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QCD corrections to the W decay width within a new
dimensional regularization scheme

Christoph Greub

Deutsches Elektronen Synchrotron DESY
Notkestrasse 85
D-2000 Hamburg, Fed. Rep. Germany

(22. VII. 1990)

Abstract

A new dimensional regularization scheme for infrared and collinear singularities is worked
out for the example of O(a,) QCD corrections to the total W decay width. This scheme
can be applied to other similar processes involving the 45 matrix. The QCD corrections
to the W width are calculated explicitly according to this new scheme for arbitrary quark
masses. Furthermore the same calculations are done in a more traditional scheme, leading
to identical results.
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1 Introduction

We consider first order QCD corrections to the electro-weak process
Wt ot + b (1)

t denotes a generic up-type quark with mass m; and b stands for a down-type antiquark
with mass m;.

For m; # 0 and m; # 0 the loop graphs contain ultraviolet and infrared singularities,
whereas the bremsstrahlung graphs only contain infrared singularities. In the case where
m; = m; = 0 both, the loop graphs and the bremsstrahlung graphs are afflicted in addition
with collinear singularities. In order to regularize all these types of singularities we work
in d dimensions. For d > 4 we only have ultraviolet singularities whereas for d < 4 we only
have infrared (and collinear) singularities. This implies that there is no dimension d where
all types of singularities are regularized simultaneously. Nevertheless, we are allowed to
regularize all types of singularities with the single parameter d, because on the one-loop
level the ultraviolet singularities can be neatly separated from the infrared and collinear
ones, as explicit calculations show.

However, there are problems how one precisely generalizes the matrix elements from 4 to d
dimensions, in particular when 75 matrices are involved. We present a new method, where
we give prescriptions how to treat 5 in our specific example. As this method explicitly in-
cludes the emission of gluons, which are pseudoscalars under the four-dimensional Lorentz
group, this new scheme is referred to as the pseudoscalar gluon scheme, thereafter. It will
become clear in the following description of the regularization procedure, that our method
is of course not restricted to QCD corrections to the specific process in equation (1). It
can be used for all gluon/photon bremsstrahlung processes, where the gluon/photon is
radiated from a massive or massless external particle, and for the corresponding virtual
corrections. As this scheme is technically easy to handle, we already made use of it in
different applications. One such application was the calculation of inclusive lepton pair
production through virtual W, Z and « gauge bosons in proton - antiproton collisions. [See
references (1], [2] and [3]]. If the lepton variables are not completely integrated out, the
vs problem cannot be circumvented any longer and a clear prescription has to be given.
Another application, where this scheme was very useful, is the calculation of the inclusive
photon energy spectrum from the rare b-quark decay b — s + g + vy, where s, g and v
denote a s-quark, a gluon and a photon, respectively. [See ref. [4]].

There are many other papers about dimensional regularization in the literature. In refer-
ence (5| only some of them are mentioned.

Our paper is organized as follows:

In order to fix the notation, we briefly review the Feynman rules which are relevant for our
process. In section 2 we give the regularization prescriptions for the pseudoscalar gluon
scheme without doing the explicit calculations. In section 3 we present the calculation
according to the setup in section 2 for the case where m; = my = 0. In section 4 we speak
about the results in the case where m, # 0 and m; # 0. [This case would be important for
the physical tb decay channel of W if m, +m; turns out to be smaller than my after all]. In
section 5 we speak about the results one gets in a more traditional regularization scheme,
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in order to convince ourself that the new scheme really leads to the correct physical results.
In section 6 we illustrate the results from section 4 with some plots.
1.1 Feynman rules

We only write down the Feynman rules which are relevant for describing W+ decay in-
cluding the first order QCD corrections.

Fields
Wes quark field ¢: colour index
t: flavour index
a: Dirac index (usually suppressed)
Al gluon field A: colour index
p: vector index
W, W field p: vector index

Free propagators
Because it will turn out that only the quark masses and the quark wave functions undergo
renormalization it is sufficient to work in the unitary gauge in the electro-weak sector.

1 L d e =
OIT W, () W+ =1 _=l Sl B, g
OTWDWEGI) = } Dule—s)= 3 [ 2 e Dt
(0T 44(x) 42(x)[0) = = @ gaB = L[ EE ke G (k) 548
ul\Z v \¥ ) - ',; Fv(z —y) = ; (2,")4 € wv
4 -~
(OIT (2) T (y) [0) = i S(z —y;m) 6° Sy = i (‘;;’)51 e~k (=9) §(km) 6 Gy
ke, k.
: o - 2
Din(k) = {k’ —md + in}
3 G 1A Euk }
Gou(k) =
(k) {kﬂ +1in T (k? +in)?

