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(2. VII. 1990, revised 1l4. II. 1991)

ABSTRACT. — We give, in dimension n = 3, all the cases when riemannian spaces with the
same sectional curvature are not isometric. We prove, when n 2> 4, that the same phenomena occurs
for the Ricci curvature. We give in the general case, all possible algebraic reductions of a quadratic form
relatively to another quadratic non degenerate form. We prove the existence of relativistic charged perfect
fluids with the same Ricci curvature which are not isometric.

I — Introduction — résumé

a) Naissance de la géométrie riemannienne. Riemann en définissant le
tenseur de courbure d’une variété munie d’une métrique réussissait la généralisation en
toute dimension de la courbure de Gauss définie pour la dimension deux.

Si f:(V,g9) — (W,7) est une isométrie, f fait correspondre toutes les courbures
de V avec celles de W. 1l est naturel de se poser la question inverse.

Question : si un difféomorphisme f : (V,g) — (W,7) fait correspondre toutes
les courbures de V avec celles de W, f est-il une isométrie?

C’est ’aspect local de cette question qui sera traité ici. (Si on connait les
géodésiques des variétés envisagées, une réponse classique a “courbures et métrique” est
le théoréeme de Hopf-Rinov. Ce n’est pas cette direction qui
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est choisie ici : rien n’est connu a propos des géodésiques).

b) Courbures et métrique, les réponses de Darboux et de E.Cartan.

En généralisant le résultat de Darboux ([1], vol 4, p219), Cartan montre que
le difffomorphisme f sera une isométrie si f* ('application linéaire tangente & f) fait
correspondre les composantes du tenseur de Riemann de V dans un repére orthonormé
quelconque et les composantes de toutes ses dérivées covariantes avec celles de W dans le
repére orthonormé de W correspondant. Pour obtenir ce résultat, il a besoin de dériver
le tenseur de courbure jusqu’a obtenir le maximum de fonctions indépendantes ( et des
contre-exemples montrent que ces dérivées peuvent étre nécessaires; c’est le cas des parties
spatiales des solutions de Weyl des équations d’Einstein du vide conformément multipliées
par le carré de la norme de leur vecteur de Killing temporel).

d) Courbures et métrique, la réponse de Kulkarni [3].

Plagons-nous sur les fibrés FV et FW des repéres orthonormés de V et W.
Soit f un difffomorphisme entre V et W. Alors f*, 'application linéaire tangente a f,
nous définit un difféomorphisme de FV sur FW. Mais réciproquement, il est faux que
tout difféomorphisme de FV sur FW provienne d’une application linéaire tangente a
un difffomorphisme entre V et W. Les démarches de Cartan, de Eisenhart-Yano-Defrise
ne se donnent, au départ, qu'un difféomorphisme entre FV et FW. C’est pour cela que
ces démarches les plus générales doivent utiliser les notions intrinséques obtenues par
dérivations covariantes successives. Pour la suite de ’exposé, nous abandonnons avec
Kulkarni ces difféomorphismes les plus généraux entre FV et FW et nous nous restreignons
aux diffomorphismes f entre V et W qui préservent les courbures sectionnelles ou
les courbures de Ricci. L’existence méme d’un tel difféomorphisme particulier a des
conséquences sans utiliser les dérivées des courbures. C’est en ce sens que le résultat
de Kulkarni “innove” par rapport aux précédents.

Ce résultat est un résultat ponctuel résultant de propriétés algébriques liées 4 la
conservation de ’expression de la courbure sectionnelle

< RV, W)V, W >
<VV><WW>—-<V,W>2

pour tout couple (V,W), ou R est le tenseur de courbure. Kulkarni introduit la notion
d’espaces isocourbés : seules interviennent les courbures sans que 'on sache, a priori,
s’il existe des symétries, sans que l'on ait d’informations sur les dérivées covariantes des
courbures.

KM(Va W) =

(V,g) et (W,7) espaces riemanniens sont isocourbés s’il existe un difféomor-
phisme f : ¥V — W qui préserve les courbures sectionnelles :
pour tout point M de V et tout 2-plan 6 de ’espace tangent a V en M, désignons par
Kp(8) la courbure sectionnelle de V dans la direction plane 8 ; de méme, désignons par
K s (f*(6)) la courbure sectionnelle de W au point f(M) dans la direction plane f*(9),
ou f* désigne I’application linéaire tangente f. Alors pour tout point M et tout 2-plan 4,
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on a, si f préserve les courbures sectionnelles :

Ku(6) = K yoany (£7(0))-

Comme pour un espace de Riemann ([4], pp. 68-70) la donnée des courbures sectionnelles
détermine totalement le tenseur de courbure, 'isocourbure de Kulkarni correspond dans
le langage de Cartan a la préservation des composantes du tenseur de courbure dans des
repéres orthonormés quelconques appliqués I'un sur 'autre par difféomorphisme.

Pour n > 3, Kulkarni démontre que si (V, g) et (W, §) espaces riemanniens sont
isocourbés, alors g et § sont conformes (§o f = g-e??) sur la fermeture des points non
1sotropiques.

M est isotropique si Kpa(61) = Kp(02) pour tout couple (64, 62).

Kulkarni démontre que si (V,g) et (V,g) sont conformes (c’est-a-dire g = g-€??) et sont
isocourbés alors E}k! = ezaR;“ ce qui implique alors que W}k[ = 62"ij£ ou les W;M
sont les composantes une fois contravariante et trois fois covariantes du tenseur de Weyl.

Mais ces composantes du tenseur de Weyl sont invariantes par transformation

_1 . . - . .
conforme : Wy, = Wj;, et si au moins une des composantes W}, est non nulle, il en
résulte que ¢ = 0 et donc § = ¢ et ainsi dans le cas non conformément plat 1'isocourbure

implique I'isométrie sur la fermeture des points non isotropiques.

Reste alors a traiter le cas ou V, et donc aussi W, sont conformément plats. Pour
cela, Kulkarni utilise la forme particuliere du tenseur de courbure d’un espace conforme a
un espace plat conjointement aux identités de Bianchi pour V et W.

Alors pour n > 4 l'isocourbure implique l’isométrie sur la fermeture des points non
1sotropiques.

e) Résumé de P’article.

Il reste donc a traiter le cas n=3 (le tenseur de Weyl est nul en dimension trois).
Pour cette dimension 'isocourbure revient a préserver les courbures de Ricci.

