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(2. VII. 1990, revised 14. II. 1991)

Abstract. — We give, in dimension n 3, all the cases when riemannian spaces with the
same sectional curvature are not isometric. We prove, when n ^ 4, that the same phenomena occurs
for the Ricci curvature. We give in the general case, all possible algebraic reductions of a quadratic form
relatively to another quadratic non degenerate form. We prove the existence of relativistic charged perfect
fluids with the same Ricci curvature which are not isometric.

I — Introduction — resume

a) Naissance de la géométrie riemannienne. Riemann en définissant le
tenseur de courbure d'une variété munie d'une métrique réussissait la généralisation en
toute dimension de la courbure de Gauss définie pour la dimension deux.

Si / : (V,g) —> (W,g) est une isométrie, / fait correspondre toutes les courbures
de V avec celles de W. Il est naturel de se poser la question inverse.

Question : si un difféomorphisme / : (V,g) —> (W,g) fait correspondre toutes
les courbures de V avec celles de W, / est-il une isométrie?

C'est l'aspect local de cette question qui sera traité ici. (Si on connaît les

géodésiques des variétés envisagées, une réponse classique à "courbures et métrique" est
le théorème de Hopf-Rinov. Ce n'est pas cette direction qui
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est choisie ici : rien n'est connu à propos des géodésiques).

b) Courbures et métrique, les réponses de Darboux et de E.Cartan.

En généralisant le résultat de Darboux ([1], vol 4, p219), Cartan montre que
le difféomorphisme / sera une isométrie si /* (l'application linéaire tangente à /) fait
correspondre les composantes du tenseur de Riemann de V dans un repère orthonormé
quelconque et les composantes de toutes ses dérivées covariantes avec celles de W dans le

repère orthonormé de W correspondant. Pour obtenir ce résultat, il a besoin de dériver
le tenseur de courbure jusqu'à obtenir le maximum de fonctions indépendantes et des

contre-exemples montrent que ces dérivées peuvent être nécessaires ; c'est le cas des parties
spatiales des solutions de Weyl des équations d'Einstein du vide conformément multipliées
par le carré de la norme de leur vecteur de Killing temporel).

d) Courbures et métrique, la réponse de Kulkarni [3].

Plaçons-nous sur les fibres TV et FW des repères orthonormés de V et W.
Soit / un difféomorphisme entre V et W. Alors /*, l'application linéaire tangente à /,
nous définit un difFéomorphisme de FV sur FW. Mais réciproquement, il est faux que
tout difféomorphisme de FV sur FW provienne d'une application linéaire tangente à

un difféomorphisme entre V et W. Les démarches de Cartan, de Eisenhart-Yano-Defrise
ne se donnent, au départ, qu'un difféomorphisme entre FV et FW. C'est pour cela que
ces démarches les plus générales doivent utiliser les notions intrinsèques obtenues par
dérivations covariantes successives. Pour la suite de l'exposé, nous abandonnons avec
Kulkarni ces difféomorphismes les plus généraux entre FV et FW et nous nous restreignons
aux difféomorphismes / entre V et W qui préservent les courbures sectionnelles ou
les courbures de Ricci. L'existence même d'un tel difféomorphisme particulier a des

conséquences sans utiliser les dérivées des courbures. C'est en ce sens que le résultat
de Kulkarni "innove" par rapport aux précédents.

Ce résultat est un résultat ponctuel résultant de propriétés algébriques liées à la
conservation de l'expression de la courbure sectionnelle

KM(V,W)~ <WW)V,W>
<V,V ><W,W > - <V,W >2

pour tout couple (V,W), où R est le tenseur de courbure. Kulkarni introduit la notion
d'espaces isocourbés : seules interviennent les courbures sans que l'on sache, a priori,
s'il existe des symétries, sans que l'on ait d'informations sur les dérivées covariantes des

courbures.

(V,g) et (W,g) espaces riemanniens sont isocourbés s'il existe un difféomorphisme

/ : V —» W qui préserve les courbures sectionnelles :

pour tout point M de V et tout 2-plan 0 de l'espace tangent à V en M, désignons par
Km(8) la courbure sectionnelle de V dans la direction plane ô ; de même, désignons par
Kf(M)(f*(&)) la courbure sectionnelle de W au point f(M) dans la direction plane f*(6),
où /* désigne l'application linéaire tangente /. Alors pour tout point M et tout 2-plan 0,
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on a, si / préserve les courbures sectionnelles :

KM(0) Kf(M)(f*(e)).
Comme pour un espace de Riemann ([4], pp. 68-70) la donnée des courbures sectionnelles
détermine totalement le tenseur de courbure, l'isocourbure de Kulkarni correspond dans
le langage de Cartan à la préservation des composantes du tenseur de courbure dans des

repères orthonormés quelconques appliqués l'un sur l'autre par difféomorphisme.

Pour n > 3, Kulkarni démontre que si (V,g) et (W,g) espaces riemanniens sont
isocourbés, alors g et g sont conformes (g o / g-e2") sur la fermeture des points non
isotropiques.

M est isotropique si Km(&i) Km(&2) pour tout couple (9\,B-{).

Kulkarni démontre que si (V,g) et (V,«?) sont conformes (c'est-à-dire g g-e2") et sont

isocourbés alors Rjki — e R'jkt ce 9U' implique alors que Wjkt c2"W'.kt où les W'w
sont les composantes une fois contravariante et trois fois covariantes du tenseur de Weyl.

Mais ces composantes du tenseur de Weyl sont invariantes par transformation
conforme : Wjke Wjkt et si au moins une des composantes W'-kl est non nulle, il en
résulte que a 0 et donc g — g et ainsi dans le cas non conformément plat l'isocourbure
implique l'isométrie sur la fermeture des points non isotropiques.

Reste alors à traiter le cas où V, et donc aussi W, sont conformément plats. Pour
cela, Kulkarni utilise la forme particulière du tenseur de courbure d'un espace conforme à

un espace plat conjointement aux identités de Bianchi pour V et W.

Alors pour n > 4 l'isocourbure implique l'isométrie sur la fermeture des points non
isotropiques.

e) Résumé de l'article.