S'(k; m)

I

p——
T

| |
3+
413
3
L S—

Gu(z — y) describes the propagation of a free massless gluon in an arbitrary covariant
gauge; A is the gauge parameter:

® A = 1: Feyman gauge

¢ A = oo : Landau gauge
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Vertices

: ; A4
i Gy, ihy, =<
w g

g and h denote the SU(2), and the SU(3)¢ coupling constant, respectively. [a, = i‘—:]

2 Regularization prescriptions for the pseudoscalar
gluon scheme

Before discussing the virtual correction and the bremsstahlung graphs seperately, we list
some basic points which will be used for both types of graphs:

e the gluon remains massless
o the quark (antiquark) masses are denoted with m, and m;

e the four momenta of the external particles in each graph are four-dimensional, i.e.,

p‘-‘ = (po’p17p21p3,0, ------ ,0

o The polarization vector of the W boson as external particle is restricted to 4 dimen-
sions, i.e.,
ey = (&,¢,é,6,0,.....,0)

Our calculations are done in the Landau gauge; in this gauge the Feynman integral for
the vertex correction and the residue of the quark propagator are finite in the ultraviolet
region in d = 4 on the one-loop level. For m = 0 the quark self-energy even vanishes in
this gauge.

2.1 Self-energy contributions

The full propagator for a quark with mass m has the form:

_ ) Ak e =
(0|7 ¥5(z) T(y) |0) = i S(z —y;m) 6°¢ b = z] n)s e~V §(k;m) 6 by
- 1

5 = F—m—X+in @)

The one-loop expression for the self-energy T reads:

4, d*k 1
B=g(=h )/ (2

W)”“ﬂ+¥—m+in7‘3éaﬁ(k) (3)
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We generalize this expression to d dimensions as usual:

4 dik 1 ~
= 2(=p? H‘f — vg GP(k 4
where 4 is an arbitrary mass scale. All the gamma matrices are now matrices belonging
to the Dirac algebra in d dimensions. Note, that the indices & and 8 run from 0 to d — 1.
The propagator can be rewritten in the form

.- ZZQ(TH)
iS = (5)
(# —m)[1 +O(F —m)]
where mass renormalization has been carried out tacitly. The residue Z;(m) is given by:
Zy(m) =1+ z a9 Izﬁ=m
In the Landau gauge we get:
a 1 47y’
=1t e 6
Zy(m) =1 e 4+3(e ¥ + log =y )l (6)

where 2e = 4 — d and yg = 0.577... denotes the Euler constant. Note, that the % -poles in
Z3(m) are of infrared origin. [In the case where m = 0 a direct evaluation of integral (4)
yields £ = 0. Therefore Z;(0) = 1 in the Landau gauge.]

The summation of the zeroth order graph and the quark self-energy correction diagrams
is achieved by attaching a factor

Zz(mt) . Zg(mb)

to the zeroth order graph.

2.2 W vertex correction

The vertex correction is only calculated on shell. In 4 dimensions the expression for the
W vertex correction reads:

g9
= Cb““ 4/3 5"1’ 6ab
w
d'k E+# +m (1+7B) E—90+my =
=W G (k 7
=k ./(21r)4 vkz -{-Zpk—}-?,e’y 2 2—2p’k+i67p ( ) ()
p' : four momentum of the outgoing antiquark (p')*? = (ms)?

p : four momentum of the outgoing quark (p)? = (m,)?
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The regularization of the formal expression is done in three steps :

STEP 1
The formal 4-dimensional expression can be rewritten in a way where the chirality structure
of the outgoing (anti)quarks is manifest:

s e (0 () (5 ()
(57) 0 (57) + (57) % (57)
, ’ :
I‘(‘a) = & f (‘; ];4 Vo 2 +¥2-;k#+ Ge PR3 i;’kﬁ-}" ie ? G (k)
4 ’
LY = # (‘;lﬂ-])c4 1o 1 +zn;c T ie M3 _kz;kﬁ+ 72 10 (R)
4
o= w (Z'rrl;‘ Y +2n:k Tie M ET - 21;'bk e 7 &7 (k)
9 = p? d*k E+ 4 mp & (k)

(2r) " k2 ;2pk + i¢ P k2 —2pk + i
(8)

Note, that the integrals do not contain a 45 anymore.