Nous répertorions dans cet article tous les espaces isocourbés non isométriques en dimen-
sion trois. La découverte de ces espaces nous conduit alors & montrer pour toute dimension
I’existence d’espaces ayant les mémes courbures de Ricci mais non isométriques.

Ensuite nous étendons ces résultats en signature quelconque en utilisant la réduction
simultanée de deux formes symétriques réelles ( appliquée au tenseur de Ricci et a la
métrique ). Nous pouvons alors traiter du probléeme de I'unicité de la géométrie dans le
cadre de la relativité générale.

f) Enoncés des résultats obtenus.

THEOREME 1. — Il existe une infinité de couples d’espaces isocourbés non
isométriques de classe C3. Ils sont tous “localement a symétrie cylindrique” et pour chaque
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couple il existe une classe de systémes de coordonnées dépendant d’une fonction arbitraire
8 = 6(z) telles que les métriques des deux espaces soient données par :

ds? = V?(2)dz? + *(Ddz? + P ?) dy?
d§2 s e?o’(z)d82
ou ’
—&/3
vige 1]
V146541

da_z{d_al-i—ése"_ﬁ}
S b]

o = 2 Argth hl:

dz dz e27 —1 )
a5 _,[do1-pe &
dz dz €29 — 1 § [’
s 2 (8
V:k‘SeZU—z__]_’

ou k et h sont deux constantes arbitraires liées au couple d’espaces isocourbés non
isométriques envisagé et ¢ = +1. Il n’existe pas d’autres couples d’espaces de classe C3,
isocourbés non isométriques. (1l existe deux triples infinités de tels couples).

THEOREME 2. — (métrique définie positive)

Il existe une infinité de couples d’espaces ayant les méme courbures de Ricci mais non
isométriques.

THEOREME 3. — Soient ( | ), une forme hermitienne non dégénérée sur E
espace vectoriel complexe et { | ), une autre forme hermitienne (quelconque celle-ci) ou
ce qui revient au méme, L un endomorphisme symétrique pour ( | ), de E.

Il existe une décomposition en somme directe orthogonale pour { | ), et ( | ),
associée a une décomposition diagonale par blocs, chaque bloc ayant une des formes
suivantes :

e Blocs de dimension paire.

(0 ... . . 0 1Y)
1

(| ) est associée a la matrice d’ordre pair 2p : signature (p, p)

si A est réelle
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(0 . 0 /\\
: .0 X e
. 0 A ¢ O
(| )r a pour matrice : 0 X e 0o | |avece= +1
0 e 0 .o
\} ¢ 0 0/

si A est complexe ( | ), a pour matrice :

o o »co
o> ©

> O -
(= =

0/
® Blocs de dimension impaire.

(| ) est associée & la matrice d’ordre impair (2p + 1) :

o ... . 0 1

o 0 1 0 signature
el. 0 1 0 .le =1 (p+1,p)

0 1 0o . ife=-1(pp+1)

1 0 ... ... 0

avec € = +1 , A est obligatoirement réelle

0 0 A
: 0 A 1
(| ) a pour matrice : ¢ 0 X 1 0
0 X 1 :
A1 0

Résultat pour des formes réelles.

Il existe une décomposition en somme directe orthogonale associée a une décom-
position en blocs orthogonaux pour les matrices représentant { | ), et ( | ), dela
forme :

- 81 la valeur propre A = a + b est compleze :

( | ) est associée a la matrice d’ordre pair :

(dans cet exemple ’ordre est 6)

[l == == R e I en I e
(o B o B o I o B e ]
oo RO oo
OO OoO= OO
oo oo~ O
(el e B en e Bl en B
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0 0b 0 0 a

0 b0 0 a 1

o ’ x ] b 0 0 a 1 O
{ | ) est associée & la matrice de méme ordre : 00 a 0 0 —b
0 a1l 0 -5 0

a 1 0 -=b 0 O

- 81 la valeur propre A est réelle : les mémes réductions que dans le cas hermitien sont
obtenues pour { | )s et { | )5-

THEOREME 4. —  (signature quelconque)

Soit f:(V,g9) — (W,9) un difféfomorphisme entre deux espaces pseudo-riemanniens qui
préserve en tout point les courbures de Ricci pour des directions contenues dans un ouvert
( non vide ) qui soit d’intersection vide avec le céne isotrope. Alors f est conforme

*sur la fermeture de I’ensemble des points ot au moins deux valeurs propres du tenseur
de Ricci relativement & la métrique sont distinctes,

*sur la fermeture des points ot le tenseur de Ricci est algébriquement spécial (sa
décomposition relativement a la métrique présente alors une ou des files de Jordan de
longueur plus grande que un).

(Commentaire : en toute signature et en toute dimension et dans tous les cas
algébriquement possibles, des contre-exemples surgissent ou f n’est pas une isométrie.
Ces contre-exemples ne sont répertoriables facilement que pour les petites dimensions, des
formules explicites existent pour n=3).

THEOREME 5. — Soit f : V — W un difféomorphisme qui respecte les
courbures de Ricci (f est défini localement) entre deux espaces relativistes vérifiant les
équations d’Einstein d’un des modéles suivants (avec ou sans constante cosmologique) :

e fluide parfait,
e champ électromagnétique,

alors f est une isométrie.

THEOREME 6. — Il existe une infinité de couples de difféomorphismes entre
deux modéles relativistes fluide parfait-champ electromagnétique qui préservent les cour-
bures de Ricci (et donc les invariants obtenus a partir du tenseur d’impulsion-€nergie sans
le dériver) et qui ne soient pas des isométries.
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II — Espaces ayant les mémes courbures de Ricci (cas riemannien)

DEFINITION. — (V,g) et (W,7) ont mémes courbures de Ricci s’il existe un
difféomorphisme f : ¥V — W tel que pour tout point M de V et tout vecteur Z non nul de
I’espace tangent en M a V on ait :

Riccip(Z) = Riccigpry(f*(Z))

si Z* sont les composantes contravariantes du vecteur Z au point M et R;; les composantes
p P J P

covariantes du tenseur de Ricci, Riccip(Z) est par définition ?f:ZZ: z?j
(2}
THEOREME. — Pourn > 3, si (V,g) et (W,7) espaces riemanniens admettent

les mémes courbures de Ricci alors g et g sont conformes (go f = g-e2%) sur la fermeture
des points o1 il existe au moins deux valeurs propres de Ricci distinctes.