Il reste donc à traiter le cas n=3 (le tenseur de Weyl est nul en dimension trois).
Pour cette dimension l'isocourbure revient à préserver les courbures de Ricci.

Nous répertorions dans cet article tous les espaces isocourbés non isométriques en dimension

trois. La découverte de ces espaces nous conduit alors à montrer pour toute dimension
l'existence d'espaces ayant les mêmes courbures de Ricci mais non isométriques.

Ensuite nous étendons ces résultats en signature quelconque en utilisant la réduction
simultanée de deux formes symétriques réelles appliquée au tenseur de Ricci et à la
métrique Nous pouvons alors traiter du problème de l'unicité de la géométrie dans le

cadre de la relativité générale.

f) Enoncés des résultats obtenus.

THÉORÈME 1. — Il existe une infinité de couples d'espaces isocourbés non
isométriques de classe C3. Ils sont tous "localement à symétrie cylindrique" et pour chaque
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couple il existe une classe de systèmes de coordonnées dépendant d'une fonction arbitraire
6 S(z) telles que les métriques des deux espaces soient données par :

ds2 V2(z)dz2 + ea<-zUx2 + e^dy2
ds2 e2"^ds2

<7 2 Argth < h
Vl + 6e - 1

y/1 + 66 + 1

da
dz

Jdol+63e° fl
\dz e2" -1 6 j'

dß
dz

„fArl-ÄV fi
\dz e2"-l S j'

V2
(as.)2

-, -e/3 ¦

t2"-!'
où k et h sont deux constantes arbitraires liées au couple d'espaces isocourbés non
isométriques envisagé et e ±1. Il n'existe pas d'autres couples d'espaces de classe C3,
isocourbés non isométriques. (Il existe deux triples infinités de tels couples).

Théorème 2. (métrique définie positivej

Il existe une infinité de couples d'espaces ayant les même courbures de Ricci mais non
isométriques.

THÉORÈME 3. — Soient | )G une forme hermitienne non dégénérée sur E
espace vectoriel complexe et \ }R une autre forme hermitienne (quelconque celle-ci) ou
ce qui revient au même, L un endomorphisme symétrique pour \ )G de E.

Il existe une décomposition en somme directe orthogonale pour \ )G et | }R

associée à une décomposition diagonale par blocs, chaque bloc ayant une des formes
suivantes :

• Blocs de dimension paire.

| )G est associée à la matrice d'ordre pair 2p

si X est réelle

f° 0 1\
0 1 0

0 1 0

0 1 0

0 1 0

u 0 o)

signature (p, p)
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| )R a pour matrice :

(0
0

0

A

0 A e

0 A e 0

0 A e 0

u £ 0

si A est complexe \ )R a pour matrice :

A\
£

0

o/

avec e ±1

f° 0 A\
0 A 1

0 A 1 0

0 A 0 0

0 Ä 1 0

VA 1 0 oy

• Blocs de dimension impaire.

{ \ )a est associée à Ja matrice d'ordre impair (2p + 1) :

/0

0

Vi

0

o/

signature
(P+1,P)
(P.P+1)

avec £ ±1 A est obligatoirement réelle

| )H a pour matrice : e

/0

0

0 A

VA

0 A\
0 A 1

AIO
1 '•¦ :

1 0/
Résultat pour des formes réelles.

Il existe une décomposition en somme directe orthogonale associée à une
décomposition en blocs orthogonaux pour les matrices représentant \ }G et j )R de la
forme :

si la valeur propre A a + ib est complexe

| )G est associée à Ja matrice d'ordre pair
(dans cet exemple l'ordre est 6)

/0 0 0 0 0 1\
0 0 0 0 10
0 0 0 10 0

0 0 10 0 0

0 10 0 0 0

Vl 0 o o o o/
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| )G est associée à Ja matrice de même ordre :

^0060 0 a \
0 6 0 0 a 1

& 0 0 a 1 0

0 0 a 0 0-6
0 a 1 0 -6 0

Va 1 0 -6 0 0 Z

- si la valeur propre A est réelle : les mêmes réductions que dans Je cas Jiermitien sont
obtenues pour | )G et | )R.

THÉORÈME 4. — (signature queJconque)

Soit / : (V,g) —? (W,g) un difféomorphisme entre deux espaces pseudo-riemanniens qui
préserve en tout point les courbures de Ricci pour des directions contenues dans un ouvert
C non vide qui soit d'intersection vide avec le cône isotrope. Alors f est conforme

*sur la fermeture de l'ensemble des points où au moins deux valeurs propres du tenseur
de Ricci relativement à Ja métrique sont distinctes,

*sur la fermeture des points où le tenseur de Ricci est edgébriquement spécial (sa
décomposition relativement à Ja métrique présente alors une ou des files de Jordan de

longueur plus grande que un).

(Commentaire : en toute signature et en toute dimension et dans tous les cas

algébriquement possibles, des contre-exemples surgissent où / n'est pas une isométrie.
Ces contre-exemples ne sont répertoriables facilement que pour les petites dimensions, des

formules explicites existent pour n=3).

THÉORÈME 5. — Soit f : V —> W un difféomorphisme qui respecte les
courbures de Ricci (f est défini localement) entre deux espaces relativistes vérifiant les

équations d'Einstein d'un des modèles suivants (avec ou sans constante cosmologique) :

• fluide parfait,

• champ électromagnétique,

alors f est une isométrie.

THÉORÈME 6. — IJ existe une infinité de couples de difféomorphismes entre
deux modèles relativistes fluide paxfait-champ électromagnétique qui préservent les
courbures de Ricci (et donc les invariants obtenus à partir du tenseur d'impulsion-énergie sans
le dériver) et qui ne soient pas des isométries.



110 Lor et Rozoy H.P.A.

II — Espaces ayant les mêmes courbures de Ricci (cas riemannien)

DÉFINITION. — (V,g) et (W,g) ont mêmes courbures de Ricci s'il existe un
difféomorphisme / : V —? VV tel que pour tout point M de V et tout vecteur Z non nul de

l'espace tangent en M à V on ait :

RicciM(£) Ricci/(M)(/*(Z))

(si Z' sont les composantes contravariantes du vecteur Z au point M et Äy les composantes
ff ¦ ¦ 7' Z*covariantes du tenseur de Ricci, Rìccìm(Z) est par définition ''.z;z; )¦

THÉORÈME. — Pour n > 3, si (V,g) et (W,g) espaces riemanniens admettent
les mêmes courbures de Ricci edors g et g sont conformes (g o / g-e2") sur la fermeture
des points où il existe au moins deux valeurs propres de Ricci distinctes.

