Zeitschrift: Helvetica Physica Acta

Band: 64 (1991)

Heft: 2

Artikel: Orthomodularity, compatibility and commutativity in physical theories
Autor: Ivanov, Al.

DOl: https://doi.org/10.5169/seals-116305

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-116305
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helvetica Physica Acta 0018-0238/91/020097-07$1 .50+0.20/0
Vol. 64 (1991) (c) 1991 Birkhduser Verlag, Basel

Orthomodularity, compatibility and commutativity in
physical theories

By Al. Ivanov
Institute of Physical Chemistry 202, Spl. Independentei 77208-Bucharest, Romania

(10. VIII. 1990, revised 12, XI. 1990)

Abstract. A physical interpretation of the orthomodularity in a lattice-theoretical axiomatics is
given in terms of the compatibility relations defined in the paper. A connection between compatibility
and commutativity has also been established.

1. Introduction

This paper intends to discuss one of the fundamental axioms of the theory of
physical systems, based on the mathematical structure of orthomodular lattices. We
have in view the axiom of orthomodularity, which reflects the essential property of
orthomodularity, which an ortholattice must possess in order to be a possible
physical theory.

Let us begin with the definition of an ortholattice.

Definition 1.

a) Given (7, <) a partially ordered set (“ < is an order relation on T'), such that
there exist the lowest and the greatest elements of 7, denoted respectively by 0
and 1; a mapping T 2 a—a~ € T is called on orthocomplementation on T if it
has the following properties:

(i) (@)t =aforallaelL;
(ii) sup{a,a*} =1, inf{a,a'} =0;
(iii) a<b = bt <at.

b) A triple (7, <,l), where (T, <) is a partially ordered set and “_1” an orthocom-
plementation on T is called an orthoposet.

c) An orthoposet (L, <, 1) having the property a,b € L = a v b =sup{a,b} e Lis
called an ortholattice.

We will not discuss here whether a physical theory may be indeed described by
ortholattice. This problem has been discussed in many papers and became a
common subject of the more or less standard works refering to the foundations of
quantum mechanics or of physical theories [1—4]. The aim of this article is to give
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a physical interpretation/justification of the fact that any ortholattice describing a
physical theory must be orthomodular. In order to avoid any confusion, we will
explain what we mean by physical interpretation of a mathematical object.

We admit that a mathematical object (which usually has not a direct physical
interpretation) is physically significant if another mathematical object may be defined
which has a satisfactory physical interpretation and whose existence in a theory
implies the existence of the first object. The object which must be interpreted here is
the orthomodularity of an ortholattice L (which can be defined as a relation on L).
We will show that, if L is considered as being a physical theory, then we may
assume that a relation called compatibility and having a good enough physical
significance (see Paragraph 2) may be defined—and therefore exists—on L. Then
it will be proved that the existence of a compatibility on L implies the orthomodu-
larity of L (see Proposition from Paragraph 2).

We want to expose now the empirical basis for defining a physically justified
notion of compatibility. To this purpose, the usual notion of “yes-no” experiment
(or question) will be slightly changed in a sense which will become clear in what
follows. For the sake of convenience let us consider one of the standard definitions
of a question: ({We shall call a question any experiment leading to an alternative
whose terms are “yes” and “no”)) [3]. We will prefer to use the term fest instead
of question.

The comment of the above “definition” begins with the obvious fact that the
performance of a fundamental experiment—a ‘“‘yes-no” experiment—assumes im-
plicitly that a statement which must be verified had been formulated, like ‘“‘the
absolute temperature takes a value in the interval [0, 1]”, or ‘“there exists an
electron in the domain D of the physical space”, etc. Then it is also clear that a
statement may be verified if and only if we are able to find an experimental
procedure which permits to decide if the considered statement is true or not, an
assertion which is also implicitly contained in the above cited “definition”. Conse-
quently, we will prefer to “define” a test as an object consisting of two parts: a
propositional part, which is the statement which must be verified, and the experi-
mental procedure which decides effectively whether the statement in discussion is
true or not. Further, it would be perhaps more rigorous to consider that the
propositional part of a test is a set of logically equivalent statements. Concerning
the second “component” of a test, we have to notice that any experiment which
“measures’ a proposition/statement assumes implicitly the existence of a contact of
an apparatus with the system. Of course, in any theory it is assumed that such a
contact is ideal, or “free of errors”. Even if the ideality of a contact is difficult to
define, it is intuitively acceptable, so that assumptions concerning ideality of
measurements are always more or less explicitly present in theoretical works. It is
also supposed that a contact may measure a proposition in any of the states which
are considered interesting in a given theory. This is also an idealization which
expresses the “independence” of a measurement on some theoretically nonessential
experimental details. Such ideal contacts will be simply called contacts in our paper.
We might assume that there exists a unique contact for measuring a given
measurable proposition, but we believe that such a hypothesis is not reasonable
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from the empirical point of view. Indeed, we know that several essentially different
concrete procedures may exist to measure a given physical quantity and, in our
opinion, this empirical observation requires that, in general, more than one contact
may measure a given proposition.