Preuve. — Identifions W et V par f. (Toutes les considérations de cet article
restent locales). Nous obtenons une variété ¥V munie de deux structures riemanniennes g
et g.

Commencons par traiter le cas n = 3.

Comme nous nous plagons dans le cas riemannien, la métrique g est définie
positive et on peut introduire au point M envisagé un repére principal (orthonormé)
pour le tenseur de Ricci que nous appellerons (eq, e2, e3). En reprenant les conventions de
Kulkarni , nous noterons R;; les composantes du tenseur de Ricci dans le repére (ey, ez, €3).
Alors R;; = 0 si ¢ # j. Nous noterons aussi €; = f*(e;) puis a;; = < €;,€; > puis E.-J- les
composantes du tenseur de Ricci associées a § dans le repere (€1, €3, €3).

Soit V = z-e; + y-e2 + z-e3 un vecteur quelconque de I’espace tangent a V en M.
L’égalité Riccip(V') = Riccipan (f*(V)) devient :
z’Ryy + y*Raz + 2° Rss _
22 + yZ + 22
2?Ri1 + y?Ra2 + 2*Ras + 22y R12 + 2yzR23 + 222 R;3
r?a11 + y?aze + 22a33 + 2zyar2 + 2yzags + 2xzas;

(22)

Comme cette égalité doit étre vérifiée quelles que soient les valeurs de z, y et
z, nous pouvons identifier les termes de mémes puissances en z y 2 dans le produit croisé.
Plagons-nous en un point ou il existe au moins deux valeurs propres de Ricci (relativement
a g) distinctes. Ainsi, on peut supposer par exemple que Ri; # Ras.

En identifiant les termes en z3y et les termes en zy?® et en faisant la différence
nous obtenons :

s _—
Ry2 = a13R11 = ajaRy2, d'ou a2 = 0.

Comme Rj; # Raz, R33 est forcément différent de Ry; ou de Ry, (au moins un des deux).
Supposons par exemple que R;; # Rjs.
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Identifions les termes en z3z et les termes en zz®. Alors Ry3 = a13R33 = a13Ry1,
d’ot1 'on déduit que a;3 = 0.

Identifions les termes en z? : Ry1 = a1 Rt ; puis les termes en y* : Ry =
azz Rgz ; puis les termes en z2y% : Ry + Ry = a2 Ry + a11Ry2 ; d’ott 'on déduit que
(ag2 — a11)(R11 — Ra2) = 0, d’ot1 ag2 = ay;.

Identifions les termes en z22% : Ry; + Rs3 = assRi1 + a11R33. Identifions les
termes en y2z? : Ry + R33 = az3Raz + azz Ras ; d’oti 'on déduit en faisant la différence
et en tenant compte des résultats précédents que

(033 = 011)(R11 = R22) =0, d’ou assz = a11.

Identifions les termes en z%yz : Ry3 = apsR;;1. Identifions les termes en y23 :
R33 = az3R33 ; d’ou Pon déduit az3(Ry; — R3z) = 0, d’otr a3 = 0.

En définitive, on a obtenu a;; = a116;; (ou 6;; = 0 ou 1 est le symbole de
Kronecker).

Donc (f*(e1), f*(e2), f*(e3)) est orthogonal et les vecteurs f*(e;) ont la méme
longueur. Donc f est une homothétie au point M considéré et le résultat s’étend par
continuité sur la fermeture des points ol le temseur de Ricci admet (relativement &

¢) au moins deux valeurs propres distinctes; ce qui montre que localement f est une
transformation conforme : § = g-e%.

Pour n > 4 : introduisons encore (e, e, ..., €, ) un repére orthonormé principal
pour le tenseur de Ricci (relativement & g) avec Ry; # Raa.

En répétant le raisonnement précédent avec (ej,ez,e;) ot 3 < £ < n, nous
obtenons a13 = aj¢ = aqge = 0.

Considérons maintenant un couple (¢,7) avec s # j, ¢ > 3 et j > 3; si Rii # Rj;
en identifiant comme précédemment, nous obtenons a;; = 0. Si R;; = R;; supposons que
R;i = Rj; # Ri1 par exmple. Considérons alors 1’égalité Riccipy (V) = mf(M)(f*(V))
ol cette fois V = z-e; + y-e; + z-¢;. En identifiant les termes en z?yz, nous obtenons
R,‘j = a;jR11. De méme Eij = a;jR;; d’ot a;; = 0.

Le méme procédé conduit maintenant a a;; = a3 = a2, d’ou le résultat.

‘Commentaires. — Ce résultat est équivalent au résultat de Kulkarni en dimen-
sion trois : dire qu’un point est non isotropique en dimension trois et dans le cas rieman-
nien revient a dire qu’au moins deux valeurs propres du tenseur de Ricci (relativement &
la métrique) sont différentes. Pour n > 4, envisageons une variété d'Einstein (R;; = Agi;)
qui ne soit pas de courbure constante (R;jr¢ n’est pas de la forme A(girgjr — gixgje)), alors
toutes les valeurs propres de Ricci sont égales. Ainsi, en dimension plus grande que trois,
on peut trouver des exemples ou les valeurs propres du tenseur de Ricci relativement a la
métrique sont égales, et ceci en des points non isotropiques; et donc le résultat de Kulkarni

est plus général : si V et W sont isocourbés ils sont conformes sur la fermeture des points
non-isotropiques.
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Mais pour n > 4, imposer que f : V — W préserve les courbures sectionnelles,
impose que f soit une isométrie. En reprenant I’argument du décompte des dimensions de

Riemann, pour n > 4 il y a mr=1l) - courbures pour le tenseur de Riemann ce qui est
, P y . p q
une intuition de ce résultat.

III — L’isocourbure implique I’isométrie sur la fermeture
des points non isotropiques a partir de n =4

L’intuition de ’argument de Riemann sur le décompte des dimensions conduit
a penser que ce résultat ne doit pas dépendre de la signature de la métrique utilisée.
L’invariance par transformation conforme des composantes (trois fois covariantes et une
fois contravariantes) du tenseur de Weyl et la caractérisation des espaces conformes a un
espace plat par la nullité du tenseur de Weyl ne dépendent pas de la signature (reprendre la
démontration d’Eisenhart par exemple). Par contre, la signature de la métrique intervient
dans la démonstration de Kulkarni adaptée au cas conformément plat. En effet, Kulkarni
utilise un vecteur D; défini par
D, = grad, o

| grad, o |[o

ou le symbole o est relatif a ’espace plat commun conforme a V et W. Cette difficulté
peut étre surmontée de la maniére suivante : tout d’abord, I’équation (3) de Kulkarni a
été obtenue par un calcul vrai quel que soit la signature .