Preuve. — Identifions W et V par /. (Toutes les considérations de cet article
restent locales). Nous obtenons une variété V munie de deux structures riemanniennes g
et g.

Commençons par traiter le cas n 3.

Comme nous nous plaçons dans le cas riemannien, la métrique g est définie
positive et on peut introduire au point M envisagé un repère principal (orthonormé)
pour le tenseur de Ricci que nous appellerons (ej, e2, 63). En reprenant les conventions de

Kulkarni, nous noterons Äy les composantes du tenseur de Ricci dans le repère (ei, e2, e3).
Alors Rij 0 si f -fi j. Nous noterons aussi ë; /*(e;) puis ay <ëi,ëj > puis #y les

composantes du tenseur de Ricci associées à g dans le repère (?i, C2,£3).

Soit V x-ei + y-e2 + z-e3 un vecteur quelconque de l'espace tangent à V en M.

(22)

L'égalité RìccÌm(I0 Riccif(M^(f*(V)) devient :

x2Ru + y2R22 + z2R33

x2 + y2 + z2

x2Rn + y2R22 + z2R33 + 2xyR12 + 2yzR23 + 2xzRi3
x2an + y2a22 + z2a33 + 2xyai2 + 2yza23 + 2xza13

Comme cette égalité doit être vérifiée quelles que soient les valeurs de x, y et

z, nous pouvons identifier les termes de mêmes puissances en x y z dans le produit croisé.
Plaçons-nous en un point où il existe au moins deux valeurs propres de Ricci (relativement
à g) distinctes. Ainsi, on peut supposer par exemple que .Ru ^ R22-

En identifiant les termes en x3y et les termes en xy3 et en faisant la différence

nous obtenons :

¦R12 ai2.Rii cl\2R22, d'où ai2 0.

Comme Ru ^ R22,R33 est forcément différent de flu ou de R22 (au moins un des deux).
Supposons par exemple que Ru ^ .R33.



Vol. 64, 1991 Lor et Rozoy 111

Identifions les termes en x3z et les termes en xz3. Alors Ri3 ai3R33 ai3Ru,
d'où l'on déduit que 013 0.

Identifions les termes en i4 : JJn anJJn ; puis les termes en y4 : R22

a22R22 ; puis les termes en x2y2 : Rn + R22 0.22Ru + a\\R22 ; d'où l'on déduit que
(a22 - anX-Rn - R22) 0, d'où a22 an.

Identifions les termes en x2z2 : An + R33 033^11 + a\\R33. Identifions les

termes en y2z2 : R22 + R33 a33R22 + a22R33 ; d'où l'on déduit en faisant la différence
et en tenant compte des résultats précédents que

(a33 - au)(Rn - R22) 0, d'où a33 an.

Identifions les termes en x2yz : R23 023^11- Identifions les termes en yz3 :

¦R23 a23Ä33 ; d'où l'on déduit a23(Rn — R33) 0, d'où a23 0.

En définitive, on a obtenu ay autfy (où 5y 0 ou 1 est le symbole de

Krönecker).

Donc (/*(ei),/*(e2),/*(e3)) est orthogonal et les vecteurs /*(e;) ont la même
longueur. Donc / est une homothétie au point M considéré et le résultat s'étend par
continuité sur la fermeture des points où le tenseur de Ricci admet (relativement à

g) au moins deux valeurs propres distinctes; ce qui montre que localement / est une
transformation conforme : g g-e2".

Pour n > 4 : introduisons encore (ei,e2, ...,en) un repère orthonormé principal
pour le tenseur de Ricci (relativement à g) avec Ru ^ R22-

En répétant le raisonnement précédent avec (ei,e2,e/) où 3 < £ < n, nous
obtenons a\2 au a2t 0.

Considérons maintenant un couple (i,j) avec i ^ j, i > 3 et j > 3; si Ru ^ Rjj
en identifiant comme précédemment, nous obtenons ay 0. Si Ru Rjj supposons que
Ru Rjj ^ Rn par exmple. Considérons alors l'égalité KìccÌm(V) Hiccif(M)(f*(V))
où cette fois V x-t\ +y-Ci + z-ej. En identifiant les termes en x2yz, nous obtenons

Rij — ctijRu- De même Äy aijRu d'où ay 0.

Le même procédé conduit maintenant à «^ on 022, d'où le résultat.

Commentaires. — Ce résultat est équivalent au résultat de Kulkarni en dimension

trois : dire qu'un point est non isotropique en dimension trois et dans le cas riemannien

revient à dire qu'au moins deux valeurs propres du tenseur de Ricci (relativement à
la métrique) sont différentes. Pour n > 4, envisageons une variété d'Einstein (Rij A<jy)
qui ne soit pas de courbure constante (Rijkt n'est pas de la forme \(gugjk — dikÇje)), alors
toutes les valeurs propres de Ricci sont égales. Ainsi, en dimension plus grande que trois,
on peut trouver des exemples où les valeurs propres du tenseur de Ricci relativement à la
métrique sont égales, et ceci en des points non isotropiques ; et donc le résultat de Kulkarni
est plus général : si V et W sont isocourbés ils sont conformes sur la fermeture des points
non-isotropiques.
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Mais pour n > 4, imposer que / : V —> W préserve les courbures sectionnelles,
impose que / soit une isométrie. En reprenant l'argument du décompte des dimensions de

Riemann, pour n > 4 il y a n(n~ ' > n courbures pour le tenseur de Riemann ce qui est

une intuition de ce résultat.

