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Higher-dimensional homogeneous
cosmologica! models

By M. Heusler 1)

Institut für theoretische Physik der Universität Zürich,
Schönberggasse 9, CH-8001 Zürich, Switzerland

(9. II. 1990)

Abstract

We study the structure of the field equations for higher-
dimensional homogeneous cosmological models and discuss the behavior
of their solutions close to the initial singularity. First it is shown that
the application of the ADM-formalism to the finite dimensional situation
of homogeneous cosmology yields a Hamiltonian system only if the
underlying Lie group is unimodular. Otherwise, to obtain the correct field
equations, we have to introduce constraint forces perpendicular to the
cotangent bundle with respect to the De Witt metric. Using coordinates
similar to the Jacobi coordinates of classical mechanics, we generalize
the (3+1)-dimensional time-dependent Hamiltonian description to an
arbitrary number of spatial dimensions. Subsequently we show how to
eliminate the explicit time-dependence and derive an autonomous system
for the anisotropy coordinates.

1) Work supported by the Swiss National Science Foundation.
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If the spatial topology is a product of isotropic subspaces,
our system becomes two-dimensional and we can use arguments such as
in the Poincaré-Bendixon theorem to study the qualitative behavior of
the solutions. The existence of a Ljapunov function simplifies the
discussion of the general case. Using a geometrical criterion concerning the
structure constants we show that due to the Levi-Malcev decomposition
for Lie algebras the approach to the initial singularity is regular for all
homogeneous cosmological models in an arbitrary number of dimensions,
except for the Bianchi type VIM and IX models. Finally, we extend the
arguments to the inhomogeneous cases and obtain a chaotic behavior of
the generic solutions if the number of spatial dimensions is less than 10.
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Introduction

One of the most interesting features of the general theory
of relativity consists in the prediction of a cosmological singularity. The

observation of the expansion of the universe by Edwin Hubble in 1929, in
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agreement with Alexander Friedmann's non-static cosmological
solutions of the field equations found in 1922, led to the supposition
that the universe was in a state of infinitely high density at a certain
time in the past. In fact, Roger Penrose and Steven Hawking [1] finally
succeeded in showing that within the framework of (classical) general
relativity, a singularity at which the physical laws can no longer hold is

inevitable.
This article is concerned with the nature of the initial

singularity in cosmological models with an arbitrary number of spatial
dimensions. Restricting ouerselves to the framework of classical
general relativity, the singularity theorems guarantee the existence of a

cosmo- logical singularity if the energy-momentum tensor satisfies
reasonable inequalities. These theorems contain, however, little
information about the dynamical details of the solutions and the nature
of the singularity (for a detailed review on singularity theorems see
[2,3]). As a matter of fact, the approach to the singularity may be very
complicated and irregular as was first pointed out by Belinskii,
Khalatnikov and Lifshitz in 1970 [4,5]. Considering the non-isotropic
generalization of the positively curved Friedmann-Robertson-Walker
cosmological model (i.e.the Bianchi type IX model), they found an

oscillating behavior of the scale factors with both arbitrary large
frequencies and magnitudes as t -> 0. Introducing the concept of Kasner

epochs, the field equations were subsequently replaced by a discrete
dynamical system, which later was shown to be ergodic and mixing.
Since modern Kaluza-Klein theories are based on higher-dimensional
spacetimes, it is interesting to ask, how generic such a chaotic behavior
is. In this work we shall study higher- dimensional homogeneous
cosmological models, for which the field equations lead to very
interesting multidimensional dynamical systens. This structure of the

equations also motivates their discussion from a mathematical point of
view. We are especially interested in the following questions :

What is the structure of the field equations considered from
the point of view of a Hamiltonian formulation
What is the behavior of the solutions close to the cosmological

singularity and to what extent does it depend on the
number of spatial dimensions
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The Hamiltonian formulation of general relativity was given
by Arnowitt, Deser and Misner [6]. The application of the ADM-formalism
to homogeneous cosmological models does not work, however for all
Bianchi types, as was pointed out by Hawking already in 1969 [7]. In the
first part of this work, we shall show that the restriction of the
ADM-formalism to the finite dimensional case of homogeneous
cosmology is not problematic if the underlying Lie group is unimodular.
Otherwise, if the adjoint representation of the corresponding Lie algebra
is not traceless, some additional forces, which are perpendicular to the

co- tangent bundle with respect to the De Witt metric, must be added in

order to obtain the correct field equations. We shall also clarify the role
of the boundary terms, which have often been held responsible for the
failure of the ADM-formalism in homogeneous cosmology.