Taking account of these considerations we give the following “definition” of a
test: a test e is a pair (P,, k(e)), where P, is a set of logically equivalent propositions
and k(e) a set of contacts for measuring any proposition from P,. It is important to
realize that any test may be considered as in independent object, i.e. an object which
may be thought of as being independent on any theory. Consequently, in our
language a theory would be interpreted always as a collection of tests which may be
organised at least as an ortholattice.

Reconsidering now our “definition” of a test e as a pair (P,, x(e)), let us
remark that it is in fact a reformulation of the standard “definition” of a question,
which had been the start point of our considerations. We have chosen this unusual
manner of defining a test since it is very useful when the mathematical properties of
a compatibility must be physically interpreted. We will “define” here the so-called
empirical compatibility, which will be used in Paragraph 2 for defining the
mathematical notion of compatibility on our ortholattice. Given e, = (P, , x(e,)),
e, =(P,,, k(ey)) two tests, we say that they are empirically compatible if
k(e)) Nk(e,) # & (here (J denotes the empty set and “n” the intersection of sets).
This statement affirms that there exists at least one contact which allows to measure
both P, and P,, propositions by an unique single-measurement (i.e. simulta-
neously). It is necessary to obtain both answers by a single-measurement, since we
know that the results obtained by measuring a proposition, or a physical quantity,
on different copies of a given state are generally different.

Now the notion of empirical compatibility will be used to make some remarks
which will suggest finally that any set of mutually empirically compatible tests may
be considered as a subset of a Boolean algebra of tests. To be more precise, let us
take a set £ of mutually empirically compatible tests and let us take e € E an
element of E. It is easy to see that the proposition non-P, (the negation of the
proposition P,) is measurable, since it may be measured by any contact from x(e).
Consequently it defines a test which will be denoted by e’. It follows that the set E
may be expanded to the set EUE = E(E’={e’;e € E}) which also consists of
mutually empirically compatible tests. Now let e, e, € E be two tests and consider
the proposition P, A P,, to be true if and only if both P, and P, are true.
Similarly, a proposition P, v P, , which is true if and only if P, is true or P, is
true, may be defined. Obviously, both P, A P, and P,,v P, are measurable since
k(e;) Nnk(e,) # & and any contact from this intersection is good for measuring
these propositions. These observations suggest (but to not prove) that all proposi-
tions constructed by applying repeatedly the algebraic operations “ A ” and “v " to
the elements of the set E are also measurable. This construction leads evidently to
a Boolean algebra of tests £, having an orthocomplementation a natural extension
of the mapping E 3 ere’ € E. Given e,, e, € £ two tests, we will write e, — e, (and
usually say that e, “implies” e,) if the proposition “P, is true and P, is false” is
false (note that this proposition is measurable!). It is clear that if ¢, > e, and e, > ¢,
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9 2

imply e, =e,, then “—" is an order relation on £. Moreover, the order relation
“—" 1is that which is strictly related to the structure of the ortholattice defined on
AT and the mapping ere’ (see Definition 1).

9

¢ by the operations “ A7, and “v
These facts will be considered in Paragraph 2 as a satisfactory direct justification of
the properties (C2) and (C3) of a compatibility.

As it will be seen, a compatibility is a mathematical object defined by some
conditions inspired by the properties of the empirical compatibility. Since the
existence of a compatibility on an ortholattice T implies the orthomodularity of 7,
it is important—in our opinion—to establish the connection between a compatibil-
ity given in Definition 2 and the commutativity relation (see Paragraph 2), which is
commonly considered as describing the compatibility of tests. In Paragraph 3 an
interesting result is obtained, which ensures us that on orthomodular atomic lattices
the only compatibility which may be defined is the commutativity relation.