Ensuite, dans le cas ou || grad, o || est nul, il faut compléter la donnée de ce
vecteur par n — 1 autres, de maniere a obtenir une base de ’espace tangent. Bien sir,
cette base ne peut plus alors étre orthogonale, mais il est possible de la prendre sous une
forme standard (telle que la matrice des g;; soit alors composée de blocs diagonaux qui
sont, ou bien l'identité, ou bien la matrice dont les seuls éléments non nuls sont des 1 ou
des —1 situés sur la deuxieme diagonale). Une minutieuse utilisation de I’équation (3) de
Kulkarni permet alors de conclure comme précédemment a l'isométrie, sauf dans certains
cas trés particuliers de dégénérescences algébriques du tenseur de Ricci.

Pour n = 4 et une métrique hyperbolique normale, Hall obtient le théoréme
suivant ([5], p. 86) :
si deux meétriques g et g sur un espace temps M déterminent les mémes courbures
sectionnelles en tout point P de M et sont telles que ces courbures sectionnelles ne soient
constantes en aucun point de M, alors ¢ = § partout sur M, sauf peut-étre sur un sous-
ensemble ouvert de M conformément plat et sur lequel la métrique g peut étre mise sous
la forme :

ds® = dz® + dy® + 2dudv + H(z,y,u)du® .

Nous verrons comment obtenir ce résultat avec des hypothéses plus faibles. (En
n’imposant que les courbures de Ricci).
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IV — Espaces riemanniens non isométriques
ayant les mémes courbures de Ricci pour n supérieur ou égal & rois

Ainsi, si f : (V,g9) — (W,7) préserve les courbures sectionnelles, alors, pour
n > 4, f est une isométrie sur la fermeture des points non isotropiques.

Pour n = 3, la nullité du tenseur de Weyl ne permet pas d’utiliser la démarche
de Kulkarni. En dimension trois, si f préserve les courbures de Ricci, f préserve aussi les
courbures sectionnelles. Ainsi, en traitant pour n > 3 les espaces ayant mémes courbures
de Ricci, nous traiterons aussi pour n = 3 les espaces isocourbés, ce qui va nous permettre
de voir apparaitre d’autres particularités de la dimension 3 et illustrer son comportement.
Nous allons donc maintenant étudier la situation suivante :

e métriques riemanniennes,
en >3,
e f:(V,g) = (W,7) préserve les courbures de Ricci,

e nous nous placerons systématiquement sur la fermeture des points ou au moins
deux valeurs propres de Ricci relativement & g sont distinctes.
Nous avons obtenu dans cette situation :
20

g=¢€¢"g.

Pour tout vecteur V la relation Riccips (V) = Riccipy (V) permet d’obtenir dans
un repére principal pour le tenseur de Ricci : _Ri = J, Eﬁ = R2... R, = R", d'ot

s . a -t ' — ’ .
nous déduisons que dans tout repére R; = R;. Comme g = e?? g, nous en déduisons que

R,’j = CZUR,']'.

Pour pouvoir faire les raisonnements qui suivent, il est nécessaire de savoir que
I’ensemble des espaces non isométriques ayant les mémes courbures de Ricci est non vide
(n > 3). Pour cela, donnons un exemple. (Mais nous vous déconseillons de vouloir le
vérifier par un calcul direct sur ces formules ..., il est la pour la rigueur de ’exposé).

Exemple d’espaces non isométriques ayant mémes courbures de Ricci :
ds?® = V?(2)dz? + e*dz? + P dy?,
ds? = e2(:»'(2).d32

ou les fonctions (de la seule variable z) a, 8 et ¢ sont définies par :

—e/3
v14+26-1 J

o(z) =2 - Argth s )
V142641

da do [1+ z3¢° 1
FAC [a (—'—eza_l ) ‘;]’
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ag, . do [1— 2% 1
E(z)_z'l&;(—e”—l)_;]’

de) <
V2(z) = 22 —2“’" .
|e?s —1]|
Remarque amusante. —  Si vous fournissez ces formules & un calculateur formel

en lui demandant de vérifier qu’elles conduisent bien aux relations R_i = R}, EZ e J15
F; = R3, vous n’obtiendrez rien (méme si vous ne faites pas de dépassements des capacités
mémoires, ce qui arrive en premier) : il faudrait rendre le calcul “confluant”... Pour vérifier
que ces formules sont exactes, il est plus sage de reprendre le calcul qui y conduit et qui
fait intervenir de fagon cruciale les identités de Bianchi (voir [6]), ce qui explique le piége

tendu au calculateur formel...

Plagons-nous pour la suite de ce paragraphe dans le cas ou le gradient de o est
non nul et par continuité nous pouvons aussi supposer que o # 0.

Nos hypotheses sont donc maintenant :

gij = ez"g,-j , by = ezaR,-j , grado # 0, cas riemannien.

Nous continuerons de noter o; = 9;0, 0;; = V:0;0 — gi0; et o' = g'*oy.

Rappelons qu’en prenant comme convention de signe pour le tenseur de Ricci :
R;; = R . un calcul direct conduit aux formules suivantes :
J ikjr
—i : : ; ;
ij = F;k = 6;‘07: + 0,05 —a'gjk

Rij = Rij - (n - 2)0’,'J' - (AQO' + (n —_ 2) Al O')Qij .

Utilisation des identités de Bianchi. — Les identités de Bianchi peuvent étre
contractées et conduisent a la relation classique 7; R; = %ajR ou R = R} est la courbure

scalaire. Ecrivons que Eﬁ} = %ajﬁ. Comme R = R, il reste :

—_— 1 L L 2 L -5

Utilisons fj-k = P}k +8ior + 605 — olgk et Tf; = R;}. Il reste :

R

Rfgy = =0;.
J n

Nous énongons :

Le gradient de o est vecteur propre du tenseur de Ricci associé a la valeur

R
propre <.
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Enfin ﬁ; = Rj- devient :
(1= €*)R; = (n—2)a} + (D20 + (n — 2) &y 0)85.