Using the monotonie behavior of the determinant of the
metric and performing a symplectic transformation to coordinates which

are adapted to the symmetries of the Ricci scalar, we introduce a new
Hamiltonian system in Part II. The kinetic energy term of the new
Hamiltonian is positive definite but the potential becomes explicitly
time-dependent. The new coordinates are related to the Jacobi
coordinates of classical mechanics. The transformation generalizes the
well-known explicit construction often used in the discussion of the
Bianchi type models in (3+1), and of the Fee models in (4+1) dimensions,

respectively [8]. Subsequently, we shall show how to eliminate the

explicit time-dependence and how to obtain an autonomous system for
the anisotropy coordinates. The new equations form the basis for the

subsequent discussion of the scale factors near the initial singularity.
Most of the higher-dimensional space-times discussed in

the literature consist in a product topology of two isotropic
submanifolds. [9-14]. In order to become familiar with the autonomous
system derived in Part II, we first study its application to these cases
in Part III. With the help of a Ljapunov function, we are able to find a

criterion which must be fulfilled for the scales to approach the

singularity in a non-oscillatory manner. Since for all product topologies
the logarithmic derivative of the curvature potential with respect to the

anisotropy coordinate satisfies this criterion, the solutions have to

approach one of the generalized Kasner solutions as t -» 0.
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In Part IV, we extend the discussion to the full autonomous

system derived in Part II. In the literature there exist essentially two

different approaches to the general problem. The first method assumes
that the generalized Kasner solutions are admissible approximations
during successive time intervals and then discusses the discrete
dynamical system describing the change of Kasner exponents [15-17].
The second approach is based on the explicitly time-dependent
Hamiltonian formulation [18,19]. In order to treat the system within this

framework, the equipotential walls are usually assumed to be infinitely
steep, and the motion of the "universe point" is approximated by a

sequence of free propagations and bounces against the equipotentials.
Within the first approach, the criterion for the scales to behave

regularly close to the initial singularity, consists in the existence of a

set of Kasner indices for which no further transitions can take place. In

the Hamiltonian formulation one has to demand the existence of a time
t* such that the equipotential walls move faster than the "universe

point" for all t < t*.

The advantage of our method is that it works without the

un- controlled approximations just mentioned and that it also takes
account of the cases where the original system is not Hamiltonian.

Splitting the problem into the discussion of the modulus and the
direction of the "velocity" vector corresponding to the autonomous
system introduced in Part II, we are able to give a simple geometrical
criterion concerning the structure terms for the solutions to behave

regularly close to the initial singularity. We shall show that this
criterion is satisfied if the number of spatial dimensions increases to n

> 10. However, in homogeneous cosmology, where, due to the Levi-Malcev

decomposition for Lie groups [20,21], some structure constants vanish,
the condition is already fulfilled for n > 3.

We conclude that chaos is a generic feature of cosmological
solutions of the field equations in inhomogeneous models with nine or
less spatial dimensions, whereas chaotic behavior does not occur in

homogeneous cosmological models unless the underlying Lie group is

SO(3) or SO(2,1), i.e. for the Bianchi type VIII and IX cosmological
models.
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I. The Hamiltonian formalism for
homogeneous cosmological models

The Bianchi types of the Ellis-MacCallum class B do not form

a Hamiltonian system. We show that the restriction of the ADM-
formalism to the finite dimensional situation of homogeneous cosmology
only produces a Hamiltonian system if the Lie group acting on the

spacelike hypersurfaces of spacetime is unimodular. In this case, the
structure constants of the corresponding Lie algebra have vanishing
traces, and the algebra belongs to the class-A models. We also give a

derivation and an interpretation of the modified Hamiltonian equations
which are valid for all homogeneous cosmological models.

