trees constructed from R (I.34a) and ¢ (1.23b) forks with

root scale k and leaves —A(1 — L(% )V and oWl 4+ Z(L(i) - L(i_l))Q(i). Following the discus-
i>j
sion of (1.37) through (I1.40) one sees that W(Mis the sum of graphs with generalized vertices

A1 -L®)Y and QW + Z(L(i) — LG-1)Q()_ If the renormalization group flow (1.102b)
i>j
resums the quartic parts of C forks to effective interactions that are uniformly bounded in h

then by Theorem L.1, to come, all the graphs contributing to W(*) are exponentially bounded,
uniformly in A. We shall discuss the convergence of (1.102b) in Theorem I.2.

Let w(®)(¥e, ¥*) be the sum of all planar trees constructed from R (I.34a) and ¢
(I.23b) forks with root scale h, leaves —AV. The scale sums in (I.34a) and (I.23b) are now
automatically restricted to the interval (I.85d). Of course, LM ¢, M) are replaced by L(*), £
and C(Ah). We define wg’;?n(&, ..-y§2p) by expanding

oo oo P
wP (e, ) =) " “"1—,)‘"' 11 (/ dézi—1d52i‘i’e(~fzi-1)‘I"’(Czi)) %l Ty
p=1n=1 (ZP)' i=1

(1.104)
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Let T be a tree contributing to wgz?n and I';,(7) the set of all 2p-point labelled graphs

consistent with 7 so that

wid = N 3 vala(GY). (1.105)

trees T with T'3,(7)

n leaves

We now state the first main result. It immediately implies, that for any fixed graph con-
tributing to (1.105), the sum over scale assignments i¢,f € 7T is exponentially bounded
in n, uniformly in A provided [fnA| < <%t Note that the solution of (I.77) satisfies

this inequality. The Theorem is designed so as to accomodate vertices/leaves of the type

Q(i) + Z(L(t) _ L(i—l))gi_
i>j
Let us imagine that Q(), j < 0, has been constructed nonperturbatively by iterating

a map of the form (1.102b). Then the first component (1.102a) of the coupled system can be
iterated on its own. The solution is a sum over more general trees in which we allow leaves
QW) 4 Eizj(l‘(i) — LG-DQM and —X\(1 — L)Y,

Define the norms

4 4
| I||» = max {M(Zi=2 A+ 5 PO sup /dededT4
kitkz+katke=0

4 4
I 171 | T V&2 100, 1), (72, K2), (75, s), (73, Ka))| -
j=2 j=1

4
S o <2, Y 18] <1052 o} (1.106)

IT||» = max {M(""Hm"l sup/dT|T|°[V£S((O,—k),(‘r,k))| :0<a<2,8| < 1} (1.107)
k

Iulf = ]ddkl-"ddk2n6(kl e k2n)3up‘r1,...,1'gn Iu((‘rl,kl)a sy (TZna k2n))| (I'108)

on four legged, two legged and general kernels respectively. Here (7, k) refers to mixed (time,
vector momentum) coordinates and | - | refers to the tensor norm. Roughly speaking the
norms (1.106,107) control two k¢ and one k derivatives.

We now describe the class of graphs to which Theorem 1.1 applies. Let 7 be a tree
constructed from R forks (I.34a), ¢ forks (I.23b) and n general four legged leaves each of type
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7% @ 7% with a + b = 0 (mod 3). These leaves I,],"(") may depend on the scale j(,) of the fork

7(v) of 7 immediately below v and are assumed to obey
sup 1] < Al (1.109)
j

The ultraviolet regime has already been treated in [FT] so we discard 7 = 0 and from now

on we restrict ourselves to the interval
—1 > j > constlog A. (I.110)

To state the Theorem it is also necessary to describe the effects of Wick ordering
(see the discussion following (II1.3)). If G7 is a graph contributing to 7 then each line of G
has a scale label j¢, f a fork T, and is given a hard/soft label. Hard lines ca.fry the covariance
(1.85b) while soft lines carry

d?k oikex o= E(I)| 7| sgn(7)E(k)1 + e(k)o® + Aol
(27)4 2E(k)

ci(e) = - (M~ E(KY) (I.111)

Furthermore, defining
G5 = {£ € G| the fork f' of £ has f' > f}, (1.112)

Wick ordering forces each quotient subgraph G¢/{G s |f' > f} to be connected by hard lines

and to contain no tadpoles

Q

Theorem I.1 Let T be a tree constructed from R forks (I.34a), c forks (I.23b) and n general
scale dependent four legged leaves I each of type 7 ® T° with a + b = 0 (mod 3) and
satisfying
sup | 17| < Alws
i

Let G” be a labelled graph contributing to 7 as above. Let |log A| < CT;‘rt. Then

| Y Val(G7)|' < const™@ NP2 TTIIA 2w, ).
J v
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The sum is over
{3 |jncpy <Jf < -1 if fis an R fork and

const log A < j¢ < jacsy if fis a ¢ fork}

with jr(¢) = constlog A. )

Theorem 1.1 is an immediate consequence of the more general Theorem III.6.

Verifying Theorem II1.6 will amount, in Sections III and IV, to controlling 1 — L(*).
When L(*) acts by (1.99e-g) the discussion of (I.41) applies. A new ingredient is required for
(1.99d).

For (m,n) # (0,0),(3,3),(3,0),(0,3),(1,2),(2,1), that is m + n # 0(mod 3) , the
quartic monomial (¥7™¥)(¥r™¥) contains, by (1.89), different numbers of physical #’s and

physical 9’s. For example,

(B, T2 Tk ) (P T Thy) = Yy | Pk | Vs 1P — k|-

Observe that all the interaction leaves (1.60a)

1 _ -
3 [ kalVIka, Ba) (R, [ = 7)) il — 7¥]2,)

of any tree 7 contain only monomials with ¢+ b = 0(mod 3). (This remains true in Theorem

iko 1-}-(5(1:)[1'0 —1'3]

I11.6 where Q(*)’s are also admitted as leaves.) Furthermore, the portion (—1) T (7

of Ca preserves the number of physical ¢’s and physical 3’s since
rir™ =1 or T™7t = 17

with ¢ = 0,3 implies m = j and, in particular, m(mod 3)= j(mod 3). If G is a labelled
graph consistent with 7 and a + b # 0(mod 3) then it follows from the discussion above that
the kernel f, ; of any four-legged subgraph corresponding to an R fork of 7 must contain the
Alrt 472 - .
-1L——lk T E(o: Portion of some covariance.
(1]
Recall that

tkol + e(k)[7? — 3] + A[r? + 7]
kZ + E(k)?

CR (k) = (-1) f(M~?E(k)?) (1.85b)

On the support of f(M~2*E(k? )

kol + e(k)[7® — 73] 1

Cu(k) = () =t i ~ i

(I.113a)
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Al + 72 A

C,(k) := (—l)kg ¥ E(k)? ~ MzRe

(1.113b)

The portion (I.113a) of C(Ah)(k) obeys the same power counting bounds as the standard

CPI(k) = Z s f(Mhe(K)?).

ko — e(k)
On the other hand the portion (I.113b) is smaller by a factor MA,,—.
Suppose a + b # 0(mod 3). Then the kernel f,; of a four legged subgraph corre-

sponding to an R fork of T of scale h is bounded by O (HAE), in contrast to the usual power
counting bound O(1). We have

> -A% < constant (I.114)

h s.t.
MrE>A

uniformly in A. Consequently the subgraph is summable over k, justifying definition (1.99d).
We also exploit

t
> 1< =8 (I.115)
—1>j>const log A | 1

in the proof of Theorem II1.6. See the discussion surrounding (1I11.21) and (III.23) for more
explanation. Care is taken throughout Sections II-IV to ensure that the total number of sums
(I.115) does not exceed a fixed fraction (strictly less than one) of the number of leaves.

We now discuss convergence of flows of the form

Q1) = (L1 _ g™ 4 (L1 _ )M (O .. o)) 4 (LD l)g(Z’;)(Q(O), ey Q)
(I.116)

Here
é;h)(Q(o), _— Q(h)) —the part of EX")(W("')) that is

quartic in the external fields and is

homogeneous of degree 2 in (Q(%, ..., 9(*)
and f:'g;)(Q(o),..., QM) is to be thought of as the quartic part of EXL)(WU‘)) -
EMgo Q")) where W(® is expressed nonperturbatively in terms of (Q(?,...,Q(M).
Once again, Wick ordering implies that El(h)(W(h)) = 0. By (I.101) we may equivalently

discuss the flow
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of the kernel Q(*)(¢',s') of Q(*). Here
E(E,s') = BP(QW, .., @M A)(Y, o), (1.1178)
Bt o) = B QW @5, A)E, o) (1117¢)

are the kernels of F:'z(h) and f:'(;;) respectively.
Observe that (equation (1.118))
[the quartic part of -il-l-é'gh) (quartic part of W), quartic part of W(M)]=

1 N
FOMONEE
2
2
CFDET ¢ Bl
Ghelld Ehelld

where 1 @ is the antisymmetric kernel (see (1.90)) of the quartic part of WP, We

easily show in Section IV that the last two diagrams are irrelevant. The first two are more
subtle. We proceed to analyze these diagrams.

The first step is to separate off the (—1)%_%;— portion of the covariances on lines
1 and 2. As in (I.113b) and (I.114) they generate summable contributions. Next we remove
the Z(l ~ L(i_l))E(i)(W(i)) contributions to W(*), They are part of F:'g;) The third step
is tol?clltentify electron-hole ladders. We will show in Section IV that they are also irrelevant

contributions. This is most easily done in the physical field formalism.

Let the Nambu graph

QN

represent the monomial 3 [ fm o (Er™®)(Tr"¥)with 0 < m,n < 3, m +n = 0(mod 3).
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All contributions with m + n 3 0(mod 3) have already been placed in fg;) In physical fields

this graph corresponds, by (1.89), to

:Q: feir (i, ) = 10,0
:O: for (m,n) = (3,3)

:C): for (o, n) = (0:3)
:z:): for (m,n) = (3,0)

:Cjz g fry, 1) = (1,9
::Q: for (v m) = (2 1)

Consequently, for
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W, W,

N =

(1.119)

we get zero or an electron-hole ladder except when W; and W, are both of type 7° ® 7° or

both of type 73 ® 73. Then the whole graph is of type 7° ® 7° and 7% ® 7 respectively. For

(1.120)

we get zero or an electron hole ladder except when one of Wi and W, is of type 7! ® 72 and

the other is of type 72 ® 71.

The last step is to apply (L(*~) — £) to the remaining parts of (1.119), (I1.120) and
identify Q(*~Y) from the result. By (I.101a) it suffices to antisymmetrize (1.119), (1.120) and
select the coefficient of 7! ® 72. Graph (1.119) does not contribute to this coefficient. By
(1.99g), setting ¢ = 0 for the whole graph (I.120) forces ¢ = 0 in the kernels W; and W, with
the result that the (L) — LG-1)Q() contributions to W; are also zero. The term (1 — L°)V

of (I.102a) does not contain 7! ® 7% or 72 ® 1. This leaves

(1.121)
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Antisymmetrization has replaced the coefficient (-2) by (-1). The kernel of (1.121) is

dép 1 (RY(qpt 1 (R) (ot o ssqld] 1 (3
—4 (271_)4"2'52 (t'p )—2“Q (s,9") .gh trr°C; 7 (p)7 C;"(p) (1.122)
4,3 <
it or j=h

where anh)(p) = C,(p)f(M~2*E(p)?) and C,(p) is given in (1.113). The sum Z
i,j<h
i037=h
results, as usual, from Wick ordering. The only nonzeros traces are
trr®17'1 = trr?171 78

=trr?7%7'1 = tr7237 %173 =1

so that
P +e(p)?

trr?Cy(p)T'Ci(p) = —m.

Hence the integral (1.122) becomes
62 [ a1, o)
where

d—1 2 1 o(p)?
0 [ [B] (e - s
(1.123)

The conclusion of the discussion above is that we may rewrite the flow equation

(I1.117) as
QU 8) = QV(t',¢') + B f ap' @M, p)QM (', s") + SM(QD, .., @5 A)(H, ")
+HM(QO, ..., @M ), A)(#,4'). (I.124a)

Here all the contributions of third and higher order have been placed in H(?), The
“summable” second order contributions have been placed in S(*). Precisely
§() = the second order parts of the last two diagrams of (1.118)
+ those second order parts of the first two diagrams of (1.118) for which either
propagator 1 or 2 is a C, (see (1.113b))
+ all second order parts of the first diagram of (1.118) except those for which both

kernels are of type 7° ® 7° or of type r* @ r*
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+ all second order parts of the second diagram of (I.118) except those for which one
kernel is of type 7' ® 7% and the other is of type 72 ® 7. (1.124b)

The only other second order contribution is that from the physical field electron-electron

ladder and this has produced ﬂ(g)Q(h)z.

To see what is going on we once again start by considering the ladder approximation
Q(h_l)(t',s') — Q(h)(tf,sl) + Bgt)fdprQ(h)(tJ,pr)Q(h)(pr,8:) (1—_125)

to the flow and compare its behaviour to that of (I1.53). By (I.92¢), (1.95c) and (1.98)
Q™)(t',s') defines a real, self-adjoint, rotation invariant operator on L?(krS*~1) and hence

may be decomposed into spherical harmonics

QM(H,s') = ) AW (A)ma(t!,s"). (1.126)
n>0
The analogue of (I.55) is
API(2) = AP(2) + BLAP(A))?, n >0 (1.127)

with initial data determined by

> AQxa(t', ') = At —'|V]s', —5").
n>0

The solution of (I.127) behaves very differently from that of (I.55) because

0 d-1 2 2
Z ‘B(Ah):‘/dpﬂdfpl [MJ p0+€(p) 2p2(M—2E(p)2)

d+1 2 2
Etia (27) kr [ps + E(p)?] (I1.128)
m
in contrast to hlim B — g.
We show that if
0
DO S B <y <1, PO <<1 (I.129)
h=—0co
then
XD = (129 T - i) (11300)

i>h
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with
M)« L= 7y (® 5 < 1-7 b
PP < =PI < —— (1.130)
N i>h
First observe that (I1.130b) implies

AW < (1 =y — 2= T)1]xO)
. 2 (I.131)
W |
1—94""

The flow of the tail is given by
= 2 h)y—
BAD = o) — XOB AD(L + APBL) .

The inductive bound (I1.130b) follows from
DB AP+ APBY)
)\ 2 2 N\
< 0L (suw8Q) 01 (1 T2 0 oup )
i 1—v 1-7 j

1-7
< AP16R
A 2v

provided |)\S,°)| is small enough. Consequently the sequence generated by (I.127) converges
(though not to zero) for all sufficiently small initial data irrespective of sign when (1.129) is

satisfied. Recall that, in contrast, the solution of
AG=1) — AW 4 g (A(R))2 (I1.55)

lim A" =8>0
h— o0

converges to zero like

. ASLO)

AR peat e
1+298n

4 h — —o0

when /\5,0) < 0 and diverges when AS,O) > 0.
Condition (I.129) is anticipated in the discussion following (I.81). After all, solving

(1.125) amounts to summing ladders as in (I.84). In fact « is, up to sign, the largest eigenvalue

o2 =1 5]a 3]

of A% with corresponding eigenvector (1.82) by =
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In evaluating the first two graphs of (1.118) we painstakingly distinguished between
physical field particle-particle and particle-hole ladders. The former determine the leading
behaviour of the flow while the latter were placed in S(*) (1.124b). This essential difference
is evident in A%, As A\, A — 0 with

k1

=% B
¥ le(i)|<w (27)¢ 2E(k)

held fixed, A* becomes
1
75{2120'3 Qo +1®1}.

The limit has two eigenvalues « (for the particle-particle ladder) and two eigenvalues 0 (for
the particle-hole ladder). Thus, particle-hole interactions produce a relatively small effect.
As we have observed, (1.84) is marginally divergent when v = 1, that is when A is
determined by the BCS gap equation (I.75). But, it is convergent when A is determined by
(1.80) that is v = é-gi < 1. We introduced J in (1.79) to eliminate Goldstone bosons. Our
discussion of the ladder approximation is finished and we now return to the full flow (I.117).
Four legged diagrams are, by natural power counting (see Lemma V.3 [FT,p. 209]
and the discussion preceeding it), dimensionless. That is, a four legged diagram whose lowest
particle lines are at scale h tends to obey a bound proportional to M°*. However, as we
have pointed out (see (1.85d)) there are only O (]71\'[) scales. The net effect is to improve
MO to ﬁﬂ,%. We shall see in Lemma IV.4 that for “summable” second order diagrams
MP°* is improved even further. Thus one would expect, in the course of a nonperturbative
construction, using determinant bounds and Theorem III.6 to sum perturbation theory, that

S and H® satisfy

I Y. SDQW, ..., @W; 2)lls < vIQW (1.132a)
W>i>h
and
|H® QO ..., Q") ) A)ls < _yh_“Q(O)”g/‘* (1.132b)
— ) Yy h_th—*-A 0 *

for |QM|1, .0, |Q™ |5 < ¢[|Q|lo. The constants v and n depend on ¢ of course, but not
on A. This leads us to formulate

Theorem 1.2
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Let

Q(O)(tl,sr) — —)\(t', —-t’|V|3', —8') — Z )\Slo)ﬂn(t',.s'),
n>0
where t' = (0, £ kr) and , is the projection in L2(krS%~1) onto the space of homogeneous
[¢] proje

harmonic polynomials of degree n, satisfy

1 3 A< <
where 85 is defined in (1.123) and ||Q®||o < co. Let S and H® be maps from the h-fold
Cartesian product of B(L2(krS9—1)) to B(L?(krpS?~1)) obeying (1.132). Then there exists a
constant €, independent of A, such that for |A\| <€ the sequence Q(*) generated by the flow
(I.124) satisfies

1Q™ I < const[| Qo (1.133)

The const depends on ~, but not on A.

Theorem 1.2 is an immediate consequence of the more general Theorem V.1. The
convergence of the sequence Q™ is discussed following Theorem V.1. The convergence is
in a norm weaker than all the || - ||»’s. For constructive purposes the boundedness (I1.133) is
much more important than the nature of the convergence.