STEP 2
In this step we generalize the Dirac algebra and the Dirac spinors to d dimensions:

e Dirac algebra

In d dimensions (d even) we have d (2%/2 x 2%/?) matrices I'o, T, ..., '4_1 satisfying
the algebra

Pl = 2@l u,v =0,1,2,...,d-1
9w = diag(1l,—1,.....;—1)

Especially we have I', I'¥ = d1 . For some aspects it is convenient to decompose the
Dirac algebra into a direct product:

d = 4+d d : extra dimensions
:YOa"Yl::Yh'Yg ) j’la'%h ma'?é
4 d
Bk = Zguwl p,v = 0,1,2,3 (4 x 4) matrices
{%:,%} = —-26;1 57 =1,2,...,d (2"7/2 ® 2‘3/2) matrices

Y5 = 1YoM17Y2Y3
Ydpr = 2PN
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Tv = 7201
I'' = o1
; = 1291
I3 = 73@1
Iy = %8®n
I's = 18T
Fasi = 1509; (9)

We list some properties of these different gamma matrices :

.3d—2 .
Tapr =17 Tor--Taa = 8y,
It =1 Ifi1 = Tan

g6 1 =%

1 =1 At =4,

R Vit Ydt1

e Spinors
Because the momenta of the external particles are four-dimensional , it is also con-

venient to decompose the spinors into a direct product. The Dirac equation in d
dimensions for a particle with mass m reads:

#U(p) = p.T* U(p) = mU(p)

Because p, is four-dimensional the solution to this equation can be written in the
form:

U(p) = u(p) ® x

where we used the notation :

U(p) Dirac spinor in d dimensions
u(p) Dirac spinor in 4 dimensions
X constant spinor in d dimensions:

24/2 degrees of freedom

A similar decomposition also holds for antiparticle spinors V(p) satisfying
#V(p) = p, T V(p) = —mV(p)

STEP 3
Now we are ready to write down the regularized version for I, . We do the following
replacements in equations (8) :

P n L img
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® v, — [, for all gamma matrices, e.g. ,
? =Pa7" — pal™

dt k d?k
(am)f 7 (am)?

e h? 5 h? _#4—d

Note, that the indices p and o vary from 0 to d — 1, whereas the index p, which couples to
the external W polarization vector only take the values 0,...,3. Now the expression for I,
is well-defined and can be evaluated. Note, that I, is understood to stand between spinors
in d-dimensional space. Therefore, doing the algebraic manipulations the Dirac equation
is used, e.g. ,

#(u(p) ® x) = m(u(p) ® X)

i.e., we only calculate the vertex correction I, on shell.
We do not give the detailed results here, but we mention its structure:

I, = jn ® 1 (10)

where I, is

= —'&hz 1 + Ys\ = 1-— Y5\ =
L = {om {7“( 2 )A+7“( 2 )B+
—10,,P

+i oup” (

)
1+%)

- E + 10,,p" (1 - 75) F} (11)

The form factors A, B, ..., F depend only on the scalar product 2pp’, the quark masses m; ,
m; , and on the mass scale p introduced through dimensional regularization. We should
point out that all singularities are contained in the form factor A .

2.3 Matrix element and phase space for W decay [Zeroth order
+ loop corrections]

The matrix element M including zeroth order and all one-loop contributions to the W
decay width reads (in d dimensions):

M = {i—%JZg(mt)Zg(mb) T(p)T, (1 T 1) V(')bas +

+(4/3) ﬁ(p)I“V(p')a,,b} L (12)

Sie

Because of the direct product structure of the different quantities in M it can be written
as

M=M (x*x) (13)



Vol. 64, 1991 Greub . 69

where

it = i 2 ) ) 50)3, (M) o088 +

+(4/9) 2 alo) Loo() aab} e (14)

Taking |M|? and summing over the extra spinorial degrees of freedom we get

> M =2 M

extraspins

On this level, the ultraviolet divergences have cancelled and we are left with infrared
singularities . They are regularized by the dimension parameter d, i.e., we have to stay in
d dimensions. However we are allowed to omit the factor 29/2 due to its universality: The
factor 2%/2 tends to 1 as d — 0 . It will also be present in the bremsstrahlung contributions.
Therefore we leave it out, i.e., what we really calculate is |[M]? .