1.1. Introduction

Arnowitt, Deser and Misner developed the Hamiltonian
formalism of general relativity (ADM-formalism) [6]. Fischer and Marsden

[22,23] showed that the cotangent bundle of the gravitational manifold
carries a symplectic structure in which the evolution equations arise in

Hamiltonian form. Homogeneous cosmology provides a pleasant
laboratory for applications of this formalism, since in this case the
field equations reduce to ordinary differential equations. As was first
noted by Hawking [7] in 1969, the ADM-Hamiltonian fails to reproduce all

field equations correctly in some cases. Taub and MacCallum showed that

Einstein's equations form a Hamiltonian system only for the Bianchi

types [24] belonging to the Ellis-MacCallum class A [25,26]. They
pointed out that it may be inconsistent to neglect boundary terms if

spatial homogeneity is assumed. In order to obtain the correct constraint

equations, Sneddon [27] removed the spatial divergence term from the
ADM-action and, introducing a coordinate constraint, he derived the

remaining correct field equations.
We shall explain why it is possible to give a correct Hamiltonian

description for the class-A models, although the argument of Taub
and MacCallum mentioned above holds for all homogeneous models. We

shall also show how to modify this description for the class-B types.
This modification is due to the fact that the Lie groups of this class do
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not act as symplectic transformations of the finite dimensional system
obtained from reducing the Hamiltonian to homogeneous fields.

In the second section we shall briefly repeat some general
features of the homogeneous models and then discuss the structure of
the field equations. Using the De Witt metric, we consider the split of

the Gauss equation into a kinetic and a potential part (external and
internal geometry). We shall see from Bianchii identity that the
variation of the potential part causes additional terms that spoil the
Hamiltonian structure for the class-B models.

In the third section we shall explain the different behaviour
of the two Ellis-MacCallum classes. In the present context, the question
is not only whether the variation of the action and the imposition of

spatial homogeneity commute with each other [45]. In order to decide
whether the restricted dynamical equations still form a Hamiltonian
system, we must examine if a given symmetry is a canonical symmetry
of the restricted ADM-system. The answer to this question splits the
Bianchi types into the two classes, whereas the problem of boundary
terms is a general obstacle arising for the variational principle in

homogeneous cosmology.
The correct modified Hamiltonian equations are derived in

the fourth section comparing the variation of the Hilbert action in its

usual.form and in the "3+1 split". We do not consider variations with
respect to the lapse and shift functions, but set them equal to one and zero
from the beginning, according to the assumption of spatial homogeneity.
The advantage of our formulation, which holds for all Bianchi types, is

the following : The constraint equations, which must be taken into
account as secondary factors, and the extra terms that spoil the
Hamiltonian structure, can be treated simultaneously by investigating
constraint forces standing perpendicular to the cotangent bundle with

respect to the De Witt metric. The system may be described by the flow
of a Hamiltonian and an additional non-Hamiltonian vector field.

For the sake of completeness, we extend our formulation in

the last section to models with perfect fluids and a cosmological
constant. In either case a description in terms of potentials is still
possible.



Vol. 63, 1990 Heusler 973

1.2. Homogeneous cosmological models
1.2.1. General features

Before we discuss the field equations of homogeneous
cosmology, let us give some definitions, the connection forms and the
Einstein tensor.

Like the Friedmann models, the homogeneous models still

possess a spatial stratification of equal time, but the subspaces belonging

to a fixed time are only assumed to be homogeneous [28]. A space-
time (M,g) is a homogeneous cosmological model if a three-dimensional
Lie group G acts isometrically and freely on (M,g), such that the orbits Q

are spacelike surfaces. For given points p and q of M, the corresponding
orbits Q(p) and Q(q) are geodetically parallel. Let t be the distance
between them. The mapping

gp -» (t,g) e IR x G

is a diffeomorphism which is compatible with the group operation and,
relative to the corresponding metric, IR is perpendicular to G ;

g dt2 - tc* (h(t))

For a fixed time t, h(t) is a left-invariant metric of G and has the form

h(t) -g,j(t) 0i® 9i (1)

where the 0' are the basis of left-invariant one-forms on G. The local

structure of (M.g) is the following :

M IR x G as G-manifold

g dt <8>dt + gij(t) n*(ë) ® n*(ê) (2)