III — L'isocourbure implique l'isométrie sur la fermeture
des points non isotropiques à partir de n 4

L'intuition de l'argument de Riemann sur le décompte des dimensions conduit
à penser que ce résultat ne doit pas dépendre de la signature de la métrique utilisée.
L'invariance par transformation conforme des composantes (trois fois covariantes et une
fois contravariantes) du tenseur de Weyl et la caractérisation des espaces conformes à un
espace plat par la nullité du tenseur de Weyl ne dépendent pas de la signature (reprendre la
démontration d'Eisenhart par exemple). Par contre, la signature de la métrique intervient
dans la démonstration de Kulkarni adaptée au cas conformément plat. En effet, Kulkarni
utilise un vecteur D\ défini par

n grad0 a
L)\ —

j grad0<r ||0

où le symbole o est relatif à l'espace plat commun conforme à V et W. Cette difficulté
peut être surmontée de la manière suivante : tout d'abord, l'équation (3) de Kulkarni a
été obtenue par un calcul vrai quel que soit la signature

Ensuite, dans le cas où || grad„ a ||0 est nul, il faut compléter la donnée de ce

vecteur par n — 1 autres, de manière à obtenir une base de l'espace tangent. Bien sûr,
cette base ne peut plus alors être orthogonale, mais il est possible de la prendre sous une
forme standard (telle que la matrice des </y soit alors composée de blocs diagonaux qui
sont, ou bien l'identité, ou bien la matrice dont les seuls éléments non nuls sont des 1 ou
des —1 situés sur la deuxième diagonale). Une minutieuse utilisation de l'équation (3) de

Kulkarni permet alors de conclure comme précédemment à l'isométrie, sauf dans certains
cas très particuliers de dégénérescences algébriques du tenseur de Ricci.

Pour n 4 et une métrique hyperbolique normale, Hall obtient le théorème
suivant ([5], p. 86) :

si deux métriques g et g sur un espace temps M déterminent les mêmes courbures
sectionnelles en tout point P de M et sont telles que ces courbures sectionnelles ne soient
constantes en aucun point de M, alors g g partout sur M, sauf peut-être sur un sous-
ensemble ouvert de M conformément plat et sur lequel la métrique g peut être mise sous
la forme :

ds2 dx2 + dy2 + 2dudv + H(x, y, u)du2

Nous verrons comment obtenir ce résultat avec des hypothèses plus faibles. (En
n'imposant que les courbures de Ricci).



Vol. 64, 1991 Lor et Rozoy 113

IV — Espaces riemanniens non isométriques
ayant les mêmes courbures de Ricci pour n supérieur ou égal à rois

Ainsi, si / : (V,g) —? (W,g) préserve les courbures sectionnelles, alors, pour
n > 4, / est une isométrie sur la fermeture des points non isotropiques.

Pour n 3, la nullité du tenseur de Weyl ne permet pas d'utiliser la démarche
de Kulkarni. En dimension trois, si / préserve les courbures de Ricci, / préserve aussi les

courbures sectionnelles. Ainsi, en traitant pour n > 3 les espaces ayant mêmes courbures
de Ricci, nous traiterons aussi pour n 3 les espaces isocourbés, ce qui va nous permettre
de voir apparaître d'autres particularités de la dimension 3 et illustrer son comportement.
Nous allons donc maintenant étudier la situation suivante :

• métriques riemanniennes,

• n > 3,

• / : (^iSO —* (W,~g) préserve les courbures de Ricci,

• nous nous placerons systématiquement sur la fermeture des points où au moins
deux valeurs propres de Ricci relativement à g sont distinctes.

Nous avons obtenu dans cette situation :

— 2<7
9 e- 9-

Pour tout vecteur V la relation RìccÌm(^) RìccÌm(V') permet d'obtenir dans

un repère principal pour le tenseur de Ricci : iï1 R\, u2Rn R2. R„ R", d'où

nous déduisons que dans tout repère Rj iï'-. Comme g e2<Tg, nous en déduisons que
R. =2(7 Ri

Pour pouvoir faire les raisonnements qui suivent, il est nécessaire de savoir que
l'ensemble des espaces non isométriques ayant les mêmes courbures de Ricci est non vide
(n > 3). Pour cela, donnons un exemple. (Mais nous vous déconseillons de vouloir le

vérifier par un calcul direct sur ces formules il est là pour la rigueur de l'exposé).

Exemple d'espaces non isométriques ayant mêmes courbures de Ricci :

ds2 V2(z)dz2 + ea^dx2 + eß(*Uy2,

ds2 e2"^-ds2

où les fonctions (de la seule variable z) a, ß et a sont définies par :

a(z) 2 ¦ Argth
VÎT.
VT+^ + i

-e/3'

da
Tz{z)

da
dz

l + z3ea

e2" -1
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&•>->• da_ fl-z3e"
dz \e2'-l

(¥¦)
V2(z) z2 KdJ

da\2
dz

2a _ I

Remarque amusante. — Si vous fournissez ces formules à un calculateur formel
i 2

en lui demandant de vérifier qu'elles conduisent bien aux relations R1 R\, R2 R2,
3

R3 Rl, vous n'obtiendrez rien (même si vous ne faites pas de dépassements des capacités
mémoires, ce qui arrive en premier) : il faudrait rendre le calcul "confluant"... Pour vérifier
que ces formules sont exactes, il est plus sage de reprendre le calcul qui y conduit et qui
fait intervenir de façon cruciale les identités de Bianchi (voir [6]), ce qui explique le piège
tendu au calculateur formel...

Plaçons-nous pour la suite de ce paragraphe dans le cas où le gradient de a est
non nul et par continuité nous pouvons aussi supposer que a ^ 0.

Nos hypothèses sont donc maintenant :

— 2a
9ij e gij Ri Ri. grada ^ 0, cas riemannien.

Nous continuerons de noter ai dia, aij SJidja — gìGj et a1 g'kGk-

Rappelons qu'en prenant comme convention de signe pour le tenseur de Ricci :

Rij B*fc -, un calcul direct conduit aux formules suivantes :

ri* T)k + 6jak + S'kaj - a'gjk

Rij Rij — (n - 2)a,j - (A2a + (n - 2) Ax <j)yy

Utilisation des identités de Bianchi. — Les identités de Bianchi peuvent être
contractées et conduisent à la relation classique V«R; 2&jR où R — R] est la courbure

scalaire. Ecrivons que Vi-^j 2@jR- Comme R R, il reste :

V.-äJ \d}R d,R)+ fuRlj - V\j%

Utilisons Tjk T'jk + 8l-ak + 6'kaj - a'gjk et R- R'j. Il reste :

RjVk —<7j-J n

Nous énonçons :

Le gradient de a est vecteur propre du tenseur de Ricci associé à Ja vajeur

propre —,
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Enfin Rj R'j devient :

(1 - e2°)R) (n - 2)a) + (A2a + (n - 2) Aj a)8).