The coupling constant A and gap width A appear as independent parameters in the

coupled system (1.102). In Theorem 1.1 we required
|Alog A| < const. (1.134)

In Theorem I.2 we further required

0
sup 1AL0)) Z ﬁ(Ah) £ 441 (1.135)

h=—o0

0
Here,)\%o) is proportional to A and z ﬂg"), given in (1.128), is proportional to |log Al.
h=—o0

Inequality (I.135) is more stringent than (I.134) and, indeed, implies it.
It is now easy to summarize our main conclusions so far. Assume (1.135). Then

the flow (1.102b) converges when (I.132) is satisfied (and, by Theorem IIL.6, this is the case
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if (1.102b) is truncated at any finite order of \) and every graph contributing to (I1.102a) is
exponentially bounded. The last step is to impose (I.80) so that the coupled system (1.102)
gives the physical model (I1.60). See (I1.75).

Recall that D(X,p,A) is the coefficient of [ d¢¥(¢)o! ¥(€) in the action —AV +
§V + D. See (1.69). The order )\ contribution to D is given in (1.76). The n't order contri-
bution, n > 2, is the coefficient of ¢! in the sum of all trees with n leaves, root scale 0 and
lowest fork a ¢ fork. By Lemma III.7, each graph contributing to such a tree is bounded by

const™|A|*/*A|log A|. Therefore, to any finite order the constraint
A—J=-D(\p,A) (1.80)

becomes (following the discussion after (1.77))

dd+1 ! ! A 2
W(k ,—k'|V|p, —P)WP(E (p))

+ O(Allog A||AI%)

A—-TJ=-=A

dd+1p A g2
(21r)“+1 o(Po,|P|)WP( (p))

(1.136)
+ O(Allog A|[A*/%)

dd+1 % 3 A
(2 )d+1 )‘0(0 kF)p (M E (p)) 2+E(p)2

+ O(AJX]) + O(A|log Al|AP/%)
Just as before, (1.136) has for any J > 0 a solution A > ma.x{J, exp [ ‘T—n,ﬁ]} provided
M (0,kp) = )\((30} > 0, and |)\| is sufficiently small. Suppose, AE,") > 0,/\80) > |A%0)| for
all n > 1, and J > 0. Then (I.136) implies that

dpodlp| [IpI]"" P} +€X(p) -
A(U) (h) (0) Po 1P| _pot+e(p) g sa
g PILE ene (k] i EEE  T®)

_ @ [ [ dpodlp| PP(M2E*(p))
= ((%V” ﬁ+W@)+Om)
A—J

_ 1/4
=—H0(3[**)

|
when |A| is sufficiently small, depending on J. The inequality A > J tells us that the

h=—oc0

(1.137)

symmetry breaking term (I.79) does not produce a gap larger than the physical A.
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Theorem 1.3. Let (k;,k2|V|ks, ks) be a general two-body interaction such that the symmetries
(1.6) are satisfied on the support of §(k; + k2 — k3 — k4) and ||V|jo < co. Suppose Ago) >0
and A > |A{?|, n > 1, where (see Theorem 1.2)
Mt~ |V[s',—s') = D ADm (¢, 8").
n>0

Then, for |A| sufficiently small, the constraint (I1.80) has a solution A such that the hypotheses
of Theorem 1.1 and Theorem 1.21.32 are satisfied for the pair (A,/A). Consequently, the
coupled system (1.102) gives the physical model (I.60), the flow (I.102b) converges when
(1.132) is satisfied (and this is the case when (1.102b) is truncated at any finite order of X)
and finally, every graph contributing to (I.102a) is exponentially bounded.

Recall the interaction

(ke — T} — A2 _ k)2 w(ks — ky)* I5
(k]_,k2|Vlk3,k4) = U(ks kl) 04 G(WD &J(ks k]_)) (k3 — kl)g —+—w(k3 — k1)2 ( . C)
In this case
At —t'|V|s',—s") = = AU(s' —t') + M2 8(wp — w(s' —1'))® (I.138)

If the two-body potential U/ and phonon frequency w are smooth and w is bounded away
from zero, we have ||V||o < oo. It is easy to see from (I.138) that for any l},Ago) > 0 and
Ago) > [A%u)l, n > 1 when +4? is big enough. Thus the hypotheses of Theorem 1.3 are satisfied.
This completes our small-field analysis of the effective potential (I.5).

We now summarize the rest of the paper. Section II bégins with simple estimates
(Lemma II1.1) of the covariance Cg) that are formulated in terms of the “dual” mixed time,
d-momentum norms (IL.5). They tell us that the power counting dimension (in the sense
of (II1.5)) of each particle line is 1. The rest of Section II is devoted to strings (IL.6) of
renormalized mass subdiagrams that we regard as generalized covariances. The appropriate
estimates are given in Lemmas (I1.2) and (I1.2'). They are more involved than the analogous
[FT Lemma VII.3] because (I1.4) does not localize ko near zero in contrast to [FT§2].

Section III culminates in an inductive proof of the graph estimates Theorem III.6
and Lemma III.7. The argument relies on the Abstract Power Counting Lemma III.1 that

reduces the problem of estimating graphs to those for which renormalization cancellations
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A
must be exploited. It also relies on the fact that Z T A Z 1 = const|A||log A| are
s.t. h s.t.
MESA MF3A

uniformly bounded in A. Such a priori bounds allow us via the yes/no Lemma IIL.5 (and
general string estimates of Section II) to further reduce the proof to controlling the special
second order, two and four legged graphs of Section IV. Lemma IIL.5 counts the fraction of

coupling constants eaten up by A Z 1.
MP>A
Section IV is the most technical. Second order four legged graphs (IV.1) and two

legged graphs (IV.48) are treated by hand. The main tool is the k-volume bound LemmaIV.2.
It is used to obtain improved estimates of four legged electron-hole graphs with general kernels
(Lemma IV.4) and four legged electron-electron graphs with at least one renormalized kernel
(Lemma IV.5). Volume restrictions are also used to estimate two-legged graphs in Lemma
III.6.

Section V is more straight forward. It treats an abstract flow of the type (1.124).

We hope in the future to combine the ideas and estimates of this paper with the
exclusion principle (determinant bounds) to produce a convergent expansion for the effective
potential (I.5) with J > 0. We also hope to treat the Coulomb interaction with the Anderson-
Higgs mechanism (to eliminate the Goldstone boson) and produce a convergent expansion
for J = 0.

II. Properties of the covariance

Fix a number M > 1. Let h be a smooth monotone function obeying

e =T E25ln (I1.1a)
and let
) = W@ = b/ p) = {3, eSO (I1.18)
and
p(z) =1 — h(z). (I1.1¢)
We have
1= h(z) + f: f(M~*2). (I1.2)

t=—00
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These basic functions are illustrated below.

— o ——— —

— e —— o — —

Recall that, for any A > 0, the covariance

C = Ca(k) = [ikol — e(k)o® — Ag?]

ikl +e(k)o® + Ao? (I1.3)
T R+ E(k)?
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where

E(k) = (e(k)* + A%)/2 2 0,
e(k) = —k2 —p

0 __ 1_01 2_“0—2 3_1 0
=1 "_[1 0] "_[i 0] "_[0 —1l"

As before, we decompose

and

0
C=Cap= 36 CY (II.4a)
j=—oo
where
d+1 _2i n )
ey [ Sk ke 4 s a-1-1 J fF(M~2E(k)?), j<-1
CR'(¢) = / 2m)e e [ikol — e(k)o® — Ao h(E(k)?), iZo (11.4b)

Evaluating the kg integral, for 7 # 0,

€)) d’k gikz ,—E()|7]| (SBHT)E(k)l +e(k)o® + Ad? [ f(M~2E(k)?)
CA'(&) = / (2,”)4 2E(k) {h(E(k)z) -y

When 7 = 0, the C;; matrix element is defined by the limit 7 — 0— while the C; ; matrix
element is defined by the limit + — 0+.

The basic estimates on Cg) are stated in terms of the norms

lu| := stpfdrlu(T, k)| (I1.5a)
d
|u| = (‘2{ 1)‘d sup |u(7,k)|. (I1.5b)

When u is matrix valued, |u(7,k)| vefers o e tabrix morm, Observe Shet
|uv| < |ul]v| (I1.5¢)

|u’u|' wd min{lu“vl',lulllvl} (I1.5d)

where uv is a product in k and convolution in .

Lemma II.1 For 7 < 0
IC(AJ)I < const M7

ICX)I' < const M’
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uniformly for A > 0.

Proof. The first estimate is an immediate consequence of
|C(Aj)('r, k)| < const e~ M7l

The second follows from

sup |CY(r,k)| < F(M~Y E(k)?).

|

The next lemma, an analog of [FT, Lemma VII.3], is essential for controlling strings
0 £
S() = ——rT1——rTo—— o T—AT ;AT —— - — Ty ——
71 J2- Js+1 Jata Jstt+1

(I1.6)

of renormalized mass subdiagrams. It will be applied in Section III. Recall that the localiza-

tion operator (see [1.99b])

(£T)(k) = T(k') (k = (0, %kp))

and that
r=1-L4.

Lemma II.2 Suppose that there is a j with each jo = j or j + 1. Let
IVETa(k)l|ze < Mo wq, n <2

with hy > j for 1 < a < s. Then

] s+t
|S| < const* M~ [ M~ owa [] [1€T5|M~]
a=1 B=s+1
] s+t
|S|' < const* Tt M H M~Peyw, H [|€Ts| M )
a=1 B=s+1

uniformly for A > 0.
Proof. It suffices to prove the intermediate estimate

s s+t
|S(r,k)| < const®[1 + M |r[]~2 H M hag, H [[£T5|M~?]x(E(k) < constM?). (II.7)
a=1 B=s+1
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Define n = min{h4|l < a < s}. We decompose the ko integral in

St k) = /%e—ik°f[ikol —e(k)o® — Adt]™t { H(rTa)(k)[ikg —e(k)o® — Adt]™?

2T

s+t a+t+1 )

II @zs)iike1 — e(k)o® — A1 [] F(M**E(k)*) } (I1.8)
B=s+1 i=1

using

1= p(M~2k2) + 3 F(M2RD).

v=mn

First, fix any ko scale » > 7. Let 0 < n < 2. The volume of integration in
j\n dkO —ikoT —2v 1.2\ 3 17-1 - . 3 17—1
(M) T F(M ™" kg)[tkol —e(k)o” — Aco] H(rTa)(k)[zkﬂ —e(k)o® — Ao’
a=1

s+t
11 (Z5)like1 - e(k)o® — Ac']?
B=s+1

_ dko —ikoT cari d\" —20 12\ 3 171—-1
_/ acy (—zM dko) {f(M k2)[ikol — e(k)o® — Acl

8 s+t
H(rTQ)(k)[iko —e(k)o® — Ael]? H (£T5)[iko1 — e(k)o® — Aal]_l} (I1.9),
a=1 B=s+1

is M. We suppress unimportant constants. The matrix norm of each [ikg1 —e(k)o® — Ag?]™?

is bounded by M ~%. For a with h, > v we apply Taylor’s Theorem to obtain

e Ta (k)| < [lkol + |k — k'] sup [V Ta|
< [MY + MM hew,
< M=,

stt+1

on the support of H F(M2% E(k)?) < x(E(k) < constM?). On the other hand, for
=1

with h, < v, and when a #}50 acts on T, we simply ignore the effect of renormalization and

bound
ItTo(k)| < |Ta(k)| + [€Ta] < 2wa.
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Thus, no more than two derivatives ever act on T,. Each derivative M7 ai—o produces an
M~(»=3) < 1 when it acts on f(M~2"k2) or on a covariance, or M ~(ha=7) > M~(ha=*) when
it acts on T,. Thus, for v > n

(11.9),| < M¥ (M) 40 T M* [ M [[ M~ ewa [[(£25)
hoa>v ho<v o B

< M=) T M- ) [ M ewa [ [ (16T51479).

ha <v P B
The sum
Z H M-(v—ta) < ZM"(”"’) < const
v>n ha<v v2n
S0
3 1(22.9),] < [ M-*ewe [J(1€T5M ) (I1.10)
v2>n a B

on the support of x(E(k) < constM?).
This leaves the p(M ~27k?) contribution. To handle it, write

[TICT)(k)Cak)

= [T (o, k) = Ta(0, K)ICa (k)

a=1

= [T {{Zalko, ¥') — Ta(0, )] + [Ta(ko, k) — Ta(ko, ¥')]} Ca(k)

= Y. O[] lkera(ko)Ca(k)] [] [Tulko, k) — Ta(ko, k')ICa(k)

AC{1,...,s} a€A af A

where the symbol O places the product over « in the correct order and
1
Ta(ko) = _——[Ta(ko,k') — TQ(O, k')].
Zko

Anytime an M’ Eﬁf? acts on an (rT,) the corresponding « is also put in A®. Further, write

the term with 4 = {1,..., s}

]

[ ikora(ko)C a(k)]

a=1

= T ra(ko) + ra(ko)(e(k)o® + Aa*)Ca(k)]

a=1

= S O] ralko) ] Iralko)(e(k)o® + Act)Ca(k)]

BC{1,...,,s} «€B a¢gB
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All contributions with ¢ # 0 or 4 # {1,...,8} or B # {1,...,s} are treated as follows.

The ky domain of integration, which is now determined by p(M ~27k3), is refined using
n-1
P(M2k) = p(M¥E]) + Y F(M™*"k}).
v=j

We shall refer to the p(M ~27k2) term as having v = j — 1. Fix any ko scale v with j — 1 <

v < 7 — 1. This contribution to (II.9), (for v = j — 1, replace f(M~2"k2) by p(M ~27k2) in
s4t41
(I1.9),) has volume of integration M*. On the support of H f(M~2%% E(k)?) we have

i=1

|ICalk)| <M~
|[Ta(ko, k) — Tal(ke, k" )|Ca(k)| < |k — k'|sup |[ViTo|M ™"
< M~ (=D pfhay,
|Ca(k) (M"%) (rTa) (k)| < M~(ha=imy, M=% m=1,2
0
< M"(”“j)M_h“wa
ralko)| < Mo,
|Ta(ko)(e(k)o® + Aot)CA(K)| < M~ =DM —tag,,

(ET)C (k)| < M~*|¢T.
Hence, the contribution to (I1.9),, j — 1 < v < 5 — 1, corresponding to any given A, B is at

most +t
8 8
M—(v=i)t H M—(V—J') H M"(V—j) H M‘hawa H M_j!tTﬁl-
ag A agB L B=akl

By assumption either ¢ > 0 or A® is nonempty or B¢ is nonempty so that, on the support

of x(E(k) < constM?),

Z |(I1.9), excluding the A = {1,...,s}, B = {1, ..., s} contribution when ¢ = 0|
j—1<v<n-1

s s+t
< H M=teg, H M-J'ItTﬁl Z ZM—(V—i)f H M=t H M=)t
a=1 B=s+1 i1—-1<v<n—-1 A,B aZ A agZB
s s+t
< [[MPewa [ M5 Y M9
a=1 B=s+1 j-1<v
8 s+t
< [[M~*ewa [ M7|T5].
a=1 B=s+1

(I1.11)
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Recall that we suppress unimportant constants.

One term remains, namely

dku —ikoT 3 j_in _2,,2i — 0,3__ 0'1—1 3T
/@e k (_"M dko) {p(M Slfkol =l — A7 aI=11 a(ku)}'

Let
(ko) = [ 7alko).
a=1
Then, by hypothesis
| (ko)| < [ M~ ewa (IT.12a)
[7(ko) — T(0)] < slko|M~" [ M~*=wa. (I1.12b)

Consequently,

U e ("'Mj&%;)n (=782 )ik — (10 — A [r(h) - (0]

S MM ][ M Pow, (IT1.13)
as desired. We are left with
3 dk .
(0)(Mir)" f 50 g iko7iky — (K)o — Ao’]p(M 7)) (I1.14)
m

Combining part a) (m = n = 0) of the technical lemma below with (I.12a) bounds (II.14).
The proof of the intermediate estimate (II.7) is concluded by adding (II1.10), (II.11),
(I1.13) and (I1.14) with n = 0, 2.
N
The following lemma is used to estimate the effect of renormalization for two legged

subdiagrams as above and for four legged subdiagrams in section IV.

Technical Lemma I1.3 Let z be a 2 x 2 hermitian matrix with eigenvalues obeying const M7 <
|z;| < constM? with § < 7. Then, for any integers n,m, N >0 |
a) | [ Seethor[iky — 2]~ ko (M27k3)|

M-itn=m) fn>m

< const™™[1 + | M7 |N] 1 {Mn(m—") ifm>n
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b) [f e 0T [iko — 2] =1 kT (M 7R
< const™[1 + |M"T|N]_1M_j(“_m) for n>m

Proof a) We choose a basis for C? in which z is diagonal and first consider m = 0,n > 0.

Setting
B(a,) = [ Geomliky — 2 ~"p(M~27Y)
b(ko) = [zkg = :!:]_l_n
o(ko) = p(k3)
we have
B(z;7) = b * [e(M~")]".
Since
dko ik - { Crl ezt gir >0
e thoT __ = n! = II.15
] 2w (ko — z;)" 1™ 0 z;,7<0 ( )

it follows that

IB(TN = COnst”M—jﬂe—constMi 7]

On the other hand
[c(M7")) (1) = M"a(M 7).

Consequently, applying

[T’N’B(:C,T)l — ./dT'TN,B(‘T — 7 YM"6(M"7")

—_— / dr'llr — [V 4 [ Vfb(r — 7)Mo M)
gconst"M-i"/dr'[M“fN' + |7V 1M e (M)
Sconst“M_j”[M_jN’ -k M“”N']
Sconst"M_j"M_jN'

with N' = 0, N yields the desired bound.

We now consider m > 0. Since

m

(ko)™ =Y (7} ) (ko — 20)f2] "

£=0
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it suffices to bound

dko
(27)

‘When £ < n then, by the above bound,

By = e~ *o7 [ikg — @] T T2 (M TP

|Be| < const™[1+ |MIr|N] 7 M -inOpg im0

. ' (II1.186)
= const™[1 + |[Mir|N]" 1M —i(n—™)
When £ > n we apply
dk G e _
/ (21:) e—tkor(zko)l lp(M Zr)kg)
d £—n—1
= (-5) e
and get ) '
| Be| < consth”[l + |M"T|N]_1M"(e””"'l)MJ(m—e)
(I1.17)

< const?[l + | M7 |N]~ pg(m—n)

Part a) is now a consequence of (II.16) and (II.17)
L1 0

b) As before we may assume that z = 0 =
2

]. We first treat |M"77| < 1. Then

/dku _1ko-r[ 531.]—1 nkmh(M 211k2)

dk o—ikor kIt dko ke L -
/ St (zko_m)1+n /2_7:3 o [tho — 23] 7 kG p(M T2TKS).