Solving the structure equations and the Maurer-Cartan equation for the
metric (2),

de1 + - Cjk e1 a 9k 0 (3)

we obtain the connection forms :
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0
co0 0

co" Ky ö1 ;; co'o -¦k'j ë

ö>ij -Kij e° + X|jk e

^¦ijk -1(C ijk + Cjki "- Ckij • (4)

K(X,Y) is the.second fundamental form on Q In the homogeneous case the

components are

Kij =—gq - (5)

In the chosen basis of one-forms, the C'jk are the structure constants of

the Lie group G. Let (e,) be the dual basis to (8') Equation (3) then reads

[e,,ej] C\ek (6)

In terms of Ky the components of the Ricci and the Einstein tensor are
the following

RP0 K-K2 (7a) GPo= 1r_ 1(K2- K-K) (8a)

R°k G°k (7b) G°k -2 K,j (Fk)1' (8b)

Rfj Rj + -^(VgK'j)' (7c) dj Gj + (KJ-oJK)' - K-Kj + l«1, (K2 + K-K) (8c)

where K := K'j K2 := K'jKJj. Ry denotes the Ricci tensor of the three-
dimensional Riemannian space (G,h) with negative definite metric h :

R ij - -Xn X,jk - Ck| X|j ; R - -R j (9)

The Fk are defined as the parts of the Gok which are independent on the

derivatives of gy :

^gGok= g ij(Fk)ij (10)
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The matrix densities (Fk)'j are traceless expressions in terms of the
structure constants of G :

(F0Ì --^{Cjk-s'kC1,,} (11 a)

Later on we shall also use the quantity F which is defined as the linear
combination of the Fkwith coefficients C'|k :

(F/j ï= C|k (F*)1, (11b)

1.2.2. Lagrange formulation

In this section we shall discuss the dynamics of the field

equations and give a derivation of the modified Euler-Lagrange equations.
The Gauss equation (8a) separates into two terms, of which

the first describes the internal geometry of ii and the second is a
function of external properties only. The latter term is a quadratic form
in the first derivatives of the metric, while the first part contains no

derivatives at all. The split into an internal and an external part thus

corresponds to the split into a potential and a kinetic energy term.

Together with the fact that the constraint equation for G00 is conserved
under the time evolution, this circumstance suggests the interpretation
of VgG00 as the Hamiltonian of a "particle" moving in a six-dimensional

configuration space S with natural coordinates (gA) (we shall use capital

letters for pairs of symmetric indices (gi := g y
WAC := Wabcd etc.).

As is well known [23,29], the variation of the kinetic part
generates the equations of the geodesies with respect to the De Witt
metric W [30] :

wijki 2Vf(0i(k0w -Oijflw) (12a)

WUkl Ìi(gi(kg')i _ 2giJgkl) (12b)

wijklwklab= Is'^si).
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These geodesic equations are equivalent to the space-space components
of the Einstein equations for the free (Ry=0) dynamics. Writing (8a) in

the form

VgGoo V(g + T(g g -£R-l<g,g> (13)

and applying the Euler-Lagrange derivative

da:=_L_AJ_ (14)
9gA dt 3gA

on the kinetic term of (13), the resulting geodesic equation reads

0 DA|-lwIKgigK} j{WACgc + rIK'Ag,gK} (15)

where the "Christoffel symbols" are defined as usual:

rIK'A := 1 { WIA'K + WK/U - WIK'A } (16)

After a short calculation, (15) is easily seen to be, up to a factor of

(-1/2), identical with the "free" part of VgGab (8c) We thus can write :

Dab{VgG00}kin -l{VgGab}free
• (17)

Now we consider the parts of the equations (8c) and (13)
which do not depend on derivatives of the metric. We need an expression
for the differentiated internal curvature VgR with respect to gab. Since
Ry consists of products of structure terms, the direct calculation is not

very convenient, although it is easy. A more elegant way is to compare
the Bianchi identity with the time derivative of the Gauss equation (13)
and to eliminate all external quantities. The time derivative of (13) can
be written as



Vol. 63, 1990 Heusler 977

(VgG00)- l(Vg-R)- K|{VgK', - Vg8JK}-

- jVgK{K2- KK}

Now we use the Gauss equation again in the last term and equation (7c)

to replace the derivatives of VgK'j We obtain :