The phase space integrals will be worked out in d dimensions.

2.4 Summary concerning the loop-corrections

The matrix element M involving the zeroth order graph and the loop-corrections has
been regularized in such a way that the four-dimensional chirality structure is maintained.
In particular, for massless (anti)quarks this means that only quarks with helicity -1 and
antiquarks with helicity +1 appear in the final state.

2.5 Gluon bremsstrahlung

For W decay there are two bremsstrahlung diagrams:

(1) (2)

Again all four momenta of the external particles are taken to be four-dimensional;
this is no loss of generality as long as the number of particles involved is < 5. The
polarization vector of the W+ boson also lies in four dimensions. However, we are not
allowed to consider only four-dimensional gluon polarizations, i.e., we also have to include
the additional d = d — 4 gluon polarization vectors:

&l = (0,0,0,0;1,......,0)

& = (0,0,0,050,......,1)
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Under the four-dimensional Poincaré group these vectors transform as pseudoscalars.
Therefore we denotes these extra degrees of freedom as pseudoscalar gluons.

The reason, why we have to include these pseudoscalars, can be seen in the discussion of
the virtual corrections, because the regularization we did there includes the propagation
of pseudoscalar degrees of freedom: This is most easily seen in the gluon propagator:

ém(k) = k’gIze + other terms

Of course p and o are not restricted to 4 dimensions, because otherwise we would have
been forced to put

LD.4™ =
instead of

I.T.qg™ =d
as we did.

Next we want to give the regularized version of sum of the two matrix elements (1) and
(2) : In a first step we write down the matrix elements in four dimensions. In a second
step we do exactly the same replacements in the four dimensinal expression as we did in
STEP 3 when discussing the vertex correction. These two steps lead to:

M = M+ M,

_ ghutt N 1+ ~f— Pt m,
M = { [,fw s ®1)—————2Wc o

i EEEm f (12 01) | wes) )

(15)

Keeping in mind that the W™ polarizations are restricted to d = 4, M can be split into
two terms:

e = B [ (122) F

2 2 2 2p'k
2 Emy (1) i) )

(16)
e = S (o [ ()
PR ind Sk +2ﬁp: g (1 L 75)] vb(p')} (x* 4 x)
(17)

where M,..;. stands for the emission of a vector gluons with polarization vector e;(k) and
M, ca1. stands for the emission of a pseudoscalar gluon.
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In a next step one has to take the square of M. We sum over the pseudoscalar gluons and
also over the additional spinorial (x) degrees of freedom.

5t = 2

spins
Y IxtaxP=2%d
spins,scal.

The factor 29/2 tends to 1 as d — 0. Furthermore it is universal, i.e., it appears also in the
vertex correction graph and in the 0** order graph. Therefore we omit this factor.

We now introduce new equivalent matrix elements M,... and M.m;,, in which only four-
dimensional objects appear:

Mo = P20 o | (M) ™

V2 o2 2p'k
7 K47 +mt¢W (1 +75)] vb(p,)}

(18)

__ h 4—d AA 1 + /. f+m .
Mlcal. = d—4 L Tab {ﬁ’d(p) [#fw ( 75) # 2::,’3 b"’YB"I"

. L ﬂ h i (1 b 75)] %(P')}

(19)

M,.:. and M, are equivalent to M, and to M,.,. in the following sense :

IMvect. |2 = z ‘Muect. |2

extraspins

IMIMI.Iz = E lMacal.P

extra spins,scal. gluons

where = means equal up to the factor 29/ We mention that M, ... can be interpreted to
be generated through the Lagrangian

Lpseudoscala.r gluon = hvd—43,(z)ivs A » ¥s(z) i’A("’) (20)

where &4 denotes one real pseudoscalar gluon field with colour A.

2.6 Summary concering the bremsstrahlung graphs

The regularization has been done in such a way that the (anti)quarks have the same
chirality structure as in four dimensions when a vector gluon is emitted. However, if a
pseudoscalar gluon is emitted by a (anti)quark its chirality is flipped. (We should point
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out, that because of the extra factor v/d — 4 in equation (19) a pseudoscalar gluon does
not contribute if it is not emitted collinearly). In particular, for massless (anti)quarks
this means that in the final state a quark with the 'wrong’ helicity +1 together with a
collinear pseudoscalar gluon can appear (or, equivalently an antiquark with the helicity
-1 together with a collinear pseudoscalar gluon). However, these states cannot be distin-
guished experimentally from the corresponding (anti)quark states with the 'right’ helicity.
It may be conjectured, that in the case where a massive quark emits a collinear pseu-
doscalar gluon, the latter could be separated from the quark because of the different speed
of the two particles. However, in this case the contribution of Mmﬂ_ vanishes, which proves
the intrinsic consistency of the scheme.