Differentiating (II.15), the first integral

/dkg . kg & 1 4™ e 2T 20
(ikg — ;)17 | = |nldrm 0 z;7 <0

< const™ max M ~7(n=ppi(m=0)
0<t<m

< const™ M ~I(n- n)

satisfies b) in this regime. The second integral is accounted for by a).

For [M"r| > 1

M|V ‘ / %e‘“‘”[iku — 2] kP R(M D)

dko e —tkoT d N : —1-njm -
’/ " dko) {liko — 2] 7 "R H(M "7kg) }
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n dku —tk T N[ —l—-n—-ajm-—p0 h(M—zﬂkS) if Y= 0
< const ,ﬁ 1>0 ’] °T M"Y [ikg — ;] ky M= (M~"ky) ify >0
at+B+y=N
B<m
dko — h(M"'z"kz) ity =0
n AN|f, |—1—(n—m)—(a+B) 0 7
% comst 3,1;?:’5, 2w o e { M= (M~"ky) ify>0

MN pr—nl(n—m)+N] ify=0

< const™ max { MN pol-1—(n—m)—(a+B)] pf—v M1 if ¥>0

a,B,y

= const™ M ~(n—m)

The proof of the technical lemma is now complete.

n
In the next section a small generalization of Lemma II.2 is required. Let
c® = ¢ + c{ (I1.18a)
(7) ikl 4 e(k)o® - 2 II
= — 185
ci (k) = b f(M~2 E(k)?) (I1.18¢)
2 ki + E(k)?

Lemma II.2' Let S(¢) be a generalization of the string (II.6) in the sense that each particle
line may be assigned any of the covariances (II.18a,b,c) and the £T,,s+1 < a < s + ¢, are
replaced by general kernels T, (k). Suppose that there is a j with each j, = j or j + 1. Let

|Ta(k)||n, := max {M(*Hs)h“ sup]dT|T|7|Vcha(T, k)[:0<y<2,/§| < 1} < wq
Kk

with hy > jforl1<a<sand ha=j7fors+1<a <s+t Then

s+t A #(C2 covariances)
sup |M~’('7+|6|)|T|"’V6 SI < const*t*M~7 H M~ Pay, (—)
0<y<2 a=1 L
1<
s+t A #(C; covariances)
sup |M7(7+|5|)|T]"’V5.S'| < const*t* M7 H My (—)
0<y<2 &=l M
31<1

uniformly for A > 0.
Proof We first consider the case 4 = § = 0. Suppose all the covariances are of type (I1.18a).

Then, writing,
Taera+£Ta s+1<a<s+t
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we may apply Lemma II.2. Since ng) = CU — C(zj) it suffices to consider strings whose

covariances are of type (I.18a) and (II.18¢c). Now, one simply repeats the proof of Lemma

I1.2 using
. % . o A B
(MIV,)*C (k)| < M~ J)IJ_jM ”
s 1 , ) A
|(M?Vy) kora(ko)Cg’)(k)| < M~ Pap M .7)m

when kg is of scale v > 7 — 1.

We now consider general 4,6 with 0 < v < 2,]§] < 1. Apply the “derivatives”
(M?|7])” and (M?Vy)® using the “product rule”. Consider any term in the resulting sum.
Use (II.5c,d) to separate those T.’s with derivatives acting on them from the rest of the

string. Each factor
| )" (M) T| < M=o

The rest of the string is estimated as in the last paragraph to produce the required bound.

II1. Graph Estimates

The purpose of this section is to extend the estimates of [FT] to superconducting
systems and, more importantly, to show that the renormalization of four legged subdiagrams
by 1 — L eliminates factorials to give exponential bounds. For graphs without four legged
subdiagrams we give a much simplified cierivation, independent of [FT).

Our estimates will be made in the mixed (7-time, k=d-momemtum) representation.
However, it is often notationally convenient to write expressions in the pure (kg, k) momentum

representation. For this reason we will pass between them without further comment.

We begin by defining the pertinent class of labelled graphs. These graphs are as-

sembled from two kinds of, scale dependent, particle lines and four kinds of vertices.

The particle lines are

(j, hard) "
S N = CVn = k)
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_ B)Ir—s) (380(11 = 12)) E(K)1 + e(k)o® + Ao’
2E(k)
X {f(M-ZJE(k)z)a 7 <-1
h(E(k)?), j=0
and

j, soft )
(J ) — = CSJ)(TI — T2, k)

1 /E‘\ T2

= Z CY) (1 — 75, k)

i'<i

= B0lra—rs| (580(11 — 1)) E(k)1 + e(k)o® + Ao?
2E(k)

[1 — h(M~* E(k)*)]

H.P.A.

(I11.1a)

(II1.1b)

We will explain below that soft particle lines of scale j implement Wick ordering at that scale.

From now on we discard 7 = 0, thus introducing an ultraviolet cutoff. The ultraviolet end is

relatively simple and is treated in [FT§3].

The vertices are

p — (£T)(ry — 72, p)
]dTT ( ) 8w — )

=T(p')6(m1 — Tz)

{(1-LTep = (1= OT)r —7,p)
=T(r1 — 72,p) = T(p")é(71 — 72)

(II1.2a)

(II1.2b)
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<+ q/2
T1 73
t)(s (II1.2¢)
2 T4
. q/2
and
-+ q/2
LA 73
t (1 LI (s (II1.2d)
2 T4
< q/2

3
Here I = Z ™™ ® ™" satisfies conditions (1.90)-(1.92) and the localization

m,n=0

operator, L) is defined, in momentum space, by (1.99). (Note that the momenta t,s and q
of (II1.2¢,d) must not be confused with those of (1.991,g).)

Let LT'5,(m) be the set of labelled connected graphs constructed from m vertices
(I11.2) by joining all but 2n vertex legs with properly oriented particle lines (II.1). We impose
the additional requirement that these graphs remain connected when all soft lines are cut.

The value, in momentum space, of such a graph is

VGZ(G)(%')HI&(WG)—SEH G)/ H (2 )d.’+1 Cn(kt) H (2 )d+3 (Jt)(kl)

hard soft
lines lines
H LO)T(p,) H (1 — LU)T(p,)
2—legged 2—legged
L —vertices (1—L)—vertices
H L(jV)I(tvysva qv) H (1 - L(jV))I(tU’s‘W q‘”)
4—legged 4—legged
L —vertices (1-L)—vertices

[T @r)*+é(w,).
vertices
(I11.3)
The momenta flowing in the 2n external legs of G have been suppressed. They are the

arguments of the kernel 17;1(@). Here t,, 84,9, and p, are respectively the momenta flowing

through the four and two-legged vertices as indicated in the diagrams of (III.2). The total
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momentum flowing into the vertex v is denoted w,. The overall energy-momentum conserving
delta function (27)%*!§(wg) has been explicitly extracted. The signature sgn(G) is the usual
fermion factor and is computed by the recipe given on [FT page 164].

In Section I, (I.37)-(1.40) we formulated a set of rules defining the value of a labelled
graph in momentum space. Definition (IIL.3) is a slight modification of those rules that
incorporates Wick ordering. Specifically, all monomials H (=M (¢ Hﬁ(sh)(cj) appearing
in effective potentials at scale h (e.g. (I.24a)), as well as in the definitions of localization
operators (e.g. (1.99)), are replaced by monomials :H‘I'(Sh)(&)Hi’_(Sh)(Cj): that are
Wick ordered with respect to C(S%), In particular, the value of every truncated expectation
M see (I1.17), is expressed as a sum of Wick ordered monomials.

We must, of course, Wick order the initial

A dt ds d -
(0) _ q 3
we 2 ./ (2m)d+1 (2m)dH (211')‘iJrl (‘I’H%a ‘Il,+%)

—t+ —|V[s + =, —s+ 2) (‘i’_t_i_%aa\][’_,_,_%)

(+27

+5p/(2 d+1‘I’k0' ‘I’k+D/(2 )d+1‘i’k0' ¥,

by hand. The result is

A di ds d
0 =_= g . 3
R = 2 J (2m)d+1 (27r)d+1 (2)d+1 (‘I’:+g0 \IIH_%)

g 9 q q, (=
(t+ 5’_t 4 '2-|V|s + g2 + 5) (‘I'—t+%03‘1’_,+§) :
dk dp .
* A,/‘ (21r)d+1 {f (2.,,.)d+1 (p, k|V|p, k)C(AO?,(p)} Ui,
- dp
A/ (21r)d+1 Wy {/ (2 )d+1 (kaplvlp,k)d'sc(g?s(p)a3} T, :

+‘5ﬂ'/(2 )d+1 ‘I’ka' W, : +D/(2 )d+1 : Uy ot v, .

+ const

where the Wick dots are with respect to the ultraviolet cutoff covariance C (p) =
o(E(p)*)Ca(p).

The introduction of Wick ordering has five important effects. First, localization op-
erators become orthogonal projections (as indicated following (I.29)), since Wick monomials

of different degree are, by construction, orthogonal with respect to duc(<»). Second, at the
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level of trees, there are no longer any two forks §. Third, at the level of graphs, there are

hard and soft lines. Fourth, the condition, in (I1.39), that each subgraph
G§ = {lines £ € G and connecting vertices | I(£) = ip, f' > f}

be connected is transformed into the condition that it be connected by hard lines. Finally
the quotient graphs G}/{G} |f' > f} do not contain tadpoles () . For a more extended
discussion see [FT 199-201].

As a warm up exercise we derive bounds on unrenormalized labelled graphs. Con-
sider a general connected labelled graph G”, not necessarily arising from our model. It

contains two and four legged vertices

2 w = T(r2 — 71,P)
n—m/?

t) @ — I(Tl,Tg,Ts,‘ﬂ;,t,S,Q)
2 T2

with kernels that are translation invariant in the time components and obey the bounds

(71| < o
where
|T| = sup/dﬂT(v’,p)l (I1I.4a)
P
as in (II.5a) and
III $= BUHP /d72d73d1'4|1(1'1,1'2,1'3,1'4,1:,S,q)| (I11.4b)
t,s,q
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External lines of G’ are amputated, that is, discarded. Each internal line £ carries a hard /soft
label, a dimension §;, a scale j; < —1 and a covariance C¢(k), which when hard satisfies

' ) (II1.5 Hard)
|c¢| < atM's”‘

(see (II.5b)) and when soft satisfies

|Ce| < arpaeie. (IT1.5 Soft)

Let us define, in the mixed representation

Val(G7)(27)%6(wgs) = sgn(G’J)/ H dfinf%cz(ﬁ,t,‘rz,bkz)

internal £
times

H T(Tl,v:72.vspv)

—legged

p n (II1.6)
H I(Tl,u,T2,v)73,v;74,v7tvysv,qv)

4—legged
vertices

1 @m)s(w,)

vertices

where 71 ¢, T2,¢ and k; are the temporal and d-momentum arguments of the line £,
TivyPv,tv,S, and q, are the temporal and d-momentum arguments of the vertex v and
W, is the total d-momentum entering the vertex v.

We associate to each general graph G” a tree {(G7). The forks f of this tree are

the connected components Gf of all the subgraphs
{te€G'lje>h}, h<-1.

We only consider labelled graphs GV for which each Gf is connected by hard lines.
The subgraphs are partially ordered by inclusion to form #G”). As usual n(f)
denotes the predecessor fork of f. The scale of a fork is defined by

iy = min{7|¢ € G¥} (I1L1.7)

and obeys j; > jx(y), that is the scale of forks strictly increases as you move up the tree.
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Let w = u((71,k1), ...y (T2n, kan)) be a general (C?)®?? tensor valued kernel. Define

the norms

|u| = sup /de...d72n|u((0,k1), vees (T2ny Kan)) | (I1I.8a)
ki,...;k2n
bl fdkz, eodhansup [u((ri, ~ka == = Kan), (7 K)o (s Kan) | (ZIT.80)
Here |u| is the tensor no;r’ll;.‘ ;he first norm will be estimated in terms of degrees
Dy = Y & — 2(#{vertices of G7} —1) (II1.9)
Lteq]

of the subgraphs G;. The second norm will be estimated in terms of the degrees

A ='—% E by

external lines

¢of G (I11.10)

Av = _% Z 65

external lines
of v

of the subgraphs G; and vertices v of G7. A line £ of G” is an external line of Gf or v if it
is hooked to G'f or v but, in the former case, is not a line of Gf. (See the example on [FT p.
202].)
Abstract Power Counting Lemma III.1

Let G = G be a general labelled graph such that each fork G of the associated
tree ¢{(G) is connected by hard lines. Recalling definition (IIL.6)

a)

Val(@)] < [T ace [T |Zo| T] |Fo|paPese T maPrtir=izan
14 v v

feua)
>4
Here ¢ is the lowest fork of ¢(G), jf is given by (II1.7) and Dy by (IIL.9).

b) Assume, in addition, that each internal vertex is dimensionless in the sense that

L > &=2 (II1.11)

£ hooked to v

By convention, there is one external momentum for each external vertex (rather than line)

of G. Then

[Val(@)|" < [T |To] TT |Z| T e I MP1Gr=ixn)
v v £

f>¢
Gy contains no external
verticesof G
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H MA1Ur=ix)
f>¢

Gy contains an external
vertex of G

H MA+(0=ix(v))

external
vertices of G

Here m(v) is highest fork f of ¢{(G) for which v is a vertex of Gy and Af, A, are defined in
(II1.10).
The convention that there is one external momentum per external vertex means, for

example, that

is viewed as

with

We remark that the power counting dimension 2 (independent of the physical di-
mension d) in (I11.9) and (III.11) is motivated by the covariance estimates of Lemma IL.1. (It
appears, for example, as % (the difference between the exponents appearing the estimates of
Ic(j),' and |CO)|).

As usual, the momentum conserving delta functions in (I1.26) are eliminated by
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selecting a basis of d-momentum loops for G. We have (suppressing the temporal arguments)

dl‘
Va.l(GJ)zsgn(G’J)/ I = I e

(2m)?
internal momentum
times loops~y

Hcl(kl) H Tv(pv) H Iv(t‘vasmq”) (III.12)

lines 2—legged 4—legged
£ vertices vertices

where k; is the signed sum of all loop and external d-momenta flowing through £. The

momenta p,,t,,s, and q, are similarly expressed in terms of loop and external momenta.

For example

k. = external momentum
k1=k5=l‘1
ky =r3
k3=I‘2--l‘3
k4'——-l'2—l'1

1
t)=—s; =3(ke—11) , @1 =ke +1;
t, =1r,—r3, sy =1ir,—r =r
2 = 3T2 3, 852 =3I 1, (2 =12

1 1
t3 =r; —3ra, S3 =3r2 —rs, g2 =7I2

To construct a basis of d-momentum loops of G it is helpful to introduce the notion

of a spanning tree of lines of G7. This tree is

not to be confused with the tree t(G”) ofsubgraphsof G’

. A spanning tree T is a connected subgraph of G’ without loops that contains all of the
vertices of G7. To each line £ € G/\T corresponds a unique loop 7, consisting of £ and the
linear subtree of T' joining the vertices at the ends of £. Obviously, the loops v¢,£ € G’\T,
are independent since £ belongs to v, and none of the other loops. They are in fact a basis

since, for any connected graph
# independent internal loops = # lines — # vertices + 1

= L(G7) - L(T).

(II1.13)
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To prepare for the proof of Lemma III.1 we first construct a special spanning tree in the
Technical Lemma II1.2 There exists a spanning tree T for G” such that

(1) Every line £ € T is hard.

(2) Tn G‘} is connected for all f € ¢(G7).

(3) EfEt(G,)(pf —1) = V(G7) — 1, where p; is the number of upward branches
leaving f.

(@) L (T [G]\ Upss G;Z,]) —ps— 1.
Here L(G) and V(G) are the number of lines and vertices of G respectively .
Proof Construct T inductively working through the forks f € {(G”) from high to low scale
and using the hypothesis that each G¥ is connected by hard lines. Properties (3) and (4) are

general properties of trees.

Proof of Lemma III.1 a) Let T be the spanning tree of Lemma II1.2 and, for £ € G\T,~, the

d-momentum loop associated to £. Then

d%r
( X Cy(Te2 — Tc,l,ke))

vacls e [ []  an|[ T (G

lgﬁtr;?:ﬁh all internal and LeG\T

external times
save one

H Co(Te,2 — T2 1,k¢)HT HI

LeT
d r‘h
S sup H H sup |Co(T, ke)|
&ﬁi’éﬁl& teG\T lEG\T T
suprd‘nH |Ce(Te,2 — -r“,kt)|H|T |H|L,|

LeT

<H|C£|H|T|H[I] sup / H ( k. Suplcz(ﬂke)o

external
eT momenta tEG\T

= ILled [TInIITIN] 1T jed

LeT LeG\T

< HIT IH,I I H atMrSsz HM(J,:._Q)JL

LeEG\T LeT
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by (IIL.5). In the step between the second and third lines we perform the time integrals
starting at the extremities farthest from the single nonintegrated time. The step between the

second and third lines uses the change of variables
r,, = ky + external momenta.

It is justifed by the fact that 7, is the only internal d-momentum loop containing £.

Since,
Mt — pfis H Melisr—ixs))
© fet(G)

f>¢
(eq,

we have
H MOeit H M2 — Mj¢[ZLEG 6, —2L(T)]
LeGc LeT

H M(J} —Jix(1)) [Elea’ 6:—2L(Gy nT)]

feuG)
f>¢

— MPsis H MD1Gs =)
>e

because L(T) = #vertices(T) — 1 for any tree.
W
Proof of Lemma III.1b
We prove the bound on the dual norm |Va.1(G)|I by applying the estimate of part

a) to an extension G* of G. The dual norm is morally an L'-norm in (d + 1)-momentum

space. Thus, the rough idea is to perform the integral over external (d+ 1)-momenta ky, ..., k.