(Vg"G00)= l(Vg-R)-- VgKjj {Rij-gijRkk}

+ Vg"KG00+ Vg'KyG1' (18)

On the other hand we consider the Bianchi identity for G<v which reads

(-G00)- Goi,j + co°(ev)GT + a>>v) G*

Together with the expressions for the connection forms (4), the identity
G'i + g'JG°0 R'i- g'JRkk and K=-1/2(lng)- we obtain :

(VgGoo)' VgKGoo-VgKyfR^-g^R^-MjVgG01 (19)

Comparing (18) and (19) we have the following equation

1 (Vg"Ry - Vg { Ky Gij + x'k, Gok} (20)

Using (10), (11b) and AJg Cip, the last term in (20) becomes

Vg^G^gjjCUF^Ug^Fyi

Since VgR is independent of derivatives of g y, we obtain the Euler-

Lagrange derivative of the potential part of (13) :

D^flVgFlj (ÜL Gab - F*) (21)
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Let us define the Lagrangian as

L := VgGbo := -1 (VgR) - 1 <g g >w (22)

where the minus sign superscript refers to the changed sign of the

potential term compared with G00 (13) We can now express the
Eu 1er-Lag rang e derivative in terms of the space-space components of the

Einstein tensor and the quantities Fk, which are related to the

time-space components by (10) and (11b) The equations (17) and (21)

which hold for the external and internal geometry respectively, together
imply :

D^Vg Gbo) -\ { (Vg G*)^ + Vg Gab } + F*

Fab_Vg;Gabi (23)

From (23) we conclude that the Euler-Lagrange equations for
VgG"00 are only equivalent to the space-space components of the field

equations if the force Fab vanishes. This is the case for the class-A
models where C'|k= 0 holds (11b). If the C'|k do not vanish, the

Euler-Lagrange equations must be modified : The Gab=0 equations still
hold if

Dab L _ Fab 0 (24)

is fulfilled. We shall discuss the interpretation of the additional term in

(24) in the fourth section. For the moment, we shall only mention that
the constraint force Fab is not holonomic. This corresponds to the fact
that the Hamiltonian structure can not be saved by additional potentials,
as was pointed out by Taub and MacCallum [25]. Introducing the one-form
Z, corresponding to Fab Z := Fab dgab it is easy to verify that the form Z

a dZ does in general not vanish and thus Fab is not holonomic.
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1.3. Application of the ADM-formalism to
homogeneous cosmology

As was shown in the last section and is well known, the

application of the ADM-formalism to homogeneous models fails for the
Bianchi types of the Ellis MacCallum class B [7,27,29,31-34]. As Taub
and MacCallum [25] pointed out, it may not be admissible to impose
certain conditions of symmetry to the action before performing its

variation. Especially for homogeneous spaces, vanishing variations at the

boundary would presuppose vanishing variations in the interior region as
well. This argument is independent of the Bianchi type and makes a

derivation of the correct field equations from a variational principle for
a restricted action impossible (without imposing additional special
boundary conditions by hand). In order to understand where the problems
arising in the class-B models originate from, we have to examine how
the imposition of symmetry conditions on the Hamiltonian affects the
canonical equations. Let us therefore briefly review the ADM-formalism :

In the "3+1-split" of general relativity a curve ix of spacelike

imbeddings Q.x of a three-dimensional manifold M is considered,
i.e.: ix(M) Q.x The one-parameter family of lapse functions ax : M -> IR

and shift vectors ßx : M -> TM are defined as the normal and horizontal

projections of the vector field Xx ,Xxoix d\x I äX. The pulled back
metric takes the form

g ox2 dX2 - (g,)y (dxi + ß,i dX) (dxi + ßxJ dX) (25)

The gravitational configuration manifold £ is the space of all

Riemannian metrics on M Its tangent and cotangent bundle consist in

the two-covariant tensor fields ty e S2 and the two-contravariant tensor
densities t'i € Sd2, respectively : Tz £ x S2 T*I L x Sd2. Fischer and