Coordonnées orthogonales. — Comme le gradient de o est non nul et que nous
sommes dans le cas riemannien, nous pouvons utiliser un systéme de coordonnées avec
z™ = o et utiliser les trajectoires orthogonales aux hypersurfaces o = C*.

Nous obtenons ainsi :
ds? = V¥(«!,22,...,2")(dz")? + gap(z?,...,z")dz"dz?,
ou les indices latins majuscules A, B,C... varient de 1 & n — 1. (Dans le cas pseudo-
riemannien, ce résultat ne pourra étre utilisé que si Ajo = ;0 # 0).

Dans un tel systéme de coordonnées orthogonales, rappelons comment peuvent
étre obtenues les composantes du tenseur de Ricci.

Définissons un tenseur de courbure de plongement des hypersurfaces ¢ = Ct

dans la variété ambiante par

1
Qap = 5y On94B-

Posons par définition

K =04 et O =0Q408,

Affectons du signe * toutes les grandeurs relatives aux hypersurfaces o = Cte,

En utilisant ’expression des composantes du tenseur de Riemann en fonction
des seconds symboles de Chistoffel et en contractant le résultat, voici les formules qui en
résultent :

Run = —V(Dy K + 0.K + VQ2),
Raa=V(vp Q4 — 04K),

* BRQAB _ VAaBV

_ _ _ c .
Rap =RaB v % KQap +2Q5:Qc¢B.

Sous forme mixte, cette derniére relation devient :

. 5 0,08 v, 0%V

RE = R4 = = ~ KQE .

Dans un tel systéme de coordonnées o, =l et 0y = -+ = 0,1 =0, alors

R

REor = =o0;

conduit & R? = £ (sans sommation sur n), puis & R} = 0. Utilisons alors

(1- e?"’)R;- = (n — 2)0‘; + (Ag0 +(n—2) A 0)6;
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pourt=net j= A Ilreste 0y =0, dot 0,4 =0. Mais 0,4 = Ynda0 — 0,04. Donc :
04V

0=08,040 —T% , 0p0 = -T7, = T

Nous avons donc démontré que : 34V =0 pour A =1,2,...,n — 1 et obtenu
ds®* = V¥(o)(do)? + gap(z!,..,0)dz dz®.
Utilisons alors (1 — €??)R} = (n — 2)0% 4+ (Az0 + (n —2) A; 0)6% pour i = n et
j=mn,puis pour : = A et j = A (avec sommationsur Adelan—1):
(1-€*)R? =(n—2)or + (Ao +(n—2) A1 o)
(1—-€2)R4 = (n —2)04 4 (D20 + (n = 2) A 0)84.
= (n — 1)o7. Comme 0§ =

Mais R® = £ donc R4 = (n — 1)R? d'ou 04 =
=%V _ 4. Alors 04 = (n— 1)o7

A
(YAE?BG = 975, gl = %— Puis oy = ¥p0"0 — 0nop =
evient :
K — (n=1)0,V n-1
B V2 vV

Comme 94V = 0, nous en déduisons que 94 K = 0.
Utilisons alors (1 — e2")R§ = (n— 2)aj +(Dgo+(n—2)1, 0)6; pour ¢ = j avec
sommation sur ¢ et j de 1 a n. Nous obtenons :

_ 20\p __ (2n_2)anv (2Tl—2)K n?—n—2
(1-€e"“)R= = -

B e

Comme 94V = 04K = 0, nous en déduisons que 94 R = 0. Alors, R"

6VK — Q2 montre que 9402 = 0.

Utilisons alors

(1- 620)R;- =(n-— 2)0; + (Dg0 4+ (n—2) Ay 0)5;-
pour i = A et j = B et combinons le résultat avec

B 9,08 v,0%V
RE =R, - VA— AV - KQB.

Nous obtenons alors I’équation caractéristique des espaces admettant les mémes courbures

de Ricci sans étre isométriques :

KV +4+n-2 V(Ao +(n—2)A « A
6n9§+(#)gg+ ( 201(—1’3620) 10)6§:V‘RB .

Dans cette équation les R4 sont les composantes mixtes du tenseur de Ricci de

I’hypersurface o = C*.
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Pour n = 3 deux particularités permettent de conclure.

En effet, alors les hypersurfaces ¢ = C* sont de dimension deux et donc
* -
A_ RgA
Ry= 363

De plus, pour ¢ = o,, nous pouvons prendre, dans cette hypersurface parti-
culiére, un systéme de coordonnées tel que g12 = 212 = 0. En effet, la diagonalisation
du tenseur 2 relativement a g définit dans le cas riemannien au moins un repére mobile
principal (M, e;,e3) de 'hypersurface.

Mais en dimension deux, il nous est toujours possible de trouver un systéme
de coordonnées tel que les a_fT soient colinéaires aux e4 si (M,e;,ez) est un repére
mobile quelconque. Se trouvent ainsi définies des coordonnées (“de courbure”) pour une
hypersurface ¢ = o, particuliére. Ensuite, pour un point M de V3, considérons la courbe
constamment tangente au gradient de ¢ qui passe par M. Elle coupe l'hypersurface
o = o, en un point de coordonnées (z!,z?) que nous affectons au point M. Nous avons
ainsi construit un systéme de coordonnées orthogonales (z!,z?, ) pour lequel I’équation
précédente est applicable.

Avec A =1et B =2, nous obtenons : 3} + (KV + =)0} = 0 qui s’intégre

Q; = % e 71 — e2e Ii(z', z?).
v

Mais pour o = 0,, 3 = 0 ,donc II(z!, z?) = 0 et donc Q] = 0 pour tout . De méme pour
Q2. Mais 1 # Q2 et Q) = Q2 = 0 implique que Q2 = i—lvagglz = 0. Donc d3g12 = 0.
Comme pour ¢ = g,, nous avons choisi g1 = 0, nous en déduisons que g;2 = 0 pour tout
o. Il est possible de montrer que Q! = Q2 conduit forcément & l'isométrie, ce que nous
excluons. Il est possible aussi de montrer que nous pouvons choisir g;; et go2 ne dépendant
que de o sans restreindre la généralité du résultat (voir [6]).

en !