.
subject to the constraint Zk,- = 0 by adjoining one extra vertex that is hooked to the r
lines carrying these mome:szli. This observation suggests the following construction of G*.
The vertices of G* are the vertices of G plus one extra vertex v*. All vertices of G*,
with the exception of v*, are internal. The lines of G* are the lines of G plus one extra line
for each external vertex of G. Each new line, denoted £f,1 < i < », joins v* to a different
external vertex of G. These new lines are assigned scale zero and covariance C} = §(7} — 7;)

where 7; is the temporal component of the vertex of G to which £ is attached and 7% is an

arbitrary constant. (Recall that we wish to sup over the temporal components of the external



298 Feldman and Trubowitz H.P.A.

vertices of G.) We have
67| < MY, je =0,

where

> s

£ hooked to external
vertex number 2

N

55:: 2 —

so that all vertices of G*, with the possible exception of v*, are, in the sense of the Lemma
dimensionless. )

All other lines £ of G* inherit scales and dimensions §; from the corresponding lines
of G. By definition their covariances are the absolute values of the covariances of the lines of
G. 1t follows that

[Val(G)|' < sup_ Val(G*)

7, 1<i<r

= sup |Val(G'*)|

tr,1<i<r
Now we apply part a) to obtain
@) < [T IIel oo [ aaornmso
LeG v v FELG*)
f>¢
The fact that IC;-*lr = oo is harmless. We can place all these lines in the tree of Lemma III.2.
Observe that

Dg- = Z 8¢ — 2 (#{vertices of G} +1 —1)

LeEG*
=Y 8+ Y. by —2 #{vertices of G}
LEG external vertices
v; of
1
:Zé'g—l- Z - 2—5 Z §¢| — 2 #{vertices of G}
e external vertices £ hooked
v; of G to v;
=0

since, by hypothesis, the internal vertices of G are dimensionless. To analyse the last factor

it is necessary to express the tree and forest structure of G* in terms of G. We have

0
H MP1(r=in) = H HMDf (II1.14)
feEYG") j=je+1 fec;
>¢
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where C7 is the set of connected components of {£ € G*|j, > j}.

We wish to rewrite (III.14) in terms of C;, the set of connected components of
{€ € Glje = j}. To do so notice that C} consists precisely of those elements of C; that do not
contain external vertices of G together with a single element f* combining the lines £7, ..., £

with the elements fi, ..., fr of C; that do contain external vertices. (See the diagram below.)

The degree of f* is

Digw = Z 0y — 2 (#{vertices of G-} — 1)

LEGys
7" r 1
=) &+> 2-g Y s
i=1 LEGYy, =1 £ ?:o&ed

’
™

-2 Z (#vertices of Gy,) + #external vertices of G not in any Gy, +1 —1

=1
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Further manipulation yields

r
r

1 1
Dp=3. X |2+ X &+ D 2-3 2. &
i=1 vertices lines of G!’s’ external vertices lines of G

v of Gf‘. hooked tov v of hooked tov

— 2 #{external vertices of G not contained in any Gy, }

= Z Ag + E A,
i=1

external vertices v
of G not in any Gy,

Thus,

0

[Val(@)|' < [ ae[TIZI T 1] ]I T m® [ M2 [ M*

Fi=te] v v Jj=Je+1 FEC; fEC; exteripaé vex;ti'ces
: v o not in
f internal f external any Gy,fEC;
= H alHITvl H II”l H MPs(s—ixs)) H MA G =ix(s))
teG v v feuG) f>¢ FEUG) f>¢
Gy contains no G contains an
external vertices of G external vertex of G

H MA(0—ix(w))

external vertices
of G

|
To implement renormalization cancellations it is necessary to control derivatives. For
this reason we formulate a self-evident supplement to the abstract power counting lemma.

Supplement to Lemma III.1
Let G = G” be general 2p-point labelled graph as in Lemma III.1. Let &, be the

(°P) vector of differences between its external temporal arguments and let k, be the (2p—1)d

vector of external momenta. Suppose the covariances corresponding to hard lines obey

sup  |[M%(1, Vi)|™Cy| < agM(®=2)i (II11.15a)
0<|m|<|n]
sup  |[MP(r, Vi) Co|' < arMeit (I11.15b)

0<|m|<|n|
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Then
| (M4 (6, Vi, )" Val(G)]|

and

|[M74(6,, Vi, )" Val(G)|'

obey the bounds of Lemma III.1 when H [T,,l H IL,I is replaced by

sup [ [ |8 (r, Vi)™ T | [ ] |[M7% (82, Vi )] ™ Lo |-
2 Inal<inl o 5

By Lemma II.1 the covariances (III.1) obey (IIL.5) with §; = 1. Consequently, all

four legged vertices are dimensionless in the sense of (III.11). A two legged vertex is not.
However, the artifice of writing T, = [T, M ~#=®) | MJ=) and assigning the factor M=) to
the vertex makes it so. These remarks imply that our model obeys Lemma IIL.1 with IT,,,l

replaced by |T,,IM —J=(») and degrees

Dj = Z 1 —2% A V—T14 5B

ceG}’
1
=§[2V2+4W”Ef]—V2—2V4+2 (III.IBCL)
1
= 54— Ey)
and
1 1
A< =5 Los -3 (II1.16b)

Here, V3 and V; are the number of two and four legged vertices in G and the last term in
Dy arises from the extra MJ=(») that we assigned to the two legged vertices.

Lemma III.1 reduces the problem of estimating a general graph to that of controlling
two and four legged subgraphs. This is done by several techniques. The most subtle are
applied in Section IV where special low order subgraphs are renormalized by hand. In this

A
section we exploit the fact that Z E and A Z 1 are uniformly bounded in A for

h s.t. h a.t.
ME>A M >A
the superconducting model.

It is necessary to introduce the decomposition (see (1.69))
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c® = ¢ 4+ ¢ (II1.17q)
ng)(f’ k) = —e—EGI7| (sgn7)E(k)1 + e(k)o® F(M~? E(k)?) (IT1.17b)
2E(k)
(4) Bl A9 =2 gy II1.17
(k) = s T M E) (IT1.17¢)
and its soft analogue
c{) = c¥) + ngz (II11.18a)
" 2E(k)
c¥ _e—Elrl BT a2 II1.18

where A > 0 and E(k)? = e(k)? + AZ.
Lemma I11.3 Let d > 1. For j < 0 and m € N+, with |m| = Y m,,
a) € =P’ = cl) = c¥) = 0 for Mt < A
b) |(r, Vi)™ C (7, k)| < const,, M—(1+ImDi
(7, Vi)™ CP (7, k)| < const,, M1=ImDi
|c)(,k)|" < constM?
¢) |(7, Vi)™ C (7, k)| < consty, 2y M~ +mDi
|(T, Vk)mcgj)(‘r, k)|' < consthA,—M(l—lml)j
|C5)(m, k)| < const {3-£n (Mf’) M3
Proof The bounds on ng) and ng ) follow from

|VECY) (7, k)| < constn (M~ + |7|)"e=M Iy (E(k) < constM?)

VG (7, )| < comst2=(M =3 +|r|)"e=M Vly(E(le) < const?)

and the observation that the volume of the support of x(E(k) < constM7) is M?. The
estimates on Cg’g, C(JZ are obtained by setting m = 0 and summing over j' < j such that
M2 A,

|
Lemma I11.4 Let G = G” be a labelled graph with two and four legged vertices and L(G)
particle lines each of which has covariance C(9), (¥ (¥ ngz, c{ or C(]) See (I11.1,17,18).
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Denote by Ly(G) the number of ng),Cg’f‘Z lines of G. Let each fork of the associated tree
t(G) be connected by hard lines and denote by Ef the number of external lines of G;. Let

each vertex obey

sup I[MJ'QS(T’ Vi)™ Tle"—jr(v) < w,
Ino|<|n|

sup ]Mjé(EZang)nvIvl < wy.
Ino|<n

Recall that the notation é, and k, was introduced in Supplementary Lemma IIL.1. Then the
value Val(G) given in (III.6) obeys

a) |[M7¢(ép, Vi, )]"Val(G7)]|

: Ly(G)
; A MIe
L(G) I I $(4—E,)
< [ wv:l Mz . [Mj¢ log ( A )]

H M E(4—Es—La(G))is —ins))

feu(q)
f>¢
: '
b) |[MJ¢(6P’VRP)}TLV&1(GJ)I
< constZ(¢) [H wv:| H M E4—B; —L2(G1))(is —in(s))
v G contains no external
vertices of G
H M—3Us=ixs) H M—3(0=ix))
f>¢,G4 contains an external vertices
of G

external vertex of G

c) Assume that every Gy, f > ¢ has at least six external legs. Then

D M (8, Vi, ) Val(GY))|

{jg|f>.¢}
0>7¢>3x(4)

: Ly(G)
1 . A Mie¢
< constX{P) (34— Eo)ie [Miqf» log ( = )] Haw

and

Z I[Mj'* (65, Vk’)]nVa.l(G'J)lr < const(®) Hw,,.

{is|f2¢}
0>31>3x(5)

All constants are independent of A.
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Proof Lemma II1.3 implies that the hard covariances obey (II1.15). We apply

JAN = Al Mis
Mir = Mir B\ A

je I=(#") log(MIs' /A
= JIJAié log (M ) H ﬂj/!if' 1 ogglj«(f'{ A)
<< f g /B)
A Mi¢ o
= — log( ) H const M~ 30z ~dx(s"))
i
Mz A ¢<f'<f

to the A factors arising from Lemma III.3.c. Lemma III.4 now follows from the supplement
to Lemma III.1.
[ |

We now prepare for the proof of Theorem 1.1. Let 7 be a tree constructed from R
forks (1.34a), c forks (1.23b) and n general four legged leaves. Let G7 be a graph contributing
to 7. That is #(G7) = 7. It is among the graphs having

- particle lines C&, c{?,c{?, ¢, c{?, c{?) (111.1,17,18) (II1.19a)
- local and renormalized four legged vertices (I11.2) (ITII.19b)
- for each R fork f of T, a renormalization operator (1 — L{#~1)) (1.99)

acting on G (IIL.19¢)
- for each ¢ fork f of T, a localization operator £ (1.99) acting on Gy (I11.19d)
- each Gy connected by hard lines (ITI.19¢)
- for each R fork f of T, ju(s) < js <0 (I11.19¢)
- for each ¢ fork f of T, log A < jz < jr(s)- (IIL.19g)

We first ignore any potential gain from the renormalization of four legged subgraphs

to motivate an estimate of the sum Z G’. First, suppose that Gy is a two legged c fork of

i
scale 75. The factor M2(4=Ee)is of Lemma I1I.4.a, when applied to Gy becomes MJ#. Since

E Mt < const M=)
log A<js <je(s)

Gy acts, after summing over js, as a generalized dimensionless vertex. We may therefore

assume that there are no ¢ forks.
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If (IT1.19c¢) is not implemented Lemma II1.4b gives

|Va.1(G"I)|’ < constH(&) [H wv] H M%(‘l—Ef—LQ(GJ))(jf_jr(f))

v internal (IIIZO)
H =30 —dx)) H M~ 30—ix))
external external

The string Lemma I1.2' implements renormalization of two legged subgraphs and improves

(I11.20) to

IVa,l(GJ)I' < const (@) ,:H wv] H M5(4=EB;—L2(Gy))(is —ix(s))

internal,
E; >4
H M—3La(G1)(r—ix(s) H MU —ixs)) (II1.21)
internal external
r—_
H M—%(o_jw(v))

external

It follows that in the sum of (III.21) over J there are two kinds of factors. If f has E¢ > 6 or
Ly(Gy) > 1 orif G contains on external vertex of G, the sum over j¢ is uniformly bounded.

On the other hand, when f has E;y = 2,4 and L,(Gy) = 0 the sum produces a factor

Z 1<logA
max(f.(z),ln &)<jp <0 (III22)

= const—

Al

for relevant A,A. Each w, is proportional to A and compensates a sum (II.22). We must
ensure that the total number of sums (III. 22) does not exceed a fixed fraction (strictly less
than one) of the number of leaves. The following lemma provides a sufficient condition for
this to be the case.

Yes/No Lemma III.5 Let 7 be an abstract rooted tree. Each fork has a branching number
(the number of branches leaving f upward) b; > 2 and is assigned a scale hy and a variable

sy € {yes,no}. Assume that the functions as(hy, hysy) of the scales hy, h(y) satisfy
(1) 0 <ag(hyg haip) <1
—1

(2) Z aj(hs hnpy) S 1if 55 = yes.
hy=b gy Hl
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Here hy(4)y = —1/|A|. If, for each f > ¢, either

(a) sy =yes

(b) bx(s) 2 3

() br(s) = 2 and at least one f' with 7(f') = 7(f) has sy =yes
or

(d) sx(s) =yes
then

1_34lleaves /\a 84 =Yye€s
> as(hsihagp) <A77 {Il,l ‘

84 =NO
hy ¢

Here the sum runs over {{hs}|0 > hy > hr(5),0 > hg > —1/[A]}.
Remark A minor modification of the proof below actually gives a slightly stronger result.

The |A|~3#1eaves jg replaced by

I w2 II w2 (ITI.23)

" B
Proof Clearly,
D as(hsshagpy) < [A|7#Uler=ned, (I11.24)
hy

Suppose that, for every f > ¢, ss =no and that, for every nonmaximal f,b; > 3. In

this case, we prove, by induction on the size of 7, that

Z#(lea.ves) — #{flsf =no, f > ¢} > 3/2 (I11.25)

Since ;‘2—2 — 0 = 3, (IIL.25) is satisfied for the smallest possible tree

Y

Let the successor forks of ¢ be denoted fy,..., f,n and the successor leaves vy, ...,v,. Then

by = m 4+ n and we have, by the inductive hypothesis,
3
Z#(leaves of T) — #{f|sy = no, f > ¢}

> Z[;#(Ieaves above f;) — #{f|sy =no,f > fi}| - m + zn
=1

v
B | W

m m+§n
4

/2

v
)
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since m +n > 3.

Let 7 be a general tree. Construct from it a new tree 7' by collapsing every branch

T(f)

with s; =yes to a point. The resulting fork f' inherits sf/, from s,(s). The new tree

has the same number of leaves and the same number of no forks as 7. All its forks, except

possibly the first, ¢', are no forks. Finally, every nonmaximal f' has by > 3 by (a), (b ), (c),
(d). We have already verified (II1.25) for 7".

H

Lemma IIL.5 implies that the sum over J of the right hand side of (III.21) will be
bounded by const™(® []_[w,/X*/*] provided #(G”) does not have a two fork

A

f

such that all of G4, Gy,, Gy, have at most four external legs, no C; or C; , lines and
no external vertices of G. In the discussion above we have reduced the problem of controlling

Z Val(G ;) to consideration of a small number of second order graphs. They are treated, by

J
hand, in Section IV, where the improvement due to renormalization is carefully extracted.

We now formalize the remarks made above. Introduce the norms

|T||; = max{M(=+IBDj sup/d‘rlﬂ"VﬁT k) :0<a<2,|8] <1}
’ k S (II1.26a)

= max{M(aHm)jl&f’VﬂlTl :0< a<2,|8| <1}
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4
I1I]|; = max{M{I=I+18Di sup f drydrsdry [ 1751
ki+ks+ka+ks=0 j=2

s (I11.26b)
[T V2 1((0, k1), (72, k2)s (755 ks), (7, ka)) |

i=1
a; 20,8 >20,|la| <2,|8] <1}
on two and four point kernels.

Theorem III.6 Let 7 be a tree constructed from R forks (I. 34a), c forks (I.23b) and n general

four legged leaves each of type 7 ® ° with a + b = 0 (mod 3). These leaves It(,j'(")) may
depend on the scale jr(,) of the fork m(v) of T immediately below v and are assumed to obey

sup [ 1|5 < |Alws.
J

Let G be a labelled graph, with #(G”) = 7, satisfying (II1.19). Let |log A < 3. Then

v=1

| > val(G7)]" < const™P AP/ TT(IA4|w,]
J

Recall that, by (II1.19f,g), the sum is over
{Jin(s) <Jf < —1if fis an R fork and
log A < j¢'< jupy if fis a c fork}
With je(g) = log A.
If G7 is two-legged

D [eVal(G7)| < const™ O MNP TTIIAIM 2w, ).
J s.t. jo<r v

If G7 is four-legged

S VUGl < const™XONP/2 [TIIN ).

J st. jg=r
All the const’s above are uniform in A.
Proof The proof will proceed by repeatedly trimming off portions of J above forks with
E¢ = 2 and above “dangerous” forks with by = 2. First assign sy =yes to each fork f of T
such that Ey > 6 or Ly(Gs) > 1 or Gy contains an external vertex of G. Assign s; =no to
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the remainings forks. As we proceed some of these no’s will be changed to yes’s. The final
sg’s will obey (a)-(d) of Lemma IIL5.

In each step we consider all remaining forks that are maximal in the class of all
forks that are (i) two legged forks or (ii) two forks f; whose successor forks/leaves f2, f3 are
not both leaves and have sy, = sy, = 84, = no. We trim just below the two legged forks and
f2, f3 forks. The portions trimmed off ;rvill be treated as leaves v in the next step. In the
case of a c-fork the leaf will be viewed as a local two-legged vertex of scale j,. The sum over
scales for the c-fork itself is, by definition, included in the trimmed off portion, that is, the
new leaf. The remaining new leaves are viewed as two or four legged renormalized vertices.
Their scales run from jr(;) + 1 to —1. The sum over these scales and the renormalization
operator are included in 7\{new leaves}. The quotient graph Gy, /{Gy,,Gy,} is one of those
considered in Lemmas IV.4, IV.5 and IV.6. The bounds there are of three kinds. One kind
controls the sum over the scale of G4, or G4, with that of G, held fixed. An example is the
factor M~(1=%) in Lemma IV.6b). In this case change sz, or 85, to yes. The second kind
controls the scale of Gy, with those of Gy, or Gy, held fixed as in Lemma IV.6 a). In this
case change sy, to yes. Finally there is the term jg in Lemma IV.5. This term will provide
decay M~Ut—is) between the scale 7, of Gy and the scale jz, of the line hooked to 73 so

change s¢ to yes for f = f; as well as for all
L>f>fa (II1.28)

All the forks f; > f > f, are by construction in 7\{new leaves} and so affect the trimming
rules at the next step.