2. Compatibility and orthomodularity

Let (L, <,1) be an ortholattice. We know that L 1s said to be orthomodular
if the implication “a <b = 3¢, (¢,a) L, b = c va” is valid (here (¢, @) L means that
the elements a, ¢ are orthogonal, i.e., a < ¢*). It is also well-known that any theory
(L, <, 1) is supposed to be an orthomodular lattice. Nevertheless, the orthomodu-
larity is considered by many authors as a purely technical condition. We will show
here that it is possible to obtain a good interpretation of orthomodularity if we
consider that compatibility enters from the beginning as a fundamental object in the
mathematical apparatus of any theory. More precisely, if an ortholattice (L, <, 1)
is a possible physical theory, then there must exist a relation C on L (C = L x L)
which represents the mathematical description of the empirical compatibility. In
order to set up the properties of a compatibility on L, we need some notions
concerning the general properties of a relation on an arbitrarily given set. Given
R = 4 x A a relation on A4, we will write (a, b)R instead of (a, b) € R. Given R a
reflexive and symmetric relation on 4, we say that B< A4 is a R-class if it is
maximal with the property a, b € B = (a, b)R. The existence of R-classes is a simple
consequence of the Zorn’s lemma.

Taking into account the interpretation of the elements of L as tests and the
“definition” of empirical compatibility, it is easy to see that C must be a reflexive
and symmetric relation. It is also clear that the following assertions may be assumed
to hold for any compatibility:

(C) (a,b)C = (a, bH)C;
(C2) if A= L is a C-class and a; € A, i €I, then )\ a,€ A

iel
On any ortholattice L we may define a relation K, called commutativity and defined
as follows: (a, P)K if a=(a A b) v (a A b"). Let us consider now 4 = L a C-class.
By using (Cl1) it is easy to prove the implication a € 4 = a* € A. By combining this
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result with the property (C2), it may be proved that 4 is an ortholattice. Since the
elements of 4 are mutually compatible, the C-class 4 may be identified with the
lattice of propositional parts of its elements. But it is well-known that any
ortholattice of propositions is a Boolean algebra. This reasoning justifies the
following property of the compatibility relation:

(C3) if A< L is a C-class, then a,b € A = (a, b)K.

Therefore, taking account of properties (C1)—(C3), we may affirm that any C-class
with the order relation and the orthocomplementary intherited from L is a Boolean
algebra. In order to establish another property of a compatibility relation, we
have to discuss the more subtle problem dealing with the possibilities to decide
by measurements whether a < b or not. At first sight, it seems that a and b must
be compatible, since the order relation “<” is related to the experimental im-
plication “—”. In fact, there exists a possibility to establish whether a <b is true
or not when a weaker condition than the compatibility of a and b is fulfilled.
Indeed, let us assume that, given a and b two tests, there exists a family of tests
{a;}<i<nsuch that a, =a, a, =b, (a;,a,,,)C and @, >a, forall i, 1 <i<n—1.
Obviously, in these conditions we may write ¢ < b. Translating this observation
into the mathematical language of ortholattice, we get a new property of the
compatibility C:

(C4) if a,be L, a<b, then there exists a family {a;},<i<,, ay=a, a,=Db,
(a,a;, ., )Cand a;<a;, foralli,1<i<n-—1.

We consider that the properties (Cl) — (C4) define completely a compatibility
relation, so that we will give the following definition:

Definition 2. Let (L, <, 1) be an ortholattice. A reflexive and symmetric
relation C < L x L is said to be a compatibility on L if it has the properties
(C1)—(C4).

The previous considerations lead us to the idea that any physical theory must
be an ortholattice having a compatibility relation defined on it. If this assumption
is admitted, then it follows from the following simple proposition that any theory
is an orthomodular lattice.

Proposition: Let (L, <, 1) be an ortholattice such that there exists a compatibil-
ity C< L x L. Then L is an orthomodular lattice.

Proof. Let us take a, b € L, a < b. There exists a finite family (a;); <;<n, @ € L
such thata =¢q, <a,< -+ <a,=bhand (a;,a;, ,)Cforalli, 1 <i<n—1. Since a,,
a;, , are elements of a C-class and any C-class is an orthomodular sublattice of L,
there exists ¢; € L such that a,, , =¢, v a;, (¢;, a;) L. The element ¢ = \/7_] ¢; has
the properties (a, ¢) L and b =a v c¢. Indeed, we have a < g, for all i,2<i<n—1.
Since a, <cj,itresults a<ci Aci A Act =(cvev ve,_)t=ct Tt
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remains to see that
b=a, \Vc,_1=08,_2VC_2VC_ ==
=aVve VeV Ve, =ave, Q.E.D.