Nous avons alors obtenu :
ds® = V2(2)dz? + XD dz? + D dy?
ds? = e2a(z)ds2
comme conditions nécessaires pour que l’isocourbure sans isométrie soit possible.

Mais alors l'isocourbure se réduit a Ri = Ry, R‘ﬁ = B, Hﬁg = R} (les autres
R;- étant nuls si ¢ # j), ce qui constitue un systeme différentiel de trois équations sur
les trois fonctions inconnues 8 = f(z), a = a(z), et ¢ = o(z) puique nous pouvons
imposer V(z) = 1. En utilisant la liberté sur le choix de V, il est méme possible d’intégrer
explicitement et complétement ce systéme. (Voir pour le détail des calculs [6]). Ce qui
conduit au théoréme 1.

Existence d’espaces ayant les mémes courbures de Ricci mais non
isométriques pour n > 4.
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Les deux particularités qui ont permis de résoudre complétement le cas n = 3

disparaissent pour n > 4 et nous ne savons pas caractériser localement tous les espaces
ayant mémes courbures de Ricci sans étre isométriques.

Cependant, I'existence de tels espaces peut étre mise en évidence en reprenant
les particularités de la dimension trois et en les imposant pour n > 4.

Dans cette direction, si l'on suppose que les hypersurfaces 0 = C*' sont de
courbure constante (nous savons déja que la courbure scalaire de ces hypersurfaces est
constante), alors il est possible de particulariser localement ces couples d’espaces aprés un
certain travail algebrique ponctuel.

Plus simplement, montrons ’existence en toute dimension plus grande que trois
d’espaces ayant les mémes courbures de Ricci mais non isométriques en prenant :
n—1
ds® = dz* + E eHE () (dgk)?
k=1

ds? = eI!cr(z)dsz

Dans cette situation, posons f4 = %‘1 pour A = 1...n — 1, et écrivons les
équations caractéristiques des espaces ayant les mémes courbures de Ricci mais non
isométriques :

(1- 62")R;- =(n— 2)0; + (Ago+ (n —2) L 0)6; .

Pour ¢ # j ces relations sont trivialement vérifiées. Appelons (E4) et (E,) les
équations obtenues pour ¢ = j = A =1...n — 1 (sans sommation) et pour ¢ = j = n.

L’équation (E4) s’écrit :

dfa = 4%
= z Z
-t fA(f1+ ++ fa-1) =(n—2)fa 1+62”+2—1+e2"
da d_a)2
ey D BB
+(f1 +fn 1) 1+ 20 +2(n 2)—1+620 *
L’équation (E,) s’écrit :
dfy dfn1 FE de.
o AL B i ((f1)2+ ‘+(fa-1)’) =2(n-1) 2 = +(f1+---+fn_1)82j"_1.

S’il n’est pas aisé de considérer directement ce systéme, une rapide manipulation
préalable des équations nous raméne a l’étude d’un systéme différentiel traditionnel. En
effet :

fi

f2

S(hifefa)A| | =210 - 2)6(

da)2
: ng—:i'+2(n_2)(f1+"'+fn—1)eg
fn+1

a
)

a

z

o1
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0 1 1
1 0 1

ou A = 0 1
-1 0 1
L sss mes L B

Dérivons cette derniére équation par rapport a z. Nous obtenons ainsi une
équation que nous appellerons (F), et que nous écrirons de maniére simplifiée dH _ (),

dz
combinons-la aux (n — 1) équations (E;),...,(En—i) et posons :
do
0= —.
dz
Nous obtenons ainsi un systéme linéaire en les dérivées de f1, f2,..., frn-1,0,0

dont le déterminant vaut :
(=1)"4(n — 2)(n — 1)e??
(e?27 —1)2 .

La preuve de ’existence d’espaces ayant les mémes courbures de Ricci, mais non isométri-
ques est alors simple. En effet, considérons des conditions initiales en les (n + 1) fonctions
fi, fay .., fan=1,0,8 qui n’annulent pas ce déterminant. (Il suffit de choisir ¢ non nul).
Les théorémes classiques & propos des systemes différentiels nous donnent 1’existence, lo-
calement, d’une solution de ce dernier systéme envisagé. Par construction, I’équation (F)
admet une primitive constante (H = h) quand on y remplace § par la dérivée de ¢. Impo-
sons alors & nos conditions initiales d’intégrer (F') dans laquelle nous avons remplacé 6 par
la dérivée de o, avec une constante h nulle. Alors, avec de telles conditions initiales, notre
solution vérifie (Ey + E; + ---+ E,_; — E,;) quand nous y remplagons 6 par la dérivée de
o. Mais les (n — 1) équations (E1),(Ez),...(En-1) sont par construction dans le systéme
intégré et nous avons ainsi obtenu l’existence souhaitée (localement).

D’ou le théoréme 2.

V — Introduction a la généralisation de ces résultats
dans le cas d’une signature quelconque

Si nous voulons reprendre la démarche précédente avec une signature quelconque,
plusieurs endroits nécessitent des révisions. Elles sont principalement dues a deux ruptures
qui se retrouvent en des endroits différents et plus ou moins combinés :

e tout d’abord, il n’existe pas toujours de repére principal pour le tenseur de Ricci;

e ensuite, les équations de Gauss et Codazzi ne sont définies pour les hypersurfaces de V.
que si la métrique qui y est induite par celle de V n’y est pas dégénérée. Nous verrons
que génériquement cette dégénérescence géométrique implique, pour les espaces qui nous
intéressent, la dégénérescence algébrique du tenseur de Ricci relativement a la métrique.
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Réduction simultanée de deux formes hermitiennes.

Il est d’'usage en Relativité Générale d'utiliser la réduction du tenseur de Ricci
relativement a la métrique lorentzienne suivant des démarches qui sont en fait liées a la
dimension quatre et au caractere hyperbolique normal de la métrique. Intrigués par cette
situation, nous avons recherché un résultat qui ne dépende ni de la dimension, ni de la
signature et qui puisse éliminer tout emploi de vecteurs complexes si nous désirons utiliser
des métriques réelles. '

Comme ’on doit envisager la possibilité de valeurs propres complexes nous avions
entrepris 1’étude de la réduction simultanée de formes hermitiennes.