3 W decay into a massless quark and antiquark

We present the explicit calculation for the QCD corrections to the total decay width of the
W+ boson into a massless quark and antiquark according to the pseudoscalar gluon scheme
described in section 2. The decay of the W™ boson is considered in its rest frame. In the
following discussion q,p,p’ and k stand for the momenta of the W+ boson, the quark, the
antiquark and the gluon, respectively.

3.1 Zeroth order and loop corrections

As the self-energy vanishes in the Landau gauge, we have Z;(0) = 1. For the regularized
version of the vertex correction I, (see equation (7)) we get:

1_7 a 1+7 i
I, = ( > 5@1)1},)(——2_i®1) with

e = p? prytd I’ ! I ! r,G”(k 21
# () (2m)d "7 k2 +2pk + i¢ “k? —2p'k + ie ° (k) (21)

This integral yields:

-1

I = ——T.A
2pp’' \ ¢
A = h’%)-é [;2; + % +s] e (22)
As mentioned above I, is of the form
I, = ~u ®1
with - —1 1+%)\ <
L= Tem ”"‘( 2 ) A (23)

The matrix element M in equation (14) can then be written as:

i1 = 6 i ooy (1570) o) ] 1= 155 (24
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From M we calculate I'""t, which contains the zeroth order contribution and the loop-
corrections to the total decay width for W+ decaying at rest:

arert = P2 a4y — ) TSI du(p)in(s) (25)
mw
T ol SN - (26)

(2mr)4-1 2p°
The sum runs over the spins of the quarks and their colour and over the polarizations of

the Wt boson. The factor (1/3) stems from averaging over the W+ polarizations. The
calculation of I'r* = [ dI"** is now straightforward. We get:

2 2h2 (4_12_"2)26 2 3
poict W 3 B U {‘_‘-—8 } =
16r T 96 T(2—29\ & ¢ 1" (21)

3.2 Gluon bremsstrahlung contributions

We start from the matrix elements M,.c;. and M, in equations (18) and (19), respectively.
In a first step we calculate the square of these matrix elements where we immediately sum
over spins and colours of the quarks and gluons and average over the W polarizations:

2g2 h?
= Z [Mucee ! = o (4 fone,
W

P Z |M-ca1 |2 )( ) e facal-
Using energy momentum conserva.tmn
g=p+p +k
foect. and focar. can be written in the form
o, = 8(rq)(P'q) — 4(r'q)’ — 4(P'q)(kq) + 4(kq)(pq) + me(kQ)
vect. — 'k
L 8pa)(P'e) ~ 4(pq)" — 4(pq)(kq) + 4(kq)(p'q) + 2miy(kg)
pk
4(pq)(r'q) (2my — (kq)) m?
T k) wh) S 28)
f:cal. = -“Zm":w + (kQ) {2(p'%;2-)mw A Z(Pq(l";)mw} (29)

In a second step we write down the partial decay width dI'*7*™* and dI'7s for a W
decaying at rest:

—d
gz R2 (“2)4
3mi,

dI\brem:___ (2 )d 6d(P+P +k )
vect. 2m

Fueet. dp(p) du(p') du(k)  (30)



74 Greub BoFulke

and the corresponding expression for dI't"™*. The measures du(p),du(p’) and du(k) are

defined in the same way as in the virtual contributions. Working out the phase space
integrals, we get:

2¢
4w
@R mw (;5:;)

2 3 17
brems __ - _ i
Coect. = 963 T'(2 — 2¢) {53 t e+ 2 ﬂ.}
(41 2‘)2(
212
g hfmwy my
Pbrma - 1 31
seal. 9673 TI'(2 — 2¢) {1} (31)
and
(hr 2)21
212 e
brems _- mbrems brems __ g h mw mw {_.2_ _?: .1_?. i 2} 32
r = Dot + Docal’” = 96m3 TI'(2 — 2¢) e’+6+ 2 4 (32)