This proposition shows that orthomodularity of an ortholattice/physical theory L is
a consequence of the existence of a compatibility relation on L. Now it is important
to find what is the connection between a compatibility C and the commutativity
relation K, which is commonly considered as describing the empirical compatibility.
This will be done in the next paragraph.

3. Compatibility and commutativity

In the previous paragraph the commutativity relation K on an arbitrarily given
ortholattice has been defined. This relation is very important since it may be proved
that K< L x L is symmetric if and only if L is an orthomodular lattice [5].
Consequently, on any orthomodular lattice there exists at least one compatibility,
since, by using the previous statement, it is easy to show that K is a compatibility
provided L is orthomodular.

Now let us consider that L is orthomodular and let C be a compatibility on L.
Then we may prove without difficulty that C < K. It is more interesting when the
inclusion K < C is also true. We will see below this is true when L is atomic. The
proof of this statement is based on the following lemma:

Lemma. Let (L, <, 1) be an ortholattice such that there exists R<L x L a
relation having the following properties:

(1) R is reflexive and symmetric,
(11) any R-class is a Boolean orthosublattice of L;
(111) a <b = (a, b)R. Then L is orthmodular and R = K.

Proof. We will prove first that a < b = (a, b)R if and only if (a, b) L = (a, b)R.
Suppose that the implication a < b = (a, b)R is true. Then, (a,b) L =>a<b* =

(a, bH)R (= (a, b)R. Conversely, if the implication (a, b) L = (a, b)R is true, then we
may write a<b=a< (") =(a, bt)L = (a, b*)R = (a, b)R. Since R has the
properties (1) —(iit), it is a compatibility on L, so that L is orthomodular and R < K.
Let us consider now a, b € L such that (a, b))K. Then b = (a A b) v(a* A b). Since
(@ Ab,at Ab)R,(a,a Ab)R and (a,a’ A b)R, there exists a R-class which in-
cludes the set {a,a A b,a* A b} and we get immediately that (a, b)R, Q.E.D.

Theorem. Let (L, <, 1) be an atomic ortholattice and C a compatibility on L.
Then C =K.

Proof. 1t is sufficient to prove the implication a < b = (a, b))C (see Lemma).

The implication a <b = (a,b)C (here a<b means “b covers a”, i.e.,
a<x<b=x=aor x=»>5) is true, since a <b and (a, b)€ (a, b are not in the
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relation C) implies that there exists x € L, a < ¢ < b, a is not covered by b, which
is absurd. If pis an atom of L, a € L, (a, p)*, thena<avpandp=(avp) A a*
Taking.-account of properties (C1)—(C4), we may write the following sequence of
implications:

a<avp=(a,avp)C = (a*,avp)C
= (a*,(avp) rna')C = (a*, p)C = (a, p)C.

Consider now a, b > 0, (a, b)*. Since an atomic ortholattice is also atomistic, there
exists , a set of mutually orthogonal atoms such that b = v Q,. Since (a, «) L for
all « € Q,, we get (a,2)C for all a € Q,. Therefore Q, u{a} is contained in a
C-class, so that (a, b)C. It results that the implication (a, b) L <> (a, b)C is true, and
applying Lemma, we get K = C. Q.E.D.

4. Comments

We could not find an example of a compatibility of an orthomodular lattice
which differs from K. It is also difficult—if not impossible—to prove that the only
compatibility is K. Both these problems are important from the mathematical point
of view. For the development of a physical theory it is sufficient to justify that the
only reasonable solution for describing mathematically the compatibility relation is
to identify it with the compatibility K. Suppose we know that for any theory L there
exists an atomic orthomodular lattice £ and ¢: L - L a mapping such that the
following assertions are satisfied:

(a) x <y = o(x) < @(y);
(b) o(x1) = (x)* for all x e L; _
(¢) x;eL,iel and /\ x, exists in L=/ o(x;) exists in L and

o(/\x) =\ o).

It will be seen in another paper that this statement is physically justified. This means
that any theory may be enlarged up to an atomic theory. Since, according to
Theorem, the only compatibility existing on an atomic theory is the relation K,
there are no reasons to believe that the empirical compatibility might be described
by a relation which differs from K.
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