Les méthodes utilisées de méme que les résultats se sont révélés étre trés proches
d’une étude faite par W.Klingenberg [7]. Il étudie en effet la classification de paires de
formes bilinéaires symétriques (resp. antisymétriques ) sur un corps commutatif. Dans le
cas des formes bilinéaires symétriques réelles avec des valeurs propres réelles les résultats
obtenus sont identiques. Pour retrouver le cas de la réduction réelle avec des valeurs
propres complexes, a partir de 1’étude de Klingengerg, il suffit de considérer les matrices
symétriques réelles comme symétriques complexes ( et non hermitiennes) et d’associer &
une base complexe pour une valeur propre (a+ib) sa base conjuguée pour (a-ib), puis de
séparer les parties réelles et imaginaires de cette base; suivant la valeur complexe d’un
coefficient (appelé 4} dans [7]) 'on obtient différentes formes, dont 1'une, (pour v = 2i ),
correspond a celle que nous proposons. Les formes que nous avons choisies sont celles qui
nous semblent faire apparaitre au mieux le probléme du respect des signatures des deux
formes sur chaque sous espace correspondant & une valeur propre.

En dehors du résultat de réduction, nous retiendrons sa conséquence suivante
qui lie la complexité de la réduction de L a la signature (p,q) de { | )4

si les k; désignent les longueurs des files de Jordan réelles et les c¢; les ordres des
valeurs propres complexes (si on compte une valeur propre complexe alors on ne compte
pas sa complexe conjuguée), alors :

([h] désigne la partie entiére du nombre réel h)

k; _ dimension du plus grand sous-espace vectoriel
Zi: [ 2 I+ ; ¢i < inf(p, ) { inclus dans le cone d’isotropie de{ | ).

Commentaires sur les résultats de réduction. —

e Pour chaque type de réduction possible, est associée une signature donnée
et cela explique pourquoi il ne faut pas fixer cette signature au départ, mais une fois la
réduction générale connue, pour une signature donnée ne retenir que les formes qui lui
sont compatibles.

e Se trouve aussi illustré le fait qu’il ne peut exister de vecteurs propres de
pseudo-longueurs nulles qu’associés a des files de longueur plus grande que un.
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Application & la dimension quatre et a la relativité.

Enumeérons toutes les réductions algébriques possibles d’un tenseur symétrique
(le tenseur de Ricci en relativité) relativement & une forme quadratique non dégénérée de
signature quelconque (ce sera la métrique en relativité quand le choix de la signature sera

fait).

1) S’il n’y a que des files de longueur un et pas de racines complexes, alors les
formes réduites pour G et R sont :

&1 0 0 0 €1 Al 0 0 0

_ 0 €2 0 0 _ 0 52)\2 0 0

G= 0 0 E3 0 R= 0 0 63)\3 0
0 0 0 E4 0 0 0 €4A4

Toutes les signatures sont possibles pour G.

2) S’il y a une file de longueur 2 et 2 files de longueur 1, associées & des valeurs
propres réelles, les formes réduites pour G et R sont :

01 0 O 0 AN O 0
{1 0 0 O M e 0 0
“=100 & o B=10 0 &rx o0
0 0 0 &4 0 0 0 &4
les signatures possibles pour Gsont : + ++—- ++——- +——— .

3) S’il y a une file de longueur 3 et une file de longueur 1, associées a des valeurs
propres réelles, les formes réduites pour G et R sont :

0 0 &1 0 0 0 €1A1 0
_ 0 &1 0 0 _ 0 61)\1 €1 0
= €1 0 0 0 b= 61/\1 €1 0 0
0 0 0 &4 0 0 0 eqMq
Les signatures possibles pour Gsont : +++ - ++—-—— 4+ ———.

4) S’il y a une file de longueur 4 associée a une valeur propre réelle, les formes
réduites pour R et G sont :

0O 0 0 1 0 0 0 M\

_ 0O 01 0 _ 0 0 /\1 €1
G=101 0 o0 R=104 x & o0
1 0 0 O AMoe O 0

La seule signature possible est : + + —— .

5) S’1l y a deux fois une file de longueur 2 associée a deux valeurs propres réelles,
les formes réduites pour R et G sont :

01 00 0 A 0 0
{1000 Mo 000
= 0 0 0 1 L 0 0 0 As
0 0 1 0 0 1 /\3 E3
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La seule signature possible pour G est : + + —— .

6) S’il n’y a que des files de longueur 1 avec A et A valeurs propres complexes
conjuguées et les autres valeurs propres réelles :

01 0 O b a 0 0
1 0 0 O a —=b 0 0
=100 & o0 B=10 0 &x 0
0 0 0 &4 0 O 0 €44
ou A = a+1b.
Les signatures possiblessont : + ++ - +4+-—-— 4+ ———.

7) S’il 0’y a que des files de longueur 1 avec A et X puis p et 7 valeurs propres
complexes conjuguées (notées A = a; + by et p = ay +1by) :

0100 by a1 O 0
{1000 la =& 0 0
G_ 0 0 0 1 R_ 0 0 b3 as

0 010 0 0 a3 —bs
La seule signature possible est alors : + + —— .

8) S’il y a une file de longueur 2 associée a une valeur propre réelle et deux files
de longueur 1 associées a A et A valeurs propres complexes conjuguées :

0100 0 A 0 0
{100 0 [x & 0 0
G=100 0 1 E=10 0 b

001 0 0 0 a —b

La seule signature possible est : + + —— .

9) S’il y a A et A valeurs propres complexes conjuguées associées chacune & une
file de longueur 2, les formes réduites pour G et R sont :

0 0 01 0 6 0 a
0 010 b 0 a 1
= 01 00 B= 00 a 0 -0
1.0 00 a 1l -b 0

La seule signature possible est alors : + + ——.

Si 'on impose une signature hyperbolique normale pour n = 4, il ne reste plus
que 4 formes possibles. La forme classique de la relativité (axiomes de Hawking-Ellis) ne
retient que les deux premiers types, une file de longueur 2 associée a une valeur propre
réelle survenant pour le schéma radiation pure.

En résumé.

Nombre de formes possibles algébriquement en dimension quatre : 9.
Nombre de formes hyperboliques normales : 4.

Nombre de formes retenues par la relativité sous sa forme classique : 2.
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En signature quelconque, un difféomorphisme f qui préserve les
courbures de Ricci est encore une transformation conforme sur la fermeture
des points ol deux valeurs propres au moins sont distinctes.