We now bound the new leaf Val(Gy) that is obtained by trimming {f' > f} off the
tree. The graph G has general two and four legged scale dependent leaves v, generated by
previous trimmings. We assume, by induction, that the local two and four legged leaves have

scale jr(,) and kernels satisfying

”Tzsj*(ﬂ)”j,,(.,)M_j*(")’ ”It(lj’("))uj,(.,) < [ H |A]|wyr |] |A|—#{f2v|sf=n0}_ (III.ZQ(I.)

v/ >v
The renormalized two and four legged leaves come equipped with (1 — L)’s, have scales

summed from jr(,) + 1 to —1 and have kernels obeying (before 1 — L is applied and the scale
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is summed over)

TN ;07,11 5 < [H IAIww] |A|7# > vloy=ne} (111.29%)
v/ >v

The f’s in (I11.29) refer to the forks of the original tree 7, sy is the final assignment of yes/no

to f, and the ?’s in (IIL.29) refer to the original leaves of 7. We shall suppress all constants

that can be absorbed in constX(®,

We must verify that, if G is two legged

Y levaepHimT < | T |A|w] |\|TH#L 2 g =ne) (I11.30a)
{iplf' 21} v'>f
it <r
and
S IVal(@)llz, M7 < | T Mww | |A[7H#LS > Flegr=ne} (I11.300)
{iglf'>F} ' >f

that, if G is four legged

S IVal@lls, < | TT s | [A|7#>Slegr=ned (I11.30c)
{iplf'>1} v'>f

and that, when f = ¢

> [val(@g)] < [H IAva] A[TH# S leg=ne} (II1.30d)

J v

The Theorem will then follow from Lemma III1.5, or more precisely (III.25).

By construction, Gy contains no f' > f with Ex = 2. Further more if f; is a two
fork with sy, =no or f; a leaf for ¢ = 1,2,3 then f, and f; must both be leaves. The first
step in bounding Val(Gy) is to apply Lemma’s IV .4, 5, 6 to Val(Gy, ) and treat the latter as a
generalized vertex in Gy. We have defined sy,,7 = 2,3, so that the sum over jy, yields const if
s5; =yes and 1/ if s, =no. This generalized vertex may of course be a jgen. The next step
is to apply Lemma II.2' to convert all strings of two legged diagrams into new covariances.

The last step is to apply the power counting Lemma I11.4.
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One technical nuisance remains. We need to prepare jg.n, so that Lemma III.4
automatically generates the desired renormalization decay factor. If CU=is4) is the covariance

of G hooked to 7; and jg e, is of scale h = jy, write (suppressing irrelevant arguments)
[ €Ol entriy ) = 8(rs =) [ doipen(risea)
= fd‘fz [C(72) — CO)(my)]jig,en(T15T2)
= / dry[CO () (M ET+P 1y |) — CO(ry )R(M 3P |1y )] en(71, 72)
* /dfzc(j)(fz)P(M%(Hh)|‘T2|)J'B.en(7'1,“'2)
- fdT"C(j)("l)P(M%(“h)l’fl|)J}3.en("1,72)
f dafd?’z—[C(J)(T)h(Mz(J+h)|T|)](‘r1 + a1 — 711))jg,en(m1,T2) (T2 — 1) (II1.31a)
e / dr,CD (1) p(MEGP)|1,)ig en(T1,72) (II1.31b)
~ [ araCO)pMAGHD g an(rs, ) (I11:310)
For (II1.31a) we simply treat & [C(9 (7)R(M 2GR |7|)] as a new covariance, obeying
|_d_C(J')(.,.)h(M%(J'+h)|.,.|)| |-§-C(j)(1')h(M%(j+h)lTD|’
dr dr
Mﬂ(J'H") % old bound on C
and treat jgen(71,72)(72 — 71) as a new vertex obeying
|7g,en(T1,72) (72 — 71)| < M™*||jgenlla-

Thus we gain M~3(*=7) from (II1.31a) as desired.

Contributions (II1.31b,c) are easy to treat when C) is in the spanning tree of

technical Lemma II1.2. In this case we merely replace

/ dt|C(r, k)| < const M~ x( E(k) ~ M?)
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/ dr|C9 (7, k) |p(M3+P)|7))

< consty(E(k) ~ M%) /drp(M%(i+”')|1'|) (I11.32)
= constM_%(j'*‘h)x(E(k) ~ MY).
Once again renormalization generates an extra factor of M —3(h=),
When C(? is not in the spanning tree we take its | - |, norm (II.5b). Then, since

sup p = 1, there is no gain.
To circumvent this difficulty we modify the abstract power counting lemma to allow

separate spanning trees for 7 and k. The norms (IIL.5) on the covariances are generalized to

sup sup |Cy(1, k)| < a,l x 1 o (111.33a)
k T
jcd = sup [ arlCe(r, )| < art x a7 (I11.338)
k
A / B sup [Ce(r, )| < @M x 1 (IT1.33c)
(Zﬂ')d % ] —
ot “ox M I111.33d
(2r)d dr|Cy(7, k)| < aeM™ x M™% (111.33d)

The hard covariances C(), C¥), C{" (II1.17) and the string (IL.6) all obey (II1.32a-d) with
i¢ = j¢ = j. The soft covariances CY,C{), CY) (II1.18) obey (II1.32a,c) with i¢ = j¢ = j.
The product of any of C), C{, CgJ),Cgfz,C(z’), Cg’:z or the string with p(M (") 1) obeys
(I11.32a-d) with i, = j,5¢ = 2(j + h) > j.

We select any two spanning trees Thom, Ztime for the graph G. When the line
£ € Thigm N Thise (268D, Tinge M-I s

(ITI1.33b) (resp. (IIL.33a), (I11.33d), (II1.33c)). Then mimicing the proof of Lemma IIl.1.a

TSom N Ttime; Toom N Téme ) We require that Cy obey

one obtains

|Val( G)I<Ha¢H|T|H|I| I M [ m* (I11.34)

LETE o €Tk ime
We now apply (II1.34) to extract the required decay factor for (II1.31b,c). Call the
four lines hooked to jgen,%1,%2,£4s and £4 with C(9) being the covariance for £;. Let Toom
be original spanning tree of Technical Lemma III.2. By hypotheses £; € Trmom- But at least

one {3, 43,44 is. The tree Tmom\{¢2,%s,£4} is a union of at most three connected components.



Vol. 64, 1991 Feldman and Trubowitz 313

one {2, ¢3,44 is. The tree Tmom \{¢2,%s,£4} is a union of at most three connected components.
The vertex of G at the far end of ¢; is in one of those components, say the component ending
at £,. Use M2Uath) rather than M2(i+H) in (II1.31). (The improvement for (II1.31a) is now
M3(h=ia) )

E Tmom
- —_— - ¢ Tmom
& =¥y

We choose Tiime = Tmom \{€2} U {£€1}. Thus the only consequence of changing the time tree is
that the time integral is done using £; (which now gives, by (II1.32), M~3(Gath) jnstead of 1)
rather than £, (which now gives 1 instead of M ~72). The net improvement is M—3(h=ia),

M sGw.
Lemma II1.7 Let G7 be a labelled two legged graph with ¢(G7) = 7 with G and 7 satisfying
the hypotheses of Theorem IIL.6. If G7 is of type 7! or 72 then

> 1val(G7)| < constED Alena A2 TIA 4w { 2 #{v} =2 (II1.35)
J v

1 otherwise

Proof The proof is almost identical to that of Theorem II1.6. However now, since G” is of

! or 72, it must contain at least one line of type C, or C,,,. Hence Lemma IIL3

type T
provides an extra factor of '1\_?":' log (-—MK{-) < %Hog A| for this line. We are only interested in
gaining one extra A (and |log A|’s) so we may as well assume that there is only one C;/C; ,
line.

Denote by fa the highest f for which the line is in G? . First suppose that there is
no ¢ fork between fa and ¢ (including fa but excluding ¢). Then since

log A = (—A—log A) [I wm-Grixa) (II1.36)

it Mie
M $<f<fn
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we get, as in Theorem III.6,

> |£val(G7)| < const™() pis (Aﬁé |log Al) A3/2 H”/\|1/4wv] (111.37)
{inlf'>¢} v

The sum over j4 from log A to 0 gives another |log A| < -°—‘|’-§‘-F1 and hence (III .35) when G is

at least third order. When G is of second order Lemma IV.6 insures that the sum over jg4 is

bounded uniformly in A so that we do not loose the &‘[’i‘-[ﬁ in this case.

The proof continues by induction with previously estimated EG} ’s fed in as 2-legged

vertices. Each such vertex comes with a coeflicient

M=) (Mm) |log Al) A 2w (II1.38q)
where
ws = const(G1) H[I/\|l/4wv]. (II1.38b)
v>f

The factor MJ=t) renders the 2-legged vertex dimensionless as usual and the factor
(H,—f—(ﬁﬂog A]) mimics a C,/C;,, line in Gi(f)' At first sight |A|*/2w; seems to have too
small a power of |)|, since the original vertices had |A|3/4[|A\|'/*w,]. However, by the remark
following the statement of Lemma IIL5, |A|*/2 is sufficient provided bz > 3.
It remains only to consider by(s) = 2. If lG; is an external vertex, then when £ is
applied to Gg.
J
Gy
CGx)

the hard covariance CU=(#)), connecting th to the rest of G’i, is evaluated on the fermi

surface and vanishes. If lG’f is internal and b,(s) = 2 then

e,

Once again Lemma IV.6 saves us a factor of A.
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IV. Second Order Graphs

The purpose of this section is to control the quadratic and quartic parts of

%Eéh)(?/{ ,U) where U is the part of W(®) of degree at most four (see [[.102a]). The trun-
cated expectation Eéh) (1.17) is with respect to the superconducting covariance C(Ah) . Here,
as in Section III, all monomials are Wick ordered and degree is interpreted accordingly.

We begin with the quartic part. The quadratic part is treated following (IV.48). In
more detail

1
quartic part of -2—!82(h)(L{,L{) =

120 O

(IV.1)

The kernel

O

of the quartic part of U/ is a sum of renormalized (1 — L(i))I and local (i.e. in the range of
L), see (1.99)) kernels I. Also, the kernel

O

of the quadratic part of &/ consists of renormalized and local contributions (1 — L(*))S and
(see (1.99a)) £S. By [1.102] the renormalized contributions are respectively of scales i,s > h,
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while the (resummed [I.102b]) local quartic part has scale i = h and the local quadratic part
has scale s < h.

As in the last section (II1.26) we use the norms

4 4 ¥
|lI]]; = max {M(Ziﬂ LI Bi)i sup /ded‘l‘sd‘m
ki+kat+ks+ks=0

4 4
T 1712 | TT Vi 1((0, k1), (72, k), (75, ks )s (7, Ka)) | ¢
j=2 i=1
4 4 ..
@;>0, Y a;<2, Y |8|<1 (IV.2a)
j=2 j=1

S|, = max { M@tP gup [ dr|r|*|VES((0,-k), (r,k))|: 0<a<2, |B|<1}: (IV.2b)
K k

to measure the size of four and two legged kernels.

The bottom two diagrams are easy to treat. If

(-

ends up as part of a larger diagram

then, by conservation of momentum, the scales : and j differ by at most one and the second

order diagram may be absorbed into the larger one. The latter, being of at least third order,

_Og

ends up integrated against an external test function g there is a summable factor M 4(h—h=)

was treated in the last section. If

(see Lemma III.1) associated with the diagram rendering it harmless. This was also treated

in the last section.
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We now consider the top two diagrams of (IV.1) when at least one of the generalized
vertices is renormalized. Our goal will be to extract exponential decay between scales hidden
in the renormalization. In order to control the action of (1 — L) the technique of [FT]
is supplemented by a detailed analysis of the volume of momentum space that is actually

integrated over.

To illustrate the mechanism consider, as an example, the labelled graph

ha(a) ho(2) Ro(n)

pf P . N N PO TN p’r—"(o,k}?—)
Fﬂ ) Fl ) (FZ ) Fn [pl
* N N * E.
ha(l) h-a(2) ho’(n)
fa (IV.3a)

contributing to the binary tree

B £ Fo1 F,

root scale = 0

(IV.3b)

Here, n = 2™ — 1 and the indices

o) = 512" +3)/2% 1]
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where 2% is the largest power of 2 dividing 2™ + j. For example, in the case of the 2° — 1
ladder

o(1) = 4
o(2) = 2
o(3) =5
o(4) =1
o(5) = 6
o(6) = 3
o(7) = 1.

Note that we have written h; as j at the forks of figure (IV.3b).

The tree rules (I.34) require that we sum over all h; obeying 0 > h; > hy;) for
J=2,..,2m —1 and hy <0, where m(j) is the index of the predecessor fork of j, that is the
integer part of j/2.

In discussing (IV.3) we restrict ourselves to the most subtle term, (I.41b), of the
operator (1 — L(*)) at R forks. See the discussion following (I.41). To make the example
especially simple, we assume that all lines are hard, that the kernels F; = 7° @ 7% and that
L =D,

Then the value of (IV.3a)

Z/(zw)dﬂC(h‘) k)nH[ (2 )¢+10(h)(t +2)1, C(h.)( b+ k)

f[[ o(|p' + k| M~ =lhw)+’*l)] (IV.3¢)

Z/ ﬁ/ dt;
27r)d+1 iko — e(k) i—1 Je(ti+p')e(—ti+k)>0 (271')

[—ikosgne(t; + p') + |e(t; + p')| + |e(—t; + k)| 7*

F(M~2Pe(k)?) [ JIA(M M e(t: + p')?) f(M?Pie( t; + k)*)]

=1

_ﬁ [1 e (lp' + k!M”%["r(a‘ﬁh;’])J 0

j=2
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Evaluating the k¢-integral yields a sum of terms one of which is

> ~senleh) [ gyt - eet?) I [

hi

dt;

F(M2Mee(t; + p')?) F(M 2 ee(—t; + k)*)
le(t: + p')| + le(—t: + k)| — e(k)sgne(t; + p')

ﬁ [1 - p(lp' + k]M—%[h*(i)'*’hj])] -0
=2

=1 e(t;+p')e(—t;+k)>0 (271.)!1.

319

(IV.4)

The analysis of the remaining terms is similar to that of (IV.4) so we concentrate on the

latter. It is bounded in magnitude by

Z(const)"’HM_h‘/dkf(M_zh‘e(k)z)H/dt,f(M—Zh‘e( AP ) (M~ hie(—t;4+k)?)
hi i=1

=1

ﬁ [1 —po(lp" + kIM“%[hw(nHj])]
j=2

Ignoring the last product, that is the effect of H(l - L(h")), the volume of integration over k

i=2

and each t;,1 < ¢ < n, may be estimated as usual by M"** and M" respectively. This yields

the “unrenormalized” bound

(const)™ Z MM H MR pphs

h,(,) <h; <0
ky <0

= (const)™ 20: MM Z 1

hi=—o0 h,,(j)<h,- <0

One sees by induction that
Z 1 ~ (const)™|hy|" 1.
hax(jy<h; <0
Therefore, the unrenormalized bound is

0
(const)™ Z |h1|P "M ™ ~ (const)™n!

hi=—00

(IV.5a)
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To eliminate the n! in (IV.5a) we exploit the last product in (IV.4) by applying
Lemma IV.2 below. For each 2 < j7 < n the jth factor of this product forces ¢ = p' + &
to be large compared to the scale of the predecessor fork i = =(j). To each fork with
1% i Pt = %(n + 1) there correspond two such factors, namely j = 2¢,2¢ + 1. Selecting
the one that gives the larger gap between scales and hence better decay leads us, via Lemma

V.2, to
{1 allp' + g hssmestindase )} [t f(=efts 4 p/)?)F(M2hee(~44 4 K)?)
< const M — 3 {3[hi+max(hai,haita)]—hi} prh
= constM ~ {3 max(haihaip)—ghi} prh
< const M — (kai —ki) pr—5(haiya—hi) grhs

for each 1 < i < 2™~! (Lemma IV.2 is used in the second line) yielding the renormalized

bound .
(const)™ Z MM H M~hi prhs H M—5(hi—hx(i))
h.‘ §=1 j=2

1] n
< (const)™ Z MM H Z M—5(hi—hax())
h1=—00 j=2 OZhJ >h,(,)
< (const)™ (IV.5b)

Consider a pair of particles or holes with momenta +t + ¢/2. Pairs that bind
have || £t + q/2| — kp| small. Our immediate goal is to show that the volume of {t :
|| £t +q/2| — kp| < O(M*)} for component particles of scale i is small when the scale of the
composite momentum ¢ is comparatively high. This effect was exactly what was required in
the derivation of the renormalized bound (IV.5b). To do this we first prove the Technical
Lemma IV.1 from which we shall derive Lemma IV.2 that estimates the amount of momentum
space available for condensation.