Coordonnées orthogonales. — Comme le gradient de a est non nul et que nous
sommes dans le cas riemannien, nous pouvons utiliser un système de coordonnées avec

i" a et utiliser les trajectoires orthogonales aux hypersurfaces a Cte.

Nous obtenons ainsi :

ds2 V2(x\x2,..., xn)(dxn)2 + gAB(x\..., xn)dxAdxB,

où les indices latins majuscules A,B,C... varient de 1 à n — 1. (Dans le cas pseudo-
riemannien, ce résultat ne pourra être utilisé que si Ai<r <7;<7' ^ 0).

Dans un tel système de coordonnées orthogonales, rappelons comment peuvent
être obtenues les composantes du tenseur de Ricci.

Définissons un tenseur de courbure de plongement des hypersurfaces a Cte

dans la variété ambiante par
&AB -ZydngAB-

Posons par définition
K ni et Ü2 ft£fìA-

Affectons du signe * toutes les grandeurs relatives aux hypersurfaces a Cte.

En utilisant l'expression des composantes du tenseur de Riemann en fonction
des seconds symboles de Chistoffel et en contractant le résultat, voici les formules qui en
résultent :

Rnn -V(A2 K + dnK + VU2),

RnA nVfl Va - dAK),

Rab =Rab y y KSIab + 2Q.aÇIcb-

Sous forme mixte, cette dernière relation devient :

B_— Mi_v^flfaMB,* «
Ra Ra y y

Dans un tel système de coordonnées <xn 1 et <t\ • • • cn-i 0, alors

Rk,ak -aj1 n

conduit à R™ & (sans sommation sur n), puis à R\ 0. Utilisons alors

(1 - e2")R) (n - 2)a) + (A2a + (n - 2) A1 a)8)
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pour i n et j — A. Il reste a\ 0 d'où a„A 0. Mais anA Vn^4a — anCa- Done :

0 dndAa - TiAdea -T"nA -^-.
Nous avons donc démontré que : ÒaV 0 pour A 1,2,..., n — 1 et obtenu

ds2 V2(a)(da)2 +gAB(x\..,a)dxAdxB.

Utilisons alors (1 - e2a)Rij (n - 2)a) + (A2a + (n-2) Ai a)6) pour i n et

j n, puis pour i — A et j — A (avec sommation sur A de 1 à n — 1) :

(1 - e2ff)R£ (n - 2)< + (A2<7 + (n - 2) Ai a)

(1 - t2°)R\ (n - 2)a% + (A2a + (n - 2) A1 a)6A.

Mais Rl £ donc R^ (n - 1)R£ d'où aA (n - l)cr£. Comme ct^

VAôBa ^-, a^ f. Puis <r» Vndna - (Tn<7n S^L _ ^. Alors or* (n - 1)<
devient :

(n - l)dnV- n - 1

Comme dAV 0, nous en déduisons que ÔaK 0.

Utilisons alors (1 - c2a)Rii =(n- 2)a) + (A2a + (n - 2) Ai a)ë) pour i j avec
sommation sur t et j de 1 à n. Nous obtenons :

n *2°\K (2»-2)g„y (2n-2)K n2 - n - 2
(l_e )jR= __ _+ _ + _

Comme ÔaV ÔaK 0, nous en déduisons que ÔaR 0. Alors, R" —

-^ - Q.2 montre que dAiï2 0.

Utilisons alors

(1 - e2")R) (n- 2)a) + (A2a + (n - 2) Ai a)8)

pour i A et j B et combinons le résultat avec

Re,k°AA^Ì-ÌAfV-K(ls.
Nous obtenons alors l'équation caractéristique des espaces admettant les mêmes courbures
de Ricci sans être isométriques :

* 0A /gV + n-2\ ^ V(A2(7 + (n-2)Aic7) A *

Dans cette équation les Rg sont les composantes mixtes du tenseur de Ricci de

l'hypersurface a Cte.
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Pour n 3 deux particularités permettent de conclure.

En effet, alors les hypersurfaces a Cte sont de dimension deux et donc
* *

T?A_ RcAnB— 2 °B-

De plus, pour a a0, nous pouvons prendre, dans cette hypersurface
particulière, un système de coordonnées tel que g\2 Çli2 0. En effet, la diagonalisation
du tenseur Çl relativement à g définit dans le cas riemannien au moins un repère mobile
principal (M, ei,e2) de l'hypersurface.

Mais en dimension deux, il nous est toujours possible de trouver un système
de coordonnées tel que les g|x soient colinéaires aux ea si (M, ei,e2) est un repère
mobile quelconque. Se trouvent ainsi définies des coordonnées ("de courbure") pour une
hypersurface a a0 particulière. Ensuite, pour un point MdeV3, considérons la courbe
constamment tangente au gradient de a qui passe par M. Elle coupe l'hypersurface
a a0 en un point de coordonnées (x,x2) que nous affectons au point M. Nous avons
ainsi construit un système de coordonnées orthogonales (x1 ,x2,a) pour lequel l'équation
précédente est applicable.

Avec A 1 et B 2, nous obtenons : ft^ + (KV + y^jfaf^ — 0 qui s'intègre
en :

n\ -1= e-Vl-e^Iïïfa,*2).
V*

Mais pour a a0, Q\ 0 ,donc II(x1, a;2) 0 et donc Çl\ 0 pour tout a. De même pour
ù\. Mais Q\ ^ Q2 et Çl2 Q,f 0 implique que Çl\2 j^d3gi2 0. Donc 93012 0.

Comme pour a a0, nous avons choisi #12 0, nous en déduisons que 1712 0 pour tout
a. Il est possible de montrer que Q\ Q,2 conduit forcément à l'isométrie, ce que nous
excluons. Il est possible aussi de montrer que nous pouvons choisir gn et 522 ne dépendant
que de a sans restreindre la généralité du résultat (voir [6]).