En signature quelconque, les courbures sectionnelles et les courbures de Ricci
deviennent infinies quand la direction (plane ou vectorielle) devient tangente au cone
isotrope et ceci dans presque tous les cas. Cette simple constatation permet de conclure
que f est une transformation conforme dans le cas des métriques hyperboliques normales
sans hypothéses supplémentaires sur les valeurs propres du tenseur de Ricci (voir [5], page
81). Sil’on désire une démonstration qui soit valide dans tous les cas, décidons de n’imposer
a f que de faire correspondre les courbures de Ricci que pour des directions contenues dans
un ouvert qui est d’intersection vide avec le cone isotrope. 1l est alors possible de reprendre
la démarche qui a conduit a conclure que f est une transformation conforme dans le cas
riemannien et de I’appliquer a chaque type de décomposition possible du tenseur de Ricci
relativement a la métrique. S’il n’existe que des files de Jordan de longueur un, alors
le raisonnement fait dans le cas riemannien se reconduit sans difficulté et conduit a f
conforme sur la fermeture des points ou au moins deux valeurs propres de Ricci sont
distinctes. Dés qu'’il existe des (ou une) files de Jordan de longueurs plus grandes que un,
alors la présence des termes non diagonaux (il s’agit de la deuxiéme diagonale maintenant)
permet de conclure & f conforme avec le méme raisonnement que dans le cas riemannien
sans utiliser I’hypothése qu'il existe au moins deux valeurs propres de Ricci qui soient
différentes. En conclusion, ou bien le tenseur de Ricci est d’un type algébriquement spécial
et f est conforme sans autre hypothése que de préserver les courbures de Ricci, ou bien le
tenseur de Ricci admet un repére principal et ce qui a été établi pour le cas riemannien
s’applique. Nous sommes ainsi parvenus au théoréeme 4. Nous ne savons pas si l’on peut
étendre a toutes les dimensions et pour toutes signatures le raisonnement fait par Hall
dans le cadre de la Relativité.

Les espaces admettant les mémes courbures de Ricci en dimension et
signature quelconque. Application a la relativité.

Commengons par étudier le cas ou les équations de Gauss et Codazzi ne
s’appliquent plus.

Plagons-nous donc dans les hypothéses suivantes :
.§=e2a‘g; R;:R;
e Ao =oc;0" =0.

L’utilisation des identités de Bianchi et les formules des transformations
conformes conduisent comme dans le cas riemannien a :

R
Rfak = --O'j.
n

La théorie algébrique nous apprend que si le tenseur de Ricci n’est pas identiquement
nul, il est alors algébriquement spécial : il y a forcément une file de Jordan de longueur
plus grande que un puisque le gradient de o qui est de pseudo-longueur nulle est aussi
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vecteur propre dans ce cas. Prenons la dérivée covariante par rapport a la direction 9;
de o;0' = 0. Nous obtenons : (y7;8'c)o; = 0. Utilisons un systéme de coordonnées avec
2" = 0, alors 7;0"¢ = 0. Mais 0] = y;0"0 — ;0" ; 0" = g™ 4040 4+ g""0,0 = 0 ; donc
ol =0; 08 =0... 0" = 0. Comme dans le cas riemannien R4 = (n — 1)R? conduit &
04 =(n—1)a. Dot 04 =0; 0=0! = Ayo — Ay0. Ce qui montre que Ayo = 0. Alors
(1 —€*?)R} = o} et pour que ¢ ne soit pas nul, il faut que Ra =10,

R;‘ak = %aj conduit maintenant & ¢*o; = 0, d’ou par dérivation covariante :

e R
ooy =0.

Conclusion quand le gradient de o est nul :

e le tenseur de Ricci est algébriquement spécial,

° R:: — Rj-R‘I —= ]

e dans un systéme de coordonnées avec 2" =0 : R =R} =... = R =0.

Pour n = 3 et n = 4 ces derniéres relations permettent de conclure que le
polynéme caractéristique P()) = det((R — A\g)) est respectivement proportionnel a \* et
a A(A3 4 Cte),

Dans le cas ou le gradient de o est non nul, il faut ajouter a la démarche suivie

dans le cas riemannien tous les cas de dégénérescence algébrique (en particulier pour n = 3,
nous devrions refaire tous les calculs pour obtenir un énoncé complet ...).

Dans le cas relativiste, si nous imposons de plus a f de respecter toutes les
courbures sectionnelles, nous retrouvons ainsi le résultat de Hall par cette démarche.
Comme nous travaillons avec le tenseur de Ricci et non tout le tenseur de Riemann, nous
voyons apparaitre ainsi de nouvelles situations. Il est intéressant d’envisager jusqu’oi dans
le cas relativiste les courbures de Ricci déterminent la métrique localement.

THEOREME. — Soit f : V — W un difféomorphisme qui respecte les courbures
de Ricci (f est défini localement) entre deux espaces relativistes vérifiant les équations
d’Einstein d’un des modéles suivants (avec ou sans constante cosmologique) :

e fluide parfait,
e champ électromagnétique,

alors f est une isomeétrie.

La démonstration de ce résultat s’obtient cas par cas en utilisant d’abord le type
algébrique du tenseur de Ricci et les relations entre ses valeurs propres, et en complétant
si nécessaire par les relations caractéristiques des espaces admettant les mémes courbures
de Ricci. (Il n’y a aucune difficulté majeure, dans le cas du fluide parfait les conditions de
positivité de la pression et de la densité sont déterminantes, des contre-exemples surgissant
avec les relations p +p=0et p+ 2p = 0).

Existe-t-il d’autres cas que celui présenté par Hall (type N de Petrov) qui n’impo-
sent pas a f d’étre une isométrie? Une démonstration, trés semblabe a la démonstration
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d’existence des espaces ayant les mémes courbures de Ricci mais non isométrique, per-
met, dans le cas d’un fluide parfait-champ-électromagnétique, d’obtenir facilement de tels
contre-exemples. Il en découle que la conception naive : “le tenseur d’impulsion-énergie
détermine les courbures et la géométrie de ’espace-temps” ne peut étre retenue.

Autrement dit, il existe des situations ou la géométrie de I’espace-temps n’est pas

complétement déterminée par le tenseur d’impulsion-énergie, ou les dérivées successives du
tenseur d’impulsion-énergie sont nécessaires a la connaissance compléte de cette géométrie

(locale).

(7]
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