Technical Lemma IV.1
a)If v > 0 or |q| > 2kp, then

trq/2i<er Gt O(e(t+a/2) +e(~t+aq/2)—v) =0

|—t+a/2|<kr
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If v <0 and |q| < 2kF, then

. —_ Y
traszi<ky O S(e(t+a/2) +e(—t+q/2) ~v)
|-t+a/2|<kr

d—3

]Iil[[mv-i-k%-—%t] : , ifm|v{§l%l(2kF"IQD

a

d—2
< t 2155 ) 2 IV.6
Scomsta) Loy g by 0] T it Ml @k —fa) < < k342 (VO
0, if k2 — 19 < my|
b) If » < 0, then
traseiske Gt O(e(t+a/2) —e(—t+q/2)—v)=0
|-t+a/2[<ke
If v >0 and |q| > 2k, then
traziske Gt O(e(t +a/2) —e(—t +a/2)-v)
[—t+a/2|<kpr
0, if my < 13l (|q| - 2kF)
d—1
2177 -
< constg [1@? - (- ) ] , if Bl (|q| - 2kp) < mv < Wl (ja| +2k5)  (TVVT7)
0, if 14l (|q| + 2k5) < my
If v > 0 and |q| < 2kp, then
[ crasann 4t B(e(t+a/2) - e(—t+a/2) —¥)
|—t+aq/2|<kp
4 2 _;_-
x [k%- (g - ) ] , if my < 19 (2kp — |ql)
< constg { 215 (IV.8)
k2 — (J?l !In—l) ] , if 1%1 (2kr —|q]) < mr < J%l (2kr + |ql)
o, it 4l (2 + |q|) < mr

c) If » <0, then

lt+a/2|>kr dt S(e(t+q/2)+e(—t+q/2)—v)=0

|-t+a/2|>kr
If v > 0 and |q| > 2kF then

erasaohe G S(e(t+a/2) +e(~t +a/2)~v)

|-t+q/2|>kF
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(0, if my < a0 _ g2
48— )T A < < 19 (jq] — 2Rp)

SO e [t )T elel (g ok << 8l (a4 2he)
w8, kel () 2ke) < o

If v > 0 and |q| < 2kp, then

d’t  &(e(t+q/2) +e(—t +q/2) —v)

|t-+a/2>kp
|—t+q/2|>kr
Naka lal
v [y + k2 — 18 ] , if 0 < mw < Bl (|q] + 2kp)
o el 161[ F 2 ".,___, % (IV.10)
[mv-l—kz —J%L-] " if’%[(|q|+2kr«') < mv '

Proof a) Observe that
1
e(t+q/2)+e(-t+q/2)—v = E(t2 —a)

with
a=mv + 2mu — q?/4.
Let dop(¢1y.ey $n—1,0) be the surface measure on S™ expressed in polar coordinates. Then,

for n > 2,
don (P10 Pn—1,0) = sin™ ! ¢p1dp1dorn_1(P2, -..; Pn—1,0)

so that, ford > 3, >0

/ d%t 8(1(122 —a))= ]drdqﬁlddd_zrd”l sin?—2 o1 5(l(r2 —a))
F-e<hr<Ihe m ™m (IV.11)
= maiz—zﬁ(e)

where

1 €
@(E) = Ewd_gf d¢1 COSd_2 ¢1 S Wyg_o€
—€

Formula (IV.11) also applies for d = 2 with wy = 2.

There are five cases:

case 1 v > 0: The integrand is zero, since on the domain of integration e(t + q/2),e(—t +

q/2) < 0.
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case 2 |q| > 2kp: The domain of integration is empty since if |[t+q/2| < kg and |—t+q/2| <
kg, then |q| = [q/2+t + q/2 — t| < 2kp. )

, 2711/2
case 3 -kf,~+J% <mv < —-I—;,‘—I(ka—-[q]): Let d; := (kp - l%l) and d; := [kF (%) ] '
Of course, d; < d». If, 0 < o < d3, or equivalently,

2
05mv+kfv—%_

the support of § (--Tlg(t2 - a)) is contained in the domain of integration and we may therefore

apply (IV.11) with e = .

| —t+q/2| < kr

domain of integration

It +q/2| < kp

case 4 —J-%‘-{(Qkp —lq|) < mv <0: If &2 < a < d2, or equivalently,
2 2
6 —kelal + 10 <omy g gy 190 <z 190

we may apply (IV.11) with ¢ determined by

2 g/
kF_a—+——+\/—]q]sme

Consequently,

[t+q/2|<kr d’t S(e(t +q/2) + e(—t +q/2) —v)

|—t+q/2|<kp
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d—2
e _
=m [mu + k2 — -I—q-—l-] L) (sin_1 my )

1 allms + kg — 1]

d—3
217
= constgy (—I—V—I- [mu + k% — %—} )
q

domain of integration

radius kg

—q/2

2
case 5 mv < —k% + -]34]—: If o < 0 the support of the delta function does not intersect the

domain of integration.

b) Now

1
e(t+Q/2)‘€(—t+q/2)—yzgt-q—u
so that

Lot stetera—et-trap-n)= 5 [ae s (e -

= 2 Vol2 N {t ¢ s o -”f’ﬁ} (IV.12)
lal lal  lal
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There are three cases.

integration domain

It —a/2| =kp
| T N il s =

lal  lal lal  Iql
It +q/2| = kr

la| > 2kp lq| < 2kp

case 1: If v <0 or, |q| > ZkF,-"ﬁ’- Jﬂl—kF or, |q| > 2kF, -"Il'f > JS-l-I—kF or, |q| < 2kp, —i’t‘—"r >
[‘*[ + kp then the hyperplane t - ]HT fa.lls to intersect the domain of integration and the

integral is zero.

case 2: If|q|22kp,|—q-|-—kFS ﬁ%’-gﬂ—i—kp or, |q| < 2kp, kg — % = -T%T < %—l—kp then

the hyperplane t - |—;11| = % intersects the domain of integration in a (d — 1) dimensional ball

1/2

2
of radius [k% - (lz—l | T) ] . Now apply (IV.12).

case 3: If |q| < 2kp and 0 < < kp — Jﬂl then the hyperplane intersects the domain of

|‘-'I1

471/2
integration in a (d — 1) dimensional ball of radius R = [k%‘ - (lgl - mTT) ] with a (d —1)

571/2
dimensional ball of radius r = - (J%l + -["é-‘li) ] excluded. By (IV.12) the desired
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integral is
m d—1 _ ,d-1
Hconstd[R — 7477
2 _ 2
:%consthR m : [Rd-z + 7R3 4.+ RO 4 rd_z]
2 _ .2
S%constdER—r[(d = 1]

v la] mv 2] 5
=constg— | k2 —(————)
T [ P\ 2

c) The proof is similar to that of part a)
|

The estimates of Technical Lemma IV.1 are in the spirit of, for example, [FW pages 160-162].

We are ready to estimate the amount of momentum space available for condensation.
Consider particle (holes) of momenta +t 4+ q/2 constrained by f(M~%e(+t + q/2)%) > 0.
That is, particles with momenta lying in a shell of thickness 0(M?*) about the Fermi surface.
The momentum of the composite is further constrained by 1 — p(M ~%|q|) = A(M ~¥|q|) > 0.
In other words |q| > 0(M7?). See (1.29a) and (I.41Db).
Lemma IV.2 Let d > 2 and ¢ = u + v € R¥*!, Let (M ~7|q|) > 0 with j > i. Then,

vol{t € R : f(M~%¢(t + u)?) >0, f(M~%e(-t+ v)?)> 0}

< vol{t € R ; p(M‘z("""l)e(t +u)?) >0, p(M——z(i+1)e(_t +v)2) > 0}
< const M~ 1U=Iyol{t € R%: f(M~?¢(t)?) > 0}

Proof By shifting ¢ it suffices to consider v = v = g¢/2. Since p(z) = 1 — h(z) =
-1

Z f(zM~2) > f(zM?) the first inequality is self evident.

i=—o00

The right hand side is bounded below by
const(kp,d)M_% =DM

The left hand side is the volume of three disjoint sets. They are determined by the
positions of £t + q/2 relative to the Fermi surface.
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Inside-inside. The set in which +t + q/2 are both inside the Fermi surface has
volume at most.
d
_o(M)<e(t+a/2<o ¢t
—0(M*)<e(—t+q/2)<0

= /ddtf _dv b(e(t+q/2) +e(—t +q/2) —v)
[v|<o(M*)

(IV.13)
= / du/ d*t b(e(t +q/2) +e(—t +q/2) —v)
; e(t+q/2)<0
oy J LGN
The contribution with |v| < 3-|q|(2kF — |q|) := v(q) is bounded by
0 2 ,_
/ PO LT (IV.14)
— min(¥(q),0(M+)) lq| 4

If d > 3 orif |q| < kp, then [mv + k% — !%I:]'d‘;_s < const and (IV.14) is bounded by M?*/M?
as desired. If d = 2 and |q| > kF, then

0 2
(I1.16) < const M’ / dvfmy + k§ — th]'” ?
—min(v(q),0(M?))

 poot+0(M*) IV.15
< constM'/ do o~ 1/? ( )

oo

< const M 3+ < const M~ 3= 1t

where o9 = —m min(1(q),0(M?)) + k% — l‘—"‘iL > 3(2kp — |q])? > 0.

The contribution with 1|q|(2kr — |q|) < m|v| < k} — I%E is, by (IV.6), at most

d—2

2 3
dv [mu + ki — Ji:l < const/du (IV.16)

/ ~(4k} —la|?) <mv<-2q|(2ke ~lal) 4

lv|<o(M*)

In order for (IV.16) to be nonzero it is necessary that
lal(2kr — lal) < 0(M")
so that either |q| < 0(M?), or (2kr — |q|) < O(M?). In the former case
(IV.16) < 0(M*) = M?~*0(M")
while in the latter case

2
(IV.16) < const [(kfw - |q—4|-) — %|Q| (2kr — |ql)
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= const (2kr — |q|)? = 0(M?*) < M~U—Do(M?)

QOutside-inside. The set in which +t +q/2 are on opposite sides of the Fermi surface

has volume at most

/o< o dit
<Le(t+q/2)<0(M")
o(M*)<e(—t+a/2)<0

< - . - -

B fl oz /e(t+q/2)zo d't b(e(t +q/2) —e(~t+aq/2) - v) (IV.17)
e(—t+q/2)<0

The part of (IV.17) with v > 0, |g| < 2kr and mv < %fq[(2kp — |q|) is bounded by

d-3
la|  mr\*| 7
ﬂsfnvs%ml(m—mn dv Tal [kF (—2— T - (1V.18)
v<o(M)
For d > 3, this at most constﬁT and (IV.18) < const M ~U—9 A%, For d = 2, the integrand

factors

v |q| —1/2 Iql i —-1/2
| B e s kp +— — —-] ’
lq| [q[ lq]

When |q| > kp, the second radical is 0(1) and (IV.18) < constM?* as in (IV.15). When
|q| < kF, the first radical is 0(1) and '

~1/3
(IV.18) < const /du — [kp + lal _ ﬂ]

ldl 2 |dq

v lal? I
= const/dv PRE [kF|q| + SRS mv]
< const M3/2ipr=il2,
The part of (IV.17) with 1|q| |2kr — |q|| < mv < >1a|(2kF + |q|) is bounded by

Jal (=) )™ < fa [y (- ) (2 2)]

d—1

T 2 . - o= -
< const /du [E — const M~U-DF pfi
q ]

Outside-outside. Finally, the set in which +t + q/2 are both outside the Fermi

surface has volume at most

<e ' S .
'/;()Sl(gjfcij;)ggé&)) [v]<o(M?) e(+t+q/2)>0
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If |q] > 2kp, 190 — k2 < my < 18[|q] — 2k#] then

g 52
2
[mu + kfp = %L] < const

and v is integrated over an interval of length

1 1 1
5|Q|[[Q| — 2kF| - Z|Q|2 —k = Z“ql — 2kp)?
< const M2,

If
1 1
max (0,3lalllal ~ 241 ) < mo < 3ol al + 261

we must bound

-3
v lal*] |
dv — |mv+k%— --—-—-] (IV.19)
f [a] [ o4

It is handled precisely as (IV.14). Finally, 1|q|[|q| + 2kz] < mv forces |q| < consty, that is
j < t+ const. So we have
/ di < o(M 3G -) M)
0<e(tt+q/2)<0(M*)
and the proof is complete.
|

We remark that, as a brief inspection of the above proof shows, for d > 3, the
M~30~9 in the statement of Lemma IV.2 may be replaced by M—(/—9,
Lemma IV.3 Let |q| < const. Then,

] & 8(v— |e(t + a/2)| — le(t + a/2)])
e(t+q/2)e(—t+q/2)<0

1/2 v lel2 —1/2 lal _ _
< constd ¥ T i (krlal ~ laff —2mp) T Ex(0 < v < 57 (2ke —al)) d=2
v+ |T"|x(lq| > constr) d>3

Proof By Technical Lemma IV.1b), there are two cases. Namely,

2mv

< 2kr + |q]
lql

12kF — |qf| <

and

2muv
0< —— <2kp—|q|, |q]<2kF.

q]
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In the first case, the integral is bounded by

a1 4-1
2 my| ?
CODSth—-m-}-_ kF-i-lill——
lal 2 laq
d=1 dei
const '2"‘" Iconstl"—’“ if |q| > kp
<

const‘kp— ‘_l+J_l‘ , if|q| < kp

consty T, if |q| > kF

< o
const ‘zkzm" ‘ , if |q| <kp

d—1
< constvr™7 .,

In the second case, the integral is bounded by

473 52
const—-—( VT' +E#E
lal 2 ldqf
constﬁ|const|$|const|# d>3
/2
< ¢ constil TEF lq|~1/2 d=2,|q| > kF
t 2 kp -1/2 k q mv -1/2 d=2 <k
COHSm(z) F+2_q —"Iq|—F
constﬁr d>3
< { consty!/? d=2,|q| > kF

const s (kplal + laf? - mp)/? d=2,|q| < kp

2muv

and is zero unless |q| > ) ey

We now return to our analysis of the top two diagrams of (IV.1).

As before, we decompose

Ca=C1+C,
ikol + e(k)o®
C, = (-
Sl S, By T{RE
Aot

=(—-1)——"7"-——.
2= DTy
Each of the two diagrams become a sum of four terms. Three of these terms contain at

least one C;. As explained in the introduction, and implemented in Section III, with every
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occurence of a C, there is an accompanying uniformly summable factor of 'A%" See (1.114).
Hence, we only consider C; in this section.

To obtain the necessary information about the top two diagrams that is required
for the scheme of Section III we must consider the following pfoblems, that naturally divide
into the case of two local kernels and the case of at least one renormalized kernel. For
the former we need only consider, in the language of physical fields, the electron-hole ladder,
since the electron-electron and hole-hole ladders have been put in the low. The latter is more
involved. We must extract summable factors from three distinct sources, namely, momentum
space constraints, cancellations of the type f(p) — f(p') when |p — p'| is small and effective
infrared cutoffs when py is large.

For the rest of this section I; and I, denote arbitrary kernels proportional to pure

tensor products 7* @ 77 and

« q
T1 T3 g1 g3
T2 T4 (ol)) g4

/ q  (IV.20b)

The internal lines of J; are of type

sgnt)E(k)1 + e(k)o®

B f (M E(KY)

CM(r, k) = (—1)e-E®IrI{

or its soft analogue (f replaced by p). At least one internal line is hard. We shall, without

loss of generality, assume that it is the upper one.
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The case of an electron-hole ladder is covered by the lemma below. In the expansion
of Theorem 1.1 each kernel Iy, I, is either local and of scale h or renormalized and of scale
Ji > h. We do not need to exploit the effect of renormalization in the electron-hole ladder so
we replace renormalized kernels by general ones.

Lemma IV.4 Let »r < —1. Let ;7* @ 7° (resp. I,° ® Td) be a local or general kernel with
a+ b =0 (mod 3) (resp. ¢ +d =0 (mod 3)). In the former case it may depend on h. Let

-1 if I, I, are both local
§ J1 if I; is general and I, is local _
TS J2, if I is local and I, is general (Iv.21)
min(j1,J2), if I;,I> are both general
and define
L;., if I; i al
g Ml e v
max, <p<p || L; 7 ||ry  if I; is local

a) Suppose that I; and I, are not both of type 7° ® 7° and not both of type 7° ® 7%. Then

I Z J;fh)ll,- < constB; B,.
™M>h>r

b) Suppose that I;, I, are not of type 71 ® 72,72 @ 7! or vice versa. Then

| Z Jéh)|| < constB; B,
r'>h>r

Proof a) The proof is made by combinin.g estimates on J; (A =0) and ;% J;. When A =0

dk
Jl(h) = ] (27r)d deClT4d0’1d0’2 F(M_Zhe(k -+ Q)za M-2he(_k)2)

11(71772)73)74’1:,1{, Q)I2(01,02,0'3,0'4,k,5, q)

e—|e(k+q)[|01v-1'3| e"|e(—k)”‘72 _T‘!l

7[sgn(o1 — 73)1 + sgn(e(k + q))o’]r¢
®7°(sgn(og — 74)1 + sgn(e(—k))o ]2 (IV.23)

with

F(M™""e(k + q), M~*"e(~k)?) = f(M~**e(k + a)*)(0 or £)(M~**e(-k)?)  (IV.24)
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supplying the scale cutoff.

First consider the case in which (o1 — 73)(02 — 74) > 0. Denote this part of Jl(h) by
J_(,_h) and the other part by I We claim that unless e(k + q)e(—k) < 0 the integrand of
Jih) vanishes. To see this observe that when (o; — 73)(02 — 74) > 0 and e(k + q)e(—k) > 0,

(sgn(o; — 73)1 + sgn(e(k + q))o®,sgn(os — 7)1 + sgn(e(—k)a*))

€ 2sgn(o; — 1'3){(1'0,7'"),(7'3,7'3)}. (IV.25)

Since

Ti‘ro’rj =0 unless (i‘)j) € {(070)3 (0’1): (2’1)’(2’0)}
ri7377 =0 unless (‘:J) € {(112))(1?3)’(372)’(3’3)}

and a+b,c+ d = 0(mod 3) and furthermore, by assumption (e, b, ¢,d) # (0,0,0,0),(3,3,3,3)

(IV.26)

we have J
a b 0 0 c
T"RT )T QT )(7TT@7T") =0
(r* &) (* &) (7 e
(r* ® ‘r") (o) (e ‘rd) =
Therefore, when A = 0,
/dedo‘st'4|J£Lh)(T1,7'2a63,04,t7S,Q)|
< constM_hlIll |12 d’k F(M~**e(k + q)*, M~ *"¢(—k)?) (IV.28)
e(k+q)e(—k)<0
So
/dfzda3da4]J£rh)|
const/M" 7 dd.k
e const]I-_; ”Ile(_h)/ dt// 5 §(v — le(k + q)| — |e(=k)|)
const Mt e(k+q)e(—k)<0 (27!')
M* + 2 x(|q] > constM™), ifd >3
< const|I1”12| M"h/2
i oo dvjzmy - 2kpla + [al?|~dx(la] > constM*), ifd =2
Mh 4 M > constM™" d>3
< const|I1||I2[ { ¥a |q1|‘:ig\tI| ) X (IV.29)
M"2 4 —-W;x(|q| > constM"®) d =2

where Lemma IV.3 is used in the third line.
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We next consider [ d72d0'3d0'4|J(_h)|. Now, the domain of integration in (IV.21a) is

restricted by (o7 — 73)(02 — 74) < 0. Hence,
|3 — 01| < |13 — 01 + 02 — 74
< |18 — 74| + |o1 — 02

Suppose, I, I are both general. Then, recalling r' = min(j1, 72),

drodosdo ]J(_h)| 5/ dr; | | do; |I(")||I(”)|F
f 2 3 4 (01_T3)(02_n)<0 (21".)&, H 1 H 1

[1+M ITs—0'1|]—2[1+Mr IT3—0'1|]2
dp 2 IV.30
/ d’k HdT‘ Hdale(h)”I(h)lF ( )

[1+ M |5 — 0‘1” 2[1+ M |75 — 14| + M? |0y — o2)?
< const MM || 19|, | 19|, M.