Nous avons alors obtenu :

ds2 V2(z)dz2 + ea^dx2 + c^dy2
ds2 e2°^ds2

comme conditions nécessaires pour que l'isocourbure sans isométrie soit possible.
1 2 3

Mais alors l'isocourbure se réduit à Rx R\, R2 R2, R3 R3 (les autres
R'j étant nuls si i 7^ j), ce qui constitue un système différentiel de trois équations sur
les trois fonctions inconnues ß ß(z), a a(z), et a a(z) puique nous pouvons
imposer V(z) 1. En utilisant la liberté sur le choix de V, il est même possible d'intégrer
explicitement et complètement ce système. (Voir pour le détail des calculs [6]). Ce qui
conduit au théorème 1.

Existence d'espaces ayant les mêmes courbures de Ricci mais non
isométriques pour n > 4.
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Les deux particularités qui ont permis de résoudre complètement le cas n 3

disparaissent pour n > 4 et nous ne savons pas caractériser localement tous les espaces
ayant mêmes courbures de Ricci sans être isométriques.

Cependant, l'existence de tels espaces peut être mise en évidence en reprenant
les particularités de la dimension trois et en les imposant pour n > 4.

Dans cette direction, si l'on suppose que les hypersurfaces a Cte sont de
courbure constante (nous savons déjà que la courbure scalaire de ces hypersurfaces est

constante), alors il est possible de particulariser localement ces couples d'espaces après un
certain travail algébrique ponctuel.

Plus simplement, montrons l'existence en toute dimension plus grande que trois
d'espaces ayant les mêmes courbures de Ricci mais non isométriques en prenant :

ds2=dz2 + Y/e"^(dxk)2
k=l

ds2 e2<zUs2

Dans cette situation, posons /U =^*- pour A 1... n — 1, et écrivons les

équations caractéristiques des espaces ayant les mêmes courbures de Ricci mais non
isométriques :

(1 - t2a)R) (n - 2)a) + (A2a + (n - 2) Ai a)6)

Pour i ^ j ces relations sont trivialement vérifiées. Appelons (Ea) et (En) les

équations obtenues pour i=j A=l...n — 1 (sans sommation) et pour i j n.

L'équation (Ea) s'écrit :

dlA + \fA(h + + fn-i) (n- 2)/^—È-5- + 2 &
dz 2J'lyj* J"~1' v '¦"* -1 + e2" -1 + e2"-

de

+(fx+--- + fn-i) ,d\2„ + 2(n - 2)

L'équation (En) s'écrit :

da (àsA\dz)
_l+e2,-"-*V-*>ZÏ+^

da

S'il n'est pas aisé de considérer directement ce système, une rapide manipulation
préalable des équations nous ramène à l'étude d'un système différentiel traditionnel. En
effet :

/M da 2

\(hf2 ¦ ¦ ¦ fn-i)A
h \=2(n- l)(n - 2)i^L + 2(n - 2)(/x + • • • + U-i)-J^

\fn-J
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A
1

Vi
1

o/
Dérivons cette dernière équation par rapport à z. Nous obtenons ainsi une

équation que nous appellerons (F), et que nous écrirons de manière simplifiée (-^j 0),
combinons-la aux (n — 1) équations (.Ei),... (En-\) et posons :

6= —dz

Nous obtenons ainsi un système linéaire en les dérivées de f\,f2,...,fn-\,a,6
dont le déterminant vaut :

(-l)nA(n-2)(n-l)e2a
(e2"-l)2

La preuve de l'existence d'espaces ayant les mêmes courbures de Ricci, mais non isométriques

est alors simple. En effet, considérons des conditions initiales en les (n + 1) fonctions

/lì/2, • • ¦, fn-\,cr,6 qui n'annulent pas ce déterminant. (Il suffit de choisir a non nul).
Les théorèmes classiques à propos des systèmes différentiels nous donnent l'existence,
localement, d'une solution de ce dernier système envisagé. Par construction, l'équation (F)
admet une primitive constante (H h) quand on y remplace 9 par la dérivée de a. Imposons

alors à nos conditions initiales d'intégrer (F) dans laquelle nous avons remplacé 6 par
la dérivée de a, avec une constante h nulle. Alors, avec de telles conditions initiales, notre
solution vérifie (E\ + E2 + ¦ —h E„-i — En) quand nous y remplaçons 6 par la dérivée de

er. Mais les (n — 1) équations (.Eq), (E2),... (E„-i) sont par construction dans le système
intégré et nous avons ainsi obtenu l'existence souhaitée (localement).

D'où le théorème 2.

V — Introduction à la généralisation de ces résultats
dans le cas d'une signature quelconque

Si nous voulons reprendre la démarche précédente avec une signature quelconque,
plusieurs endroits nécessitent des révisions. Elles sont principalement dues à deux ruptures
qui se retrouvent en des endroits différents et plus ou moins combinés :

t tout d'abord, il n'existe pas toujours de repère principal pour le tenseur de Ricci;

• ensuite, les équations de Gauss et Codazzi ne sont définies pour les hypersurfaces de V

que si la métrique qui y est induite par celle de V n'y est pas dégénérée. Nous verrons
que génériquement cette dégénérescence géométrique implique, pour les espaces qui nous
intéressent, la dégénérescence algébrique du tenseur de Ricci relativement à la métrique.
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Réduction simultanée de deux formes hermitiennes.

Il est d'usage en Relativité Générale d'utiliser la réduction du tenseur de Ricci
relativement à la métrique lorentzienne suivant des démarches qui sont en fait liées à la
dimension quatre et au caractère hyperbolique normal de la métrique. Intrigués par cette
situation, nous avons recherché un résultat qui ne dépende ni de la dimension, ni de la
signature et qui puisse éliminer tout emploi de vecteurs complexes si nous désirons utiliser
des métriques réelles.

Comme l'on doit envisager la possibilité de valeurs propres complexes nous avions
entrepris l'étude de la réduction simultanée de formes hermitiennes.