3.3 Total decay width of W+

The total decay width I' of a W boson decaying into a massless quark and antiquark
including first order QCD corrections yields:

= rv{ft N3 I\brem:

Using a, = l‘é and Gp = W%;T we get:
w

r

_ 2V2Grmy [1 + “‘] (33)

8r

4 W decay width into a massive quark and antiquark

We consider QCD corrections to the process

Wt > tb

where the masses m; and m,; are arbitrary. The calculations are done according to the
pseudoscalar gluon scheme. As the principle steps in this calculation are the same as in
the massless case, we immediately give the final results. As in section 3 we give the results
for TVt and T¥"*™* geperately. Furthermore the result for 'Vt iz presented as a function
of the individual form factors present in equation (11). Their explicit form is given in the
appendix. As far as we know, these form factors are not given explicitly in the literature
for two arbitrary,different masses m; and m;; however, the final result including both, the
gluon bremsstrahlung and the virtual corrections , can also be found in reference [6]].
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4.1 Zeroth order and loop-corrections

As before, the zeroth order contribution and the one-loop corrections are contained in ',
For 't we get:

2¢e
dmwu?
Iwirt _ pf (;‘:;) :

- ,
= 1+ elog —2— + O(é* 34
Tommy, T2 —2¢) |1 T 8 pimemg T O(5) (54)
with
p = \/(2pp')? — 4m}m}
Using
2 2
g h
2 = 4GrV2 d = ,
miy, S * = Ton

f can be written as

f = 2V2GrV; +

—W%f [Vl (?RA+4+§)+V2§R1'3+

— 5V RC — S my Vi ®D +
+% m, Vs RE + % my Ve ERF] (35)
with
Vi = 2m¥y —mi —m 4+ 2mimd — mim} — mim}
Vo, = ﬁmtmbmgy
Va = miy +mi+mi—2mim} + 10mim? — 2mdm?
Vi = 5myy —m! —mi — dmimd, + 2mim} — amimi,
i =V,
Vo = mipy +mi+mi—2mimd 4+ 10m?md, — 2mim} (36)

In equation (35) the symbol RA denotes the real part of the form factor A, present in
equation (11). The explicit result for the form factors is given in the appendix.
In order to see the cancellation of the infrared singularities when adding the bremsstrahlung
contributions we split I'"*"* into an infrared finite and an infrared singular part.

s 2v2Grr . 1 [4mp?\* 1
ro = 2291 x
o 3rm3y e \ mk I'(2 — 2¢)
(mly —mi —mj)+p }
—p
thmb

x {<m%v ot —nff} leg

virt _ virt virt
finite T r - P:iﬂg

(37)
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4.2 Gluon bremsstrahlung contributions
We give the final result for I'*"*™*, As in section 3.2 I'"*™* consists of two parts:

I\brema = rz:ec:ua £a I-\b-reml

In the massive case the contribution '’’’ vanishes, i.e, the emission of pseudoscalar

gluons does not contribute to the total decay width.
For ¥ *™ we get:

2¢
4 2
I\bl'cml 2ﬁ GFN (;4‘:7)

T 3rmw I'(2 — 2¢) X

X { —4m? Vi Ly + 4(mdy —m? —m?) Vi Ly — 4md V3 L+

-+ _—IOmW + 6mi,m?} — Zmet amim? + 4mb] L+
+ :SmW + dmwym? + 4mwmb] Ly +

+ :4mfv + Smef] Le¢ +
+
+

-4m: — 2miy — 2miym} + 6mym? — 4mfmf] Ly +

-Smet — 12mW] Lg +
+ [12mwm] — 4m}y + 4mpm]] Lo } (38)

— 22
Vi = 2my — mj — m; + 2mim] — mim} — mim]

The functions L, L; and L3 contain the infrared singularities. We have worked out them
explicitly:

1 E Bot+p)(mw—Bo+p) B B+
L, = _ t - log( t + B) (mw f.+P)_ 1 o t‘+’P+
2my 2mwm; mymy 2mwmg ™m,
p 1 8(p)3
SR 2 [—+2—210g——(£——]
dmwym; | € mw MMy
1 E EBo+p B +p
L; = 3 {31 2 t+p—4lo t TP logmw—4logmw t+plo 2y
dmy my My b mp
tglog? MW Bt D o (E;er)_L(Et—p)_l_
my mwy mwy
L (mw—ﬁ‘u+f))_L (mW_Et—f’)+
mwy mwy
B — 4 N
+3Li(.‘ ?)+3Li(mL§i—¥)—w’+
E . +p mw — Ey +p