When only one kernel, say I, is general the bound (IV.30) still applies since then I, forces
01 = 03. When both are local J(_h) vanishes.

The next step is to bound s,t and ¢ derivatives of J;, while retaining A = 0. By
a go-derivative we mean multiplication by 7. Observe that ¢ derivatives must act on I;
and s derivatives must act on I, while ¢ derivatives may act on I, I, e~le(ktallor—7s| ¢}
cutoff F(M~2he(k + q)2, M ~2h¢(—k)?) or on the sgn(e(k + q)). If the derivative acts on
sgn(e(k + q)), we get zero because the hardness of the upper line implies that the supports
of é(e(k + q)) and F are disjoint.

The result of applying any derivative to I, I, is estimated immediately. Only
slightly more involved is the action of a ¢ derivative on e~ le(+llor=7sl or F(M—2he(k +
q)?, M ~2"¢(—k)?). In both cases each derivative produces an extra M " (possibly via
fd‘rlr[“e“Mh]Tl < const, M ~(rt1)k),

Recalling (IV.29) and (IV.30) it follows that when A =0,a; > 0,8; > 0,

]

3
da;j<2, Y Igl<1
j=1

j=1

[ dradosdzalin — i1 ~ 03]y — os|=0f o8 I MK st T 5D
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, Mh+th q| > constM" d>3
< constBy By [ M~(" %) i Tar X{lal ) X (IV.31)

M*2 4+ Wx(]q] > constM™) d=2

or, summing over h,
I Z IM||,. < constBy B, { 1 MM? 4 M > tM*
1 : e 142 + SuPZ | |1/2 X(Jq[ cons )
r>h>T 9 h<o

M*h/2 (IV.32)

< constB;B; { 1 + sup Z
q

h s.t.
M" <const|q]|

la[*72

< constB; B,

The next step is to consider

d d d?k
___J(h) Z ———drydrydoydo, ;7 @ 7°Cy (01 — 75,k + q) ® Ci(0z — 74, —k)

dA dA | (2m)d

@ L f(M™*E(k + q)?) f(M " E(-k)?) (IV.33)

We apply
[Ci(7,p) | {(M~*E(p)?) < e ™ 1"y (E(p) < M?) (IV.34a)
' = Ci(r,p)f(M P E(p)?)| < M3~ I"Ix(B(p) < MY) (IV.34b)

to get
d h
j drydosdos |\ < 3 |L||R|M MRt

 ha=tna (IV.35)

Mh
= |11|II2lM_h10g (K) .

Just as for A = 0, the result of applying any ¢, s,q “derivative” to I;, I3 is immedi-

ately bounded. As expected each “(7,Vq) derivative” acting on
Ci(o1 — 73,k + q) ® Ci(02 — 74, —k) F(M**E(k + q)?, M ** E(-k)?)
produces an M~*. Thus

I J(">||,, < constBy BoM " log(M" /) (IV.36)
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and
DI LRI SR LIRS Sy P7Cy
1 = 1 A=0]|r o dA T
r">h>r r'>h>r r">h>r
[ Z . h h
< BB, |1+ / AN M~Fog(M* ] A')
05hord0 (IV.37)
- A X
< BB; (1+ Z -mlog(M /D)
0>h>r
< BB,
ignoring irrelevant constants.
b) From (IV.20b), when A = 0,
(h) _ d?k —2h 2 ar—2h 2
J2 = (2—)d'd7'2d7'4d0'2d0’4F(M e(k + (l) ,M e(k) )I1I2Ta ® Te
™
e—le(k+a)lloa =74 ,—le(k)||r2—c4] (IV.38)

trr°[sgn(rs — 04)1 + sgn(e(k)o®|7¥[sgn(oz — 74)1 + sgn(e(k + q))o?].

As in part (a), we first verify that when (12 — 04)(02 — 74) < 0 and e(k)e(k + q) > 0 the

integrand vanishes. This is a consequence of

trro 707 = trrbrirdr0 = 0
when (b,d) # (1,2) or (2,1). The hypothesis on 7° ® 8, 7° ® 7¢ forces (b,d) # (1,2) or (2,1).
The argument continues as in part (a).
|
At this point we have finished our analysis of the “wrong way ladder” contributions
to the first two diagrams of (IV.1). (Recall that the second two diagrams have already been
completely treated.) We now treat “right way ladders” and assume that at least one of the
kernels appearing in each of the first two diagrams is renormalized.
Lemma IV.5 Let I and K be kernels of scale 7 and k respectively. Let R = (1 — L(*))K be

the renormalized kernel. Define

1 g3

OO

T2 04
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T1 T2 g3 T4

SENONO

For Jy, assume that I and K are both of type 7° @ 7° or are both of type 7* ® 7°. For Ja,

assume that I, K are of types 7! ® 72,72 ® 7! or vice versa. Then
Jﬂ('rl:TZ,o'S,a‘ht,s’Q) = jﬂ,int(flaTZ:a'Sao'ht’S:q)

+]‘/3,mom(7'1,7'2,63,0'4,t,5, q)
—I—{jﬁ,en(‘rl,1'2,0'3,0'4,t,s,q) - /dazjﬁ,en(‘rl,ah 0'3’04’1:’5)(1)6(71 - 72)}
for 8 = 1,2 where

1

h
liasnala < const i [ =300 4 2 10g (20

l158,momp(M ~2* E?(t £ q/2))||n < const|| K ||| I]|;4 3 (=R
176 .enlls < const|[ K[[k[lI]]:-

Here, h <1,k is the scale of the internal lines. The external momenta t,s and q are defined
as in (1.99) and t' = kpt/|t].

Remark The subscript int indicates that the renormalization operator (1 — L{*)) acts on
the internal lines of Jg. The subscripts mom and en indicate that it acts on the external
momentum and energy arguments of Jg.

Proof. To avoid the tedium of repeated conversion from Nambu to physical fields we shall
assume that K and I are both proportional to 7° ® 7°. The remaining eight cases are treated

in exactly the same way. Evaluating (IV.20a), using the notation (IV.21b),

Ji(t,s,q) = / (;i::)).; (1- L(k))K(t$P7 q)[TOCI(p + Q/z)'ro] ® [TOCI("p + q/Z)TO]I(p, $,9)

F(M~**E(p + q/2)*>, M~ **E(-p + q/2))

d'p i(po +90/2) +e(P+a/2) i(—po+90/2) +e(—P +q/2)
/ Gyt K G ) S E(p ¥ a/2F (—po + 10/2) T E(—p + a/2)?
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I(p,s,9)F(M~*E(p + q/2)*, M~**(—p + q/2)?)

— Ji(A=0)+ fOA dA'%(A'). o avay)

To facilitate the estimates we work in the mixed (7, k) representation with the variable names

displayed in

Ji((m1,t +q/2), (72, -t + q/2),(e3,8 + q/2),(04, —s + q/2))

——4—-—q/2
T3 (o] g3

= t)j R )@J—\(I G

T4 a2 04
—_—— q/2

For A = 0, recalling the definition (1.99) of L(®),
J1(7171210'33U41t153Q)

s i
- / ((ZiTI))sdfsdndm doy F(M~?*e(p + q/2)%, M~**e(—p + q/2)?)

R(717727T3:T43 t’p: q)I(O'1,0’z,O'3,0'4, P,Ss, CI)
e—!e(p+q/2)lla1—1'a|[X(__e(__p +q/2))x(o1 — 73) — x(e(p + q/2))x(73 — 71)]
emlet=pradlles=rd[y(—e(p + q/2))x(02 — 74) — x(e(—P + @/2))x(74 — 02)]  (IV.40a)

where

R = K(11,73,73,74,t,p,q)—

4 4
IV.40b
—P (|q’M_%(h+k)> H 6(n —75) / H da;K(m1,as,a3,04,t',p',0) ( )
=2 i=2
We decompose the renormalized factor R (IV.40b) into the sum of nine pieces:
e —1(h+k)
R, = [1 - P (|Q|M 2 )] K(m1,72,73,74,t,p,q) (IV.4la)
By =p (|qIM—%(h+k)) (K(71,72,73,Tay t, p,q) — K (71, 72,73, 74, t,p,0)] (IV.41b)

Rc =p (IqlMﬁ%(h_He)) [K(Tla7'277-317'4)t:p10) - K(TI)TZ’TS;T‘ht,p')O)] (IV4IC)
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Ry=p (|Q|M—%(h+k)) [K (71,7273, Tas t, P',0) — K(71,72, 73,74, ¢, p', 0)] (IV.41d)

Re = Al f da{[K(TlaTZ,TSaT4,t': P',O)'S(Tl - 04) - K(T]_,'Tz,’l’s,&4,t’, p,,0)6(‘r1 - T4)]
(IV.4le)

Rf = A16(1‘1 &= 74)jda3da4
[K(Tl,7'2573,a43t’a p‘,O)(S(‘Tl - (13) - K(TI,T%aSs a'lnt'a p',O)fS(‘T‘l - T3)] (IV41f)
Rg = A16(T1 = ‘7'3)6(1'1 — 74)/da2da3da4

[K(Tla‘r:’a a3’a41t’) p'a 0)5(7-1 - a2) = K(Tliaih a31a4$t" p’,0)6(1-1 - Tz)] (IVA’lg)

Ry = A, K(7y,73,73,7,t',p',0) (IV.4lh)
4 4
R; = Ay(-1) [J 6(r1 = 75) f I deiK(m1, 02, 05,04, t',p', 0) (IV.413)
=2 i=2
where
oy =2 (]q]M~%(h+k)) A (M%(h+k)(,,3 s )) A (M-ir(wc)(r4 _ 02))
and
Ay =p (|q|)M-%(h+'=)) [1 — b (M¥®*)(ry — 1)) b (M%(’*+'°>(f4_—.az))]
We have

R=R,+Ry+R.+R;+R.+ Ry + R, + R, + R;.

As a preliminary exercise, we first, as in example (IV.3), bound J; (still with A = 0)
without exploiting the renormalization cancellations (IV.41) in R. Recalling the norm (IV.2)

and our convention that the upper line, joining 73 and oy, is hard
/d‘rzdﬂsdo'd-fl(‘flﬂ'z,03,04,*',5:01”

/ (2m)* H 4 H do; F(M~?*e(p + /2)?, M~ 2*e(—p + q/2)?)e ™" 1717l

IR(Tl’TZaTS’Tht P-4 )”I(O'l,ﬂz, 03,0’4713,3,‘1” (IV.420.)

< SUP/d02d03d04|f(0'1,0‘2,0'3,0'4,1’; yq)|
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4

d® —M"*|oy—T
]ﬁHded0'1F|R(1-1,1-2,73,74,t,p,q)le al e
i=2

&p 4

——= | | d7;F|R(71, 72, 73,7, t, P, q)|
3 H b 1T72,73,T4,

Gy L

< M~M|1|l; ang /dTldT2dT3IR(TI:T2aTSaT41t’paq)l

t,p,q

< M~M|I|;

[ B - Pe(p + a2 M e(-p + a/2))
< MM Rl

= |T]|:[| Bl-

We have suppressed constants.

H.P.A.

(IV.42b)

(IV.42¢)

(IV.42d)

(IV.42¢)

We now explain how each term in (IV.41) improves (IV.42e). For R,, we improve

(IV.42d) by using the immediate consequence
dp
(2n)?
< M—%(k—-h)Mh
of Lemma IV.2. This replaces (IV.42e) by M‘%("—h)“I”;HK“k.
For R, we improve (IV.42c) by

p (Iain—20+0) [ T drslK({rid,t,00) ~ K({ridit,p,0)
:p/Hdrj|/oldediiK({n},t,p,eq)l
<o e [ Tlrla- VaK((zd,&,p,cq)
<lalp [ desup [ TLarlVaki(trd,t,p,ca)

t,pq

R — f [ d7sIVaK({r:},t,pr )l

t,pq

< MR up ]de,w K({r:},t,p,q)|

t,pyq

The norm (IV.2a) “converts” the V4 into M~ yielding an extra M 2(h=k) —

=P F(M~he(p + a/2)?, M e(—p + q/2)?) [1 — p (Il M 30

(IV.43a)

(IV.43b)

= M3k i

(IV.42e). For R, we improve (IV.42¢) as above but with q - V4 replaced by (p — p') - Vp.
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As observed following (I.41)

Fplq —p'| = Fp|lp| — k|
< Fplllp + a/2| — kr| + lal/2] (IV.43¢c)
< Fp[Mh-*_M-;-(h-i-k)]
Once again the norm generates from (IV.43c) an extra M~—3(k=h) in (IV.42e). For Ry, the

same argument contributes p|t — t'|M k.

For R., we first manipulate (IV.40a)
& 1
/ -(-?I))sdfgduda'ldazda‘;FpIh (M%(h+k)(‘r3 — 0’1)) h (Mf(h-i_k)(‘r.; — 0’2))

[K(oooy Tay..)8(m1 — a4) K (s , 0y )8(T — 74)]
e~lePra/lier=ral(y(_e(p + q/2))x(e1 — 75) — x(e(P + @/2))x(7s — 01)]

e~leC=pra/lloa=7el[y(_e(—p + q/2))x(02 — 7a) — x(e(—P + q/2))x (74 — 02)]
dp
(2m)?

e~lePra/Dller—rsl[y (_e(p + q/2))x(a1 — 73) — x(e(p + 4/2))x(Ts — 71)]

dngT4d0'1d0’2FpIh (Mz(h-*-k)('rs - C"1)) K(TlaT?,’TihT*h P 0)

{emteorrarmlies=raly(—e)x(os - 72) — x(ex(rs — o2)}h (MIFDlr, — )
—e~le(=pra/Dllea=mil[y(_e)y (o — 71) — x(e)x(r1 — 02)]h (M%(H’k)lﬁ —102.1) b (Ivag)

For the K(...,4,...)6(T; — 74) we evaluated the 74 integral using §(m; — 74) and then made
the change of variables 74 = 4. We next apply Taylor’s theorem to {...} in (IV.44). This
yields

(ra =) [ darie {1 ehx(oz — 7) = x(Ixtr — o2 (MHEr )
evaluated at
T=1+o(re —71)

The £ may act on e~l¢/l2=7l| producing |e(—p + q/2)| < M*, oron h (M'g‘(h""‘)(-r - 0'2)),
producing M 3(*+¥)_ It may not act on x(&(7 — 03)) since h (M]n'("“‘)(‘r - az)) is supported
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away from 7 = o3. The |r; — 74| produces an M —* via the norm (IV.2a). Thus, altogether,
Taylor’s theorem yields an M —3(k=k)_ The analysis of Ry is similar.
Substituting Ry for R in (IV.40a) yields

dsp 1 1
f (o drsdmadardoades Foh (Mi(h'”“)(ﬁ — al)) h (M?("“‘)(n - az)) I

™l a/Alen [y (—e(p + a/2))x(o1 — 71) = X{e(P + A/D)x(rs — )]
e~letpta/Dlies=—riliy(—e(—p + q/2)x(es — 71) — X{e(~P + 9/2)x(71 = 72)]

[K(T1,1'2,1'3,T4,t’,p',0)6(1’1 - az) - K(Tl’a2:7—317'4at’a p’,O)E(Tl - Tz)]

= jl,en(Tl-;TZ’ 03,04, t', 5, (1) - /dQZjI,en(Tla Q3,03,04, t” 5, Q)5(1'1 — Tz) (IV-45‘L)
where
sup /dedG’:;dG‘.iiji’en(Tl,Tg,0'3,0'4,t',S,q)| < const|| K ||| ]| (IV.45b)
»5,q

as in (IV.42).

For the remaining contributions R, and R; we follow the argument (IV.42),
leading to the unrenormalized bound, but exploit the fact that, on the support of
[1 —h (M%(h"'k)(*r;; = 0'1)) h (M%(h"'k)(‘r.; = 0'2))] at least one of |73 — 03|, |74 — 02| is smaller

than M~3(*+k)_In either case the M ~* coming from the integration
/dale_M”"‘_"’l <Mt
in (IV.42b) is replaced by

f do;1 < M—3(htk)
los—r;|<M~ HR+E)

This is the desired improvement of M —3(k—h)

Our “sup” estimate on J;(A = 0) is now complete. We next derive a “sup” estimate
on %J 1. After that we include derivatives of J;.
Just as in (IV.35c) unrenormalized power counting estimates suffice. Recall that, in

the mixed (7,k) representation,

e~ E0I7] (sgnT) E(k)1 + e(k)o®

(7) —
Cl (Ti k) - 2E(k)

f(M~2 E(k)?). (IV.46a)
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Hence

%Cif)(r,k) = e~ POl £ (M~ E(k)?)

e {rlleEar) EG0L + e(k)o*)

A (sgnt)E(k)1 + e(k)o®
M?i E(k)

+2(sgn)1 + e(k)/E(k)o®} — e~ E®Il (M ~27 E(K)?) (IV.46b)

obeys

d . ; .
'EC?)("’ k)| < constM~he~ BTy ( B(k) < MP)[1 + |7|M7) (IV.46c)

Decomposing the soft lower line into scales fnA < h; < h and then using (IV.46c)

in the “unrenormalized” argument (IV.42) gives

h
d
fdedU;;dO’;;IIA—JI(‘T],Tg,0’3,0’4,t,S,Q)l S COI'lSt”I”i“KHk Z I’Mf_h"'..Ill—h'.l’\dh2
ho=fnA

with the M —*2 coming from the action of 2‘%& on the lower (soft) propagator (if d—‘i& acts on
the upper line we get M~* < M~"3), the M~"* coming from the o; integral and the M™"

coming from the d°p integral. Hence, just as in (IV.35),
d _n, (M
drzd03d04|2-A~J1(Tl,72,0'3,0'4,1’.,s,q)] < const||I|;||K||sM ™" €n = |- (IV.47)
Denoting by j; int the contributions to J; from R,, Ry, Rc, R., R¢, Ry, R; and f&Jl

we have

Jy = jl,int +j1,mom - {jl,cn('rl,'rz, ---) - ]dazjl,en(ﬁ,ag,...)ﬁ(rj — Tz)} (IV.47(1)

where the second (resp. third) term is the contribution from R4 (resp. Rg). So far we have

shown

h
sup /d72d03da4 |71,int] < const|| K ||| L]|; [M‘“%(k‘h} + %En (%)] (IV.47b)
t,s,q

sup / d13d03dos|f1 mom|p (M2 E*(t + q/2)) < const||K ||| I]:M~7*-m  (IV.4arc)

tss,q

(since ji,mom contains a factor |t — t'| which, as in (IV.43c), is bounded by M 3(h+*))

sup /d12d03d04[j1,en] < const || K ||| L] (IV.47d)

ts,q
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To complete the bound on J; it is necessary to show that each derivative with
respect to the external momenta t,s, q and each multiplication by the external time differences
|T2 — 71|, |os — 71|, |04 — 71| produces at worst an M —". This is reasonable, since K has scale
k, I has scale i, the internal lines have scale h, p has scale %(h + k) and k,1, A, %(h + k) > h.
The proof is a straightforward variation of the above provided one first makes the change of
variables p — p + q/2 (so that q derivatives cannot act on the soft line) and one applies
the momentum derivatives before setting A = 0 (so that derivatives cannot act on the

characteristic functions x(ze) in (IV.40)).