Les méthodes utilisées de même que les résultats se sont révélés être très proches
d'une étude faite par W.Klingenberg [7]. Il étudie en effet la classification de paires de
formes bilinéaires symétriques (resp. antisymétriques sur un corps commutatif. Dans le

cas des formes bilinéaires symétriques réelles avec des valeurs propres réelles les résultats
obtenus sont identiques. Pour retrouver le cas de la réduction réelle avec des valeurs

propres complexes, à partir de l'étude de Klingengerg, il suffit de considérer les matrices
symétriques réelles comme symétriques complexes et non hermitiennes) et d'associer à

une base complexe pour une valeur propre (a+ib) sa base conjuguée pour (a-ib), puis de

séparer les parties réelles et imaginaires de cette base; suivant la valeur complexe d'un
coefficient (appelé j\ dans [7]) l'on obtient différentes formes, dont l'une, (pour 7} 2i
correspond à celle que nous proposons. Les formes que nous avons choisies sont celles qui
nous semblent faire apparaître au mieux le problème du respect des signatures des deux
formes sur chaque sous espace correspondant à une valeur propre.

En dehors du résultat de réduction, nous retiendrons sa conséquence suivante
qui lie la complexité de la réduction de L à la signature (p, q) de | )G :

si les ki désignent les longueurs des files de Jordan réelles et les Cj les ordres des

valeurs propres complexes (si on compte une valeur propre complexe alors on ne compte
pas sa complexe conjuguée), alors :

([h] désigne la partie entière du nombre réel h)

h- f 1

Ç[f] +5><m/(p,«) <!il l
r ki, ^—>, ^ ¦ r, \

J dimension du plus grand sous-espace vectoriel

inclus dans le cône d'isotropie de( | )G.

Commentaires sur les résultats de réduction. —

• Pour chaque type de réduction possible, est associée une signature donnée
et cela explique pourquoi il ne faut pas fixer cette signature au départ, mais une fois la
réduction générale connue, pour une signature donnée ne retenir que les formes qui lui
sont compatibles.

• Se trouve aussi illustré le fait qu'il ne peut exister de vecteurs propres de

pseudo-longueurs nulles qu'associés à des files de longueur plus grande que un.
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Application à la dimension quatre et à la relativité.
Enumérons toutes les réductions algébriques possibles d'un tenseur symétrique

(le tenseur de Ricci en relativité) relativement à une forme quadratique non dégénérée de

signature quelconque (ce sera la métrique en relativité quand le choix de la signature sera
fait).

1) S'il n'y a que des files de longueur un et pas de racines complexes, alors les

formes réduites pour G et R sont :

/£lAi
0

0

V 0

G

ïl 0 0 °\0 £2 0 0
0 0 £3 0

0 0 0 £4/

R

0 0 0

£2A2 0 0

0 £3 A3 0

0 0 £4^4

Toutes les signatures sont possibles pour G.

2) S'il y a une file de longueur 2 et 2 files de longueur 1, associées à des valeurs

propres réelles, les formes réduites pour G et R sont :

G
1

1

0

0

0 0
0

Vo
0

0
£3

0

0

£4/

R.

0 Ai 0 0 \
Ai £1 0 0

0 0 £3A3 0

0 0 0 £4 A4 /
++-- +les signatures possibles pour G sont : + + H—

3) S'il y a une file de longueur 3 et une file de longueur 1, associées à des valeurs

propres réelles, les formes réduites pour G et R sont :

G

0 0 £1 0

0 £1 0 0

£1 0 0 0

0 0 0 £4

R

0 0 £iAi 0

0 £lAi £1 0

£iAi £1 0 0

0 0 0 £4^4

Les signatures possibles pour G sont : + + H— + H H

4) S'il y a une file de longueur 4 associée à une valeur propre réelle, les formes
réduites pour R et G sont :

0 0 0 Aj\
0 0 Ai £1

0 Ai £i 0

.Ai £1 0 0 /

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

R

La seule signature possible est : + -\

5) S'il y a deux fois une file de longueur 2 associée à deux valeurs propres réelles,
les formes réduites pour R et G sont :

R
f° 1 0 °\

1 0 0 0

0 0 0 1

Vo 0 1 0/

0 Ai 0 0

Ai £1 0 0

0 0 0 A3

0 1 A3 £3
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La seule signature possible pour G est : + -\

6) S'il n'y a que des files de longueur 1 avec A et A valeurs propres complexes
conjuguées et les autres valeurs propres réelles :

G

où X — a + ib.
Les signatures possibles sont : + + H— + H H •

7) S'il n'y a que des files de longueur 1 avec A et A puis pet~ß valeurs propres
complexes conjuguées (notées A ai -f ib\ et p a2 + ib2) :

/0 1 0
1 0 0

0 0 £3

0

0
R

(h
a
0

a
-b
0

0

0

£3 A3

0

0

0
Vo o o £4/ Vo 0 0 £4 A4

G
/° 1 0

»Ì1 0 0

0 0 0 1

Vo 0 1 0/
R

(h ai 0 0

a\ -61 0 0

0 0 &3 a3
Vo 0 a3 -63

La seule signature possible est alors : + -\

8) S'il y a une file de longueur 2 associée à une valeur propre réelle et deux files
de longueur 1 associées à A et A valeurs propres complexes conjuguées :

/0 1 0 0\ /0 A 0 0 \
10001 R_|A£i0 0

OOOll l00&a
Vo 0 1 0/ Vu 0 a -6/

G

La seule signature possible est : + -\

9) S'il y a A et A valeurs propres complexes conjuguées associées chacune à une
file de longueur 2, les formes réduites pour G et R sont :

6

0

a
1 -6

G
/° 0 0 1

0 0 1 0

0 1 0 0

Vl 0 0 0

R
0

Va

0

a
0

"A
-6
o/

La seule signature possible est alors : + -\

Si l'on impose une signature hyperbolique normale pour n 4, il ne reste plus
que 4 formes possibles. La forme classique de la relativité (axiomes de Hawking-Ellis) ne
retient que les deux premiers types, une file de longueur 2 associée à une valeur propre
réelle survenant pour le schéma radiation pure.

En résumé.
Nombre de formes possibles algébriquement en dimension quatre : 9.

Nombre de formes hyperboliques normales : 4.

Nombre de formes retenues par la relativité sous sa forme classique : 2.
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En signature quelconque, un difféomorphisme / qui préserve les
courbures de Ricci est encore une transformation conforme sur la fermeture
des points où deux valeurs propres au moins sont distinctes.