€ memy

4 og(Et+ﬁ)(mw—Et+ﬁ)}
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Ly = ( 1 —mW_lzt)log(Et.{-p)(mWFEt-l-p)+

2mly  2mpym} memy
—E — B+ 5 1 8(p)®
2mwm; my dmwmj | € mwm:my
(39)
where
5 _ mitmioml
2mwy .
- m3, —m? —m?)? — 4mIm?
5 = VB = Y= —mi)'— dmim} (40)
w

Li(x) denotes the Spence function

L =- [ d: log(1 — t)

Many useful properties of this function are given in [7].
The functions Ly, ..., Ly are given in terms of one-dimensional finite integrals:

P
Ly = f dE
‘ ¢ mi, — 2mwE, + mt
2 —
2 (m3, — 2mwE; + mt)

le = .[ s miy — ZfziEt + m?

Ly = éé—wfdm {ZIOgE:T:ﬁ—Fiog%:—,:—jgi—?_}
Ly = 2mW [ dE, E, {Zlog ooy +log :—m——-::g:tzi}
b= g e

. ; 41
+(M? — 2mw E,) [2103 e +1°5mW—Et—-ﬁ]} “

where
7=\ E, —m} and M? =m}, + m} —m;

The integration variable E; is restricted to the interval
.Et € [mg, Et]

Again
8 ’ I\b-remc — I\brema + Pbrcms

sing finite
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The singular part I‘l,','?,,';“' reads:

2e
4«;{’
Pn'n = - = ‘,1 X
o 3rmd, T(2-—2€) ¢

2 _ .2 .2 (mW—Et+ﬁ)(Et+ﬁ) _ =
X { (mw — m; —m;) log o 2mwp

(42)

4.3 Total decay width

We perform the sum
T = rm'ft & Pbrema

When doing this sum the infrared singular contributions I'Zjr!, and I'%;e™ just cancel. Our

result for I' coincides with the one given in reference [6].

5 On the results in a more traditional scheme

We consider again the QCD corrections to the total decay width of a W™ boson into a
massless quark and antiquark.

One way to regularize the collinear singularities is to give (small) masses m, and m; to the
quark and the antiquark, respectively. In order to regularize the infrared singularities one
gives a small mass to the gluon. The bremsstrahlung corrections can then be worked out
in 4 dimensions from the beginning to the end. In the loop graphs we have to regularize
the ultraviolet divergences in addition. This we did dimensionally. When summing all
the loop graphs the ultraviolet singularities vanish. At this point the limit d — 4 can be
done. The subsequent phase space integrals can then be worked out in d=4. All these
calculations are done in detail in my doctoral thesis [8].

When adding the virtual - and bremsstrahlung contributions, the infrared singularities
cancel, i.e., the gluon mass can be sent to zero. After this step the results turns out to be
identical with the one we got in section 4.

In a last step we can do the limits

my— 0 and mpy — 0

This step precisely reproduces the final result in section 3.

6 Numerical results

In this section we illustrate the results of section 4 with two plots. In the following
discussion I'(®) denotes the W+ decay width for the tb channel without QCD corrections,
whereas I' includes first order QCD corrections.
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¢ Figure 1
I'® and T are plotted as a function of m;. The other parameters are:mw =
82 GeV,m, = 5 GeV and o, = 0.1.

¢ Figure 2
We can write I as

I' =T {1 + 2;—' . factor} :

This 'factor’;, which only depends on the masses mw,m; and my, is plotted as a
function of m; ; two curves are plotted:

-mw =82GeV , my = 5GeV

-Mwy = 82GeV s Mp = 0.1GeV .