The bound on J; is proven similarly.

We have controlled the quartic part of 51?£§")(u ,U) where U is the part of W(*) (see

[I.102a]) of degree at most four. It remains to control the quadratic part. Precisely,

quadratic part of %Ez(h) U, u) =

v ey
SR N N

(IV.48)

We denote the values of the first, second and third graphs in (IV.48) by Ty, T and T}
respectively. That is,



Vol. 64, 1991 Feldman and Trubowitz 345
thequadratic partof —E(h)(u U =1 +T2+Ts

2
renormalized (1 — L{))T and local (see (1.99) L()I kernels; Q is the kernel of the

quadratic part of 2/ and also is a sum of renormalized and local (see(I.99b)) contributions

Recall that 1 O is the kernel of the quartic part of &/ and is a sum of

(1 — L())S and £S; all monomials are Wick ordered. Once again by [[.102] renormalized
contributions are of scales 7, s > h, while the (resummed [1.102b]) local quartic part has scale
t = h and the local quadratic part is a number. The last diagram T3 has already been treated
in Lemma II.2'.

Lemma IV.6 Let Ifjl)-r“ @7, IU)r°® 7% and $(*)o° be general (not necessarily in the range
of L) kernels, with 7;,72,s > h.

a) Let Ti(7,q) be the first diagram of (IV.48). Recall, from (IV.48), that the lines of this
diagram are of scale h. Then,

3 . i A M?t
Il < const 1042600 [33* 4+ 210 (2 )]

b) Suppose, e € {0,3}. Let T5(T,q) be the second diagram of (IV.48). Define

-1 I;, S both local
) n I; nonlocal, S local
"T s I; local, S nonlocal

min(jy,s) I;,S both nonlocal

Then,
A
I Talln < constM™ |17 HS(’)IM"‘I( )+cOHSchnr(h)|1,1[|ls<’>||M " a =)

Proof The strategy is the same as in Lemma IV.4. The volume estimates of Lemma IV.2 are

used to control the case A = 0. Normal power counting suffices to control EdZTt

a) When A =0

ddp d%r 6
Ti(r,q) = [(271_) 2 (2n) d de.,[l(p,q,r 0, 71,72, 73)L2(P,q, Ty T4, 75, T6, T)

e~ le(Ptallra—ra|  —|e(r—p)llra—7s| ,—|e(x)|Ir1—T6]
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r%[sgn(7s — 72)1 + sgne(p + q)a®|7°
trr®[sgn(rs — 75)1 + sgne(r — p)o®)r¥[sgn(r1 — 7)1 + sgne(r)o?]
F(M~%*e(p + q)2, M~2ke(r — p)?, M~ 2ke(r)?) (IV.49)

where F ensures that at least one of the three lines is hard of scale h, while the remaining
two are hard or soft of scale k.

Suppose the line carrying [sgn(7s — 72)1 + sgne(p + q)o®] is hard. Then for
0<acx4, |B|<1
we have

MR [ iz =BT (r,q)| < constTyla, [Tl [ drae* 17

[ #*pdtex(letp + @)l < MMx(letr — p)| < MP)x(le(r)] < M*)

Each “derivative” M*(r, V;) yields a factor 0(1) when it acts upon lfj‘), I;j’), e~ le(Prallre—7a
or F'. Ifit acts on sgne(p+q) we get zero since the supports of §(e(p+q)) and F are disjoint.
Thus,

IT:(2 = Ol < const T lu|Els M [ atpas

x(le(p + @)l < M*)x(le(r — p)| < M*)x(le(r)| < M*) - (IV.50)

If the top line is soft we arrive at (IV.50) by, first, changing variables in (IV.49) so that q
flows through a hard line, estimating as above and then changing variables back again.
To estimate the integral on the right hand side of (IV.50) we write 1 = x(|p| <

Me*) + x(|p| > M**) with a = 5277 and bound

/ d*pd’rx(lp| < M*M)x(le(r)] < M*) < M=k Mt = Mttt

] Epx(le(p +q)| < M) / dirx(lp] > M*M)x(le(r — p)| < MP)x(Je(x)| < MP)

S MhM—‘%(ah—h)Mh — M?ﬁ_—thh
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by Lemma IV.2. This yields
d—1
IT2(A = 0)||s < const|| I [ls [l Lol M M 25"
< const||I; ||h|]I2||thM%h.

Finally, by conventional power counting bounds, as in [IV.34, 35, 36]

Tolla S const|Lillalllalln S MMM 4 M~* 4 MMM M

-2
it tnA<hy <h,<h

h
< const||L[[n]| LM ~* D MM N1
h2<h hi=inA

h
< const||I1 ||p]| Iz||n€n (MT) A

The argument is completed as in [IV.37].
b) When A =0,

b dp 4
Tz("', q) = I '&T)d HdTiIl(pvCI70171,7'2:T)S(p173:T4)
=1

e—|¢(P)|[|"'3—"’1|+|T4—T2f]F(M—2he(p)2)
trr®[sgn(rs — 1)1 + sgne(p)o®]o[sgn(rz — 74)1 + sgne(p)o?]. (IV.51)
Observe that, when (13 — 71)(12 — 74) < 0,
(sgn(rs — 1)1 + sgne(p)o®,sgn(my — 74)1 + sgne(p)a®)

€ 2sgne(p) {(v°, —7%),(-7%,7%)}
with the result that the trace is zero since 797%7% = 737%7% = 0 for a = 0,3. On the other
hand when (13 — 71 )(72 —74) 2> 0
s — 7| < |13 — 11 + 72 — 74
<|n— 7|+ |1 — 73l

So, recalling that

0 if‘T]_ =T2,T3 = T4
,< 71 ifr3 =74, # T2
I fn#7,m=1

min(s,j;) if 7y # 72,75 # T4
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/dT]T (1,@) am0| < f dp ﬁdr~dT|I(j1)HS(’)|F
e & (ra—r1)(ra—ra)>0 (2m)% -3 e
[1+ MT|rs — 71| 72[1 + M"|r5 — a]?
dd.'
(27
1+ MJ‘|1'1 —To| + M?®|71y — 73]]?

V.52
Gy 3 [ drdrIFP SOF[L + M |ry — 7|72 (1v-52)

< const|| 11|, 15|, M* M "
To estimate M(a+l’8t)hde|Tang2(T, q)a=o| when o + |B] > 1 it suffices to use
straight power counting without exploiting the constraint (73 — 71 )(72 —74) > 0. The “deriva-

tives” necessarily act on I, and produce M —(¢+18Di1  Consequently,
IT2(& = 0)[ln < const|[ 7], [|5]|, M~ (IV.53)

As in part a)
H_Tzllh < const||; I|h|S|M—hM_th

S0

A

- (IV.54)

/ A |—T2(A')[|,,_ < const|[Iy [lu[| S| M~ Mt

Adding (IV.53) and (IV.54) finishes the proof.
|

V. The Flow of the Effective Interaction

Let H be a Banach space and B = B(H) the space of bounded operators on H
with operator norm || -||. Let |- |}, < 0, be a sequence of norms (motivated by, but not

necessarily equal to (I.106)) on B obeying

lally < llaflyy  for all R < A (V.1.q)
lall < |lall% (V.1.h)
llabelll, < llallLlI2lll<llk (Vil.e)

for all a,b,c € B and A < 0. For example, if H = L?(kpS?~!) then

lall, = (1 + kld:- wq_1) max sup |M(|n|+1m|)hvg ma(t', s')| (V.1.d)
I!“II<2 t,8' CkpSd-1
m
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satisfies (V.1)
We consider a flow on B defined for A < 0 by

ap—1 = ap + apBrap + Sp(ag,...,an) + Hn(ao, .-, an) (V.2)

where By, € B and Sy, Hy are maps from the h-fold product of B with itself to B.
Theorem V.1 Let vy < 1,M > 1,A > 0, a and I' be constants such that

lao ZBhn <y<lforall k<0 (V.3.a)
h>k
Mh.
| Br|ln < G forall h <0 (V.3.0)
and
|‘10”h2<% Mh-{-A < (V.3.¢)

Further, suppose that there are constants v, n (possibly depending on a,v,I') and 0 < w <1
such that

I Y Si(ao, )l < vilaolf (V.4)
R >k
Mh
1 Hn(ao, -y an)lln < 157 m = llaollg™ (V.5)
for all [|ag|loy .- ||ar]la < 41+"‘P||ao|lo Then there exists a constant €=€ (v,T, a,v,n,w) > 0
for which
llaollo <€ (V.6)

implies that the sequence ag,a;, a2, ... generated by (V.2) obeys

14 al’
lar]ln < 4 i—= llaollo, h <0 (V1)

Proof We first verify, by induction, that the solution of the truncated flow
@p_1 = ap + apBrap (V.8)
is of the form

ar=[1—ap Z B; — bh]_lao (V.9a)

0>5>h
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with by = 0 and

1—« M 1—7~
. . V;

loall < =Tllaalle > 7 < (v.9b)

0>j>h

Note that (V.3.a) and (V.9b) imply

—v 14
v _ 147

1
lao > Bji+bull <v+ = 1

0>i>h

and hence

lanlls = [l —ao > B;—bal  aolln
0>ji>h

< Y lllao Y Bj + bal*aalln

n=0

< {1 +[lao Y B+ balla i llas > Bj + bhl|”_1} llao |l (V.10)

n=1

< {1+ (ar+ ) (1 - 1—";—1)} laollo

< 211+ al’

“‘10”0

The bound (V.1.c) is used in the third line.

The flow of the tail b, is given by
br—1 = br — agBranBi[l + @rBa] " o (V.11)

since substituting (V.9.a) into (V.8) yields

-
I—GOZBJ'—bh_l = {[l—aozBJ’—bh]_l+&hBh[1—G,OZBj—bh]‘l}

i>h F>h i>h
=[1—ao»_ Bj—ba][1+anBs]™
i>h
=1-—ap Z Bj — by — agBp + aoBh&.hBh[l + ahBh]_l
i>h
We have used [1 —ag ), B;j — br]ar = aq in the last line.
For |laollo <€,
llao BrarBr[1 + @nBi] ™" ||n—1 = ||ao Ba[1 + @ Bx] ‘@ Ban-1
M* 1+al ! 1+al
< lloloagzrgz (1= 2 fanloe) 25 faoloe
1—7 M*
< -
= r Nealozmta
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provided € is small enough, depending on a,+,I'. This completes the verification of (V.9b).
We now show, by induction of course, that the solution of the full flow (V.2) obeys

ap = Gy + Z Si(agy...ya;) + cn (V12.a)
i>h
with ¢y = 0 and _
‘ 14w MJ o b
llerlln < [laollo H 1 +5m”00“0 = Iy, (V.12)
i>h
1 T
§ =6a l—lj—o'!y 1+4+v)+7

The bound (V.12b) implies

. M
levlls < laall*exp | 3 37 loal
lao 3T (by (V-3b))
1+ all

1—o

IA

< ||;Lol|o

provided €% ' < ll'—"_% Hence, by (V.10), (V.4)

1+ al'
lenlls < 45T ol
- : al’
provided v €< %1—
The flow for the error ¢, is
ch—1 = ¢4 + cpBrap + @ Brep + (Z S;)Bran + &hBh(Z S;)+ Hy - (Va13)
i>h i>h

since, substituting (V.12a) into (V.2),
ap—1 = ap + apBrap + Sp + Hy

= ap + apBras + Z S;+en+ (Z S; + cp)Bray
i>h i>h
+ ahBh(Z S;+cn)+ S+ Hp
i>h
= Gp-1 + E Si+en+ (Z S; + cp)Brap

i>h—1 i>h

+ ahBh(Z S; +cn) + Hy
i>h
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Assuming the inductive bound (V.12b) for ¢, we have

M! - 1+al )

llen—1lla-1 < [lenlln (1 tbagm AT — llaollo

1+ al’ M* .
+ (ovat 2 1) S g laoll

11—~
<1 [1 4 o 2 Dy + (6va’ =25 4 0) 3 laol]
=TI [1 -+ 6-—M—f—-J£~A—||ao[|0]
where we used ||ch||r, [|ao||it* < Ii in the second line.
It follows from Theorem V.1 that
an =Y (Aj+ ;) + ao (V.14)

i>h

where A; = a;jBja; + H; obeys

1+al\?> M , M piol
> 450 < EJ: [16 ( T—= ) am”ac!“o +ﬂml|a0“o

1+al)\?
< [m( — al‘+nl“llaoll(‘i’J lallo

J

(V.15)

Thus the Z Aj part of ap converges in any norm || - ||, that is smaller than all the || -||}’s.
i>h
For example, if (V.1.d) is used then the L* norm

lallee = (1 + kz"_lwd—l) sup la(t',s")]
t',s'EkpSi-1

will do. We see from (IV.29) and (IV.35) that S;(t',s') is bounded by

il2

. A y
const ||ag||3 {[]W'T/2 + —Wlog(MJ/A)] + EESIRE

x(|s" £ ¢ > consth)} (V.16)

The portion in square brackets is summable as in (V.15). The contribution to as from the

second part converges pointwise and in all L? norms with p < oo but not uniformly.
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List of Symbols

2

€ (k) =
k = (ko,k) €
(k, (1, %))~ =
Phas Pr,a
P, P ex
C(&1,¢2)

m

RcH-l
—koT + k « X
physical Grassmann fields

ternal Grassmann fields

(1.3)

e(k) = kz — 1, p =chemical potential

d”C(¢,1;)
G(*,9°)

fermionic Gaussian measure with covariance C

(L5a), (1.14)

V(¥,%)  (L.5b)

(k1,kalv|ks, kq)

Fermi surface

cl)  (18)
h(z), f(=)
p(z) =1—h(

(L.7)

(I1.1a) (I1.1b)
z) (IL.1c)

dpoo (p2,4))  (L9)

G4y (1.10)
sk (L.11)
/ d¢ := / d®xdr

ae{r 1}
Ga, S2, S, (1.13)
gm,eM(117)
¢ (118)
sp (121)
7, c forks  (1.23)

general two-body interaction satisfying (I.6)
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h
Ge.  (L24)
LM (1.29)
3 = max(il y ?:2 y 1:3, 14) (1.29)

Feldman and Trubowitz

= (to,4) = (0, fgkr)  be = (2mu)/?  (L29)

qU ™ (QO: 0)

B homogeneous harmonic polynomials on R? of degree n

T projection from L?(krpS%~!) onto H™

A nth eigenvalue of the rotation invariant kernel F(¢',s')

R, C forks (1.34), (1.50)

g™, g¥  (1.36)

3 rooted planar tree
s(T) (1.38)
G;  (139)

Val(G')  (1.40) (II1.3) (IIL.6) (II1.12)

FR) | ph) - (1.42)

BN, B (Ls4)
Uy, Oy Nambu fields (I1.56)

0l,j=0,1,2,3 Pauli matrices (1.57)

Co  (159)

C=Ca (L62a) (IL3)
cy  (1.85) (IL4a)
E(k)  (L62b)

8§V, 6u  (L67a)

D,D  (L67b)

W (L69)

(k) =rol + 110t + 71202 + 7r30°

(1.70)

H.P.A.
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J (1.79)
AT (1.81)
by (1.82)
v (1.83)

c@ =c¥  (185) (IlL1a)
wr) (1.86)
AR &) (1.86)

oter=(18) am

Free o (1.90)

3
I = Z T BT general quartic
m,n=0

Q(t',s")  (L.94)

L™ ¢ r  (1.99) (I1.6) (II1.19¢)
o™ o  (1.100)

w® M (L104)

IIlln  (1.106) (I1.26b)

IT|l»  (1.107) (I11.26a)

|«|  (11.5a) (II1.4) (IIL.8a)

|«|'  (1.108) (IL5b) (IIL8b)

n(f) #(f) is the fork immediately below the fork f of a tree

c¥)  (L111) (I1L1b)
Gy (L112)

EM,ER)  (L116)

355



356 Feldman and Trubowitz

EPBY )
& (1.123)

g, g (L134)

(D) (1.126)

(1,k) € R4H? (time, vector momentum)

Gf a connected component of {£ € G7|j, > h}, h< -1

is  (UL7)

Dy (111.9)

Ag, D, (IIL10)

L(G) number of lines in G

T spanning tree (Technical Lemma II1.2)

85, kp (supplement to Lemma III.1) (II1.15)

c?, ¢ (11.18) (IIL.17)

ci), cy)  (urL18)

by number of upward branches from f

s;  (Lemma IIL5)

Ey number of external legs of G¢

L,(G) number of C, or C, , lines in G

Ji, o (IV.20) (Lemma IV.4) (Lemma IV.5)

P (IV.21)

B; (IV.22)

JBinty JB,momy JB.en (Lemma IV.5) (IV.45a) (IV.47a)

Ty, Tp, Ts  (IV.48)
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