En signature quelconque, les courbures sectionnelles et les courbures de Ricci
deviennent infinies quand la direction (plane ou vectorielle) devient tangente au cône

isotrope et ceci dans presque tous les cas. Cette simple constatation permet de conclure

que / est une transformation conforme dans le cas des métriques hyperboliques normales
sans hypothèses supplémentaires sur les valeurs propres du tenseur de Ricci (voir [5], page
81). Si l'on désire une démonstration qui soit valide dans tous les cas, décidons de n'imposer
à / que de faire correspondre les courbures de Ricci que pour des directions contenues dans

un ouvert qui est d'intersection vide avec le cône isotrope. Il est alors possible de reprendre
la démarche qui a conduit à conclure que / est une transformation conforme dans le cas
riemannien et de l'appliquer à chaque type de décomposition possible du tenseur de Ricci
relativement à la métrique. S'il n'existe que des files de Jordan de longueur un, alors
le raisonnement fait dans le cas riemannien se reconduit sans difficulté et conduit à /
conforme sur la fermeture des points où au moins deux valeurs propres de Ricci sont
distinctes. Dès qu'il existe des (ou une) files de Jordan de longueurs plus grandes que un,
alors la présence des termes non diagonaux (il s'agit de la deuxième diagonale maintenant)
permet de conclure à / conforme avec le même raisonnement que dans le cas riemannien
sans utiliser l'hypothèse qu'il existe au moins deux valeurs propres de Ricci qui soient
différentes. En conclusion, ou bien le tenseur de Ricci est d'un type algébriquement spécial
et / est conforme sans autre hypothèse que de préserver les courbures de Ricci, ou bien le
tenseur de Ricci admet un repère principal et ce qui a été établi pour le cas riemannien
s'applique. Nous sommes ainsi parvenus au théorème 4. Nous ne savons pas si l'on peut
étendre à toutes les dimensions et pour toutes signatures le raisonnement fait par Hall
dans le cadre de la Relativité.

Les espaces admettant les mêmes courbures de Ricci en dimension et
signature quelconque. Application à la relativité.

Commençons par étudier le cas où les équations de Gauss et Codazzi ne
s'appliquent plus.

Plaçons-nous donc dans les hypothèses suivantes :

g e2"g ; R.) R)

• Aia — aia' 0.

L'utilisation des identités de Bianchi et les formules des transformations
conformes conduisent comme dans le cas riemannien à :

T-.* R
RjVk -<Tj.n

La théorie algébrique nous apprend que si le tenseur de Ricci n'est pas identiquement
nul, il est alors algébriquement spécial : il y a forcément une file de Jordan de longueur
plus grande que un puisque le gradient de a qui est de pseudo-longueur nulle est aussi
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vecteur propre dans ce cas. Prenons la dérivée covariante par rapport à la direction dj
de aia' 0. Nous obtenons : (^jjd'a)ai 0. Utilisons un système de coordonnées avec
xn a, alors S7jdna 0. Mais af \/jdna - ajan ; a" gnAdA<r + gnndna 0 ; donc

<r" 0 ; a2 0 <rJJ 0. Comme dans le cas riemannien RA (n — 1)R£ conduit à

aA (n — l)cr™. D'où aa 0 ; 0 a] A2a — Aicr. Ce qui montre que A2<r 0. Alors
(1 — e2<r)R'j a', et pour que a ne soit pas nul, il faut que R^ 0.

a)al=0.
Rk,ak ^aj conduit maintenant à a'-'cr,- 0, d'où par dérivation covariante :

Conclusion quand le gradient de a est nul :

• le tenseur de Ricci est algébriquement spécial,

• Rj R)Ri 0,

• dans un système de coordonnées avec xn — a : RI R2 R" 0.

Pour n 3 et n 4 ces dernières relations permettent de conclure que le

polynôme caractéristique P(A) det((R — Xg)) est respectivement proportionnel à A3 et
à A(A3 + Cte).

Dans le cas où le gradient de a est non nul, il faut ajouter à la démarche suivie
dans le cas riemannien tous les cas de dégénérescence algébrique (en particulier pour n 3,

nous devrions refaire tous les calculs pour obtenir un énoncé complet

Dans le cas relativiste, si nous imposons de plus à / de respecter toutes les
courbures sectionnelles, nous retrouvons ainsi le résultat de Hall par cette démarche.
Comme nous travaillons avec le tenseur de Ricci et non tout le tenseur de Riemann, nous
voyons apparaître ainsi de nouvelles situations. Il est intéressant d'envisager jusqu'où dans
le cas relativiste les courbures de Ricci déterminent la métrique localement.

THÉORÈME. — Soit f : V —* W un difféomorphisme qui respecte les courbures
de Ricci (f est défini localement) entre deux espaces relativistes vérifiant les équations
d'Einstein d'un des modèles suivants (avec ou sans constante cosmologique) :

• fluide parfait,

• champ électromagnétique,

alors f est une isométrie.

La démonstration de ce résultat s'obtient cas par cas en utilisant d'abord le type
algébrique du tenseur de Ricci et les relations entre ses valeurs propres, et en complétant
si nécessaire par les relations caractéristiques des espaces admettant les mêmes courbures
de Ricci. (Il n'y a aucune difficulté majeure, dans le cas du fluide parfait les conditions de

positivité de la pression et de la densité sont déterminantes, des contre-exemples surgissant
avec les relations p + p 0 et p + 2p 0).

Existe-t-il d'autres cas que celui présenté par Hall (type N de Petrov) qui n'imposent

pas à / d'être une isométrie? Une démonstration, très semblabe à la démonstration
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d'existence des espaces ayant les mêmes courbures de Ricci mais non isométrique,
permet, dans le cas d'un fluide parfait-champ-électromagnétique, d'obtenir facilement de tels
contre-exemples. Il en découle que la conception naïve : "le tenseur d'impulsion-énergie
détermine les courbures et la géométrie de l'espace-temps" ne peut être retenue.

Autrement dit, il existe des situations où la géométrie de l'espace-temps n'est pas
complètement déterminée par le tenseur d'impulsion-énergie, où les dérivées successives du
tenseur d'impulsion-énergie sont nécessaires à la connaissance complète de cette géométrie
(locale).
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