Note, that in the massless case [m; = my = 0] we have:

Tt — I\(O) {1 £l &} :
™

i.e., the factor’ defined above is 1. This is represented by the dashed line in figure 2.
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o 1-ST ORDER IN_QCD-ALFA
= 0-THORDERIN_QCD-ALFA
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Figure 1: Total decay width of W+ as a function of m; ; my = 82GeV , my = 5GeV,
a, =0.1
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m; (GeV]

Figure 2: T' = r©) {1 o 5 factor}
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Appendix: The form factors A,...,F

We give the explicit results for the form factors appearing in equation (35) :

A — 1 NT 2 g 1

A = 1+§[3(2PP)12+P Hz];+
20 ¢+ - o - _ _
’;p [—3f + 65, — 2% —m3 fs — ml Iy +

P s a5

—?(K2M3H2)

+

= 2mymy (25 + 2L, - I, - 2I5)
= 4m, I3 — 2m.J;

—2my I

2m, Iy

—4my f4 + ZmbI_s

e S B
Il

(43)

where

p = /(2pp')? — 4mImi
Note that the scalar product 2pp’ , on which these functions depend, is
2

2pp' = mi, —m? —m}

The functions I, ..., I7, H3, K; read:

(@)
R = f dz a?w)

I, = f dz la(;‘)"

B = fdz ”(%(;)”)

) j dz a"'(’z) |
LT

T = f dz a(lz) lo th(gb
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K, = ‘/dzz—c—s)-;lT;—w—)logM

my my
a(z) = miz? +md(l —2)? —2pp'2(1 —z)

We list the real parts and the imaginary parts of these functions :

RI,
RI,
RI,

RI;

R1e

RI;

RI,

RH,

RK,

2 1og 2PP P
P 2mymy,
—2my —2pp' . 2pp'+p mz
log log —
Q"p 2memy 2Q’ 8 m
—2m? — 2pp’ 2pp' tp m2

Q*p %% 2mems 2622

_ 1 4mimi +2pp' (mi+mi) | 2pp +p
Q? p(Q%)? ® 2mm,
2 2 2
m; —m, mt
1
@y Bmi
1 2mj +2m§(2pp)+(2pp )~ 2mim} | P e,
Q? p(Q?*)? 2mymg,
2mj + 2pp’ Tog my
2(Q7? °m}
1 _ 2mi+2mi(2pp) + (2pp) —2mimi | 2pp o
@ PICRE 5 2mamy
2m? + 2pp’ o mf
2@y Cmi
1 (2pp’ + 2m] + p) (2pp +2mj + p)
{Zlog Q" log 4Q2 +
2
2m§ 2m3
2 2 2
—log 29 2 log mQ +
2pp’ +2mi +p (ZPP’ + 2mj + p)mi
2pp’ +2m? +p 2m; 202
+2lo lo -+
& 2p 8 (2pp' + 2m? + p)p
s 2 _ ! =9 2 _ 200’
_41 Lo (? 2my — 2pp 4o (P2 — %PP
2p 2p
2 {pr log 2Pt P }
5 og -1
P P 2memy

!
RE, - 222 RF, +
p

{ 8mim; + 2mj(2pp') + 2mi(2pp')
QZ

)

83

(44)
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4Q*m}
2 2 s
(2pp' + 2mf + p) (2pp' + 2mi + p)
2 [ p + 2pp' 2pp' — p ]
(2pp' +2mi +p)p  (2pP' +2mi — p)p
2m,Q? 1 2pp' +p ]
(2pp' +2mf + p)m, |Q*  (2pp' +2mi + p)p
2pp’ +2ml +p [L B p — 2pp’ ]
2memys Q* (2pp' +2mi —p)p

_4mi(2pp’) + 8mim} log PP+ P+ 2my

p* (2pp' + 2mj — p) 2p

4m;(2pp') + 8mimj | . 2Q*m]

p? (2pp' +2mi +p) 7 (2pp' +2mi +p)p

x log

—2log

+2log

—2log

(45)

1
N

e
p
2m? + 2pp’
Q*p "
2m? + 2pp’
Q%p 8
dmlm} + 2pp'(m} + mf))
p(Q?)?
2my + 2mi(2pp’) + (2pp')* — 2mim] )
2\2 x
p(Q?)
2m} + 2m?(2pp’) + (2pp')? — Zm?mg)
2\2 w
p(Q?)

gI_s =

Slg =

of, =

AT T — T ey

P op
. 2(2pp')  2(2pp’ 2
sk, = x| 2CPP) 20mw),  »
p? p? Q*m,my
8mim} + 2m}(2pp') + 2mi(2pp’)
+ L +
PR
2 [i p — 2pp' ]
p LQ* (2pp' +2mi —p)p
4m}(2pp’) + 8mimj }
P (2pp' +2mi + p

+

(46)

where
Q" = mg +my + 2pp’
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Li(x) denotes the Spence function:
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