Marsden [22,23] have shown that T*E carries a symplectic structure.
The field equations can be written in the following form :

|g=_L(aHd+ßiHd) (26a)

sg-"äJT Tr(«Hd+ßjHi) (26b)
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7ideSd2 denotes the canonical momentum density conjugated to g sS2and
we have suppressed the indices of jcd'i and g^ as well as the
slice-index X. Using the tensor part n, the vector part h' and the scalar

part h of the corresponding densities, Hd and Hdi are given as :

Hd G^n(g) h n(g) 1 [ R - 2( 2tc2 - kk ] ji(g) (27a)

Hi Gi,, H(fl) hV(g) Vj [7cij |i(g)] (27b)

The ADM-quantities are denoted by capital letters :

H:=Vgh Hi:=Vghi n := Vgrc (28)

Let us now consider the case of homogeneous cosmology: Since these
models have zero vorticity, the shift vector vanishes and since the slices of

equal time are homogeneous, the lapse function may be set equal to one.
The space-space components of the field equations read:

(29)

The index "r" denotes the restriction of the equations to homogeneous
metric fields. On the other hand we can consider the restricted Hamiltonian

Hr, which is a function of g and n only, since the g,j vanish:

Hr=Hr(g,n). This is the Hamiltonian of a finite dimensional system with

phase-space coordinates g and n. The corresponding canonical equations
are thus :

dg _
3Hr dn

_
3Hr

dt - an • -dt 3g
(30)

These equations need not be identical to the field equations (29) above
for the following reason: The ADM-Hamiltonian H is obtained from the

corresponding Lagrangian L(g g,0 g,, by a Legendre transformation in

g,0 and is thus dependent on g, n and g,j. The restricted functional
derivatives on the right hand sides of the equations (29) give the

following equations:

dg ÔH dn
_

ôH
dt on. i

r dt "
Sg
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dg

dt
9Hr

~ "an
dn

_
dt

3Hr _3H_

9g.i

981

(31)

Replacing the restricted functional derivatives for H by the ordinary partial

derivatives for the restricted Hamiltonian Hr is only admissible if

the last term in (31) vanishes;

3H

3g.i
0 (32)

Using the connection forms (4), we obtain for the spatial divergence of a

vector V' :

[VjV1], [Oi-KolOinV'lr CU (33)

since ordinary spatial derivatives vanish. As we shall see, the vector Vr'

does not vanish and the equations (30), obtained from the restricted
Hamiltonian, are not the correct field equations (29) except if the traces of
the structure constants vanish. This is the case for the Bianchi types
belonging to the Ellis MacCallum class A.

The same conclusion can also be drawn from the following
argument: Let us consider the action of the Lie group G on the configuration

manifold £. The lifted action on the cotangent bundle is a symplectic
symmetry if the Hamiltonian transforms like a scalar function under this
action. Although the restricted Hamiltonian Hr(g,n) looks like the
Hamiltonian function of a finite dimensional system, it is still a density
by its definition (28). In order to respect the structure of the equations
(30), the action of G must leave Hr invariant, i.e. it must not only
conserve the volume on the phase space but also on the configuration
manifold. Since the one-forms 0' transform with the adjoint
representation of G, the volume form 01* 62 a e3 is conserved if

det(AdG) 1. Using

det (AdG) exp tr (adg) (34)

we see that the adjoint representation of the Lie algebra g must be

trace-less. The components of the adjoint representation are
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(adx )'j [X, ]'j XkC'kj ; (35)

and the vanishing of its trace is equivalent to the vanishing of the traces
of the structure constants. The Lie algebras of the Ellis MacCallum class
A correspond to the unimodular Lie groups which leave the Hamiltonian

density invariant and thus admit the interpretation of Hr as the scalar
Hamiltonian of a finite dimensional system.

1.4. The modified Hamiltonian equations
1.4.1. Derivation of the equations

In order to extend the interpretation of Hr as the
Hamiltonian of a finite dimensional system to the class-B Bianchi types,
we have to modify the canonical equations (30). Considering a restricted
action, the additional boundary terms prevent a derivation of the filed

equations from an ordinary variational principle. In this section we shall
derive a system of differential identities for the Hilbert Lagrangian in

the "3+1-split", which will turn out to be the system of the modified
Hamiltonian equations. In order to be consistent, we are not allowed to

neglect any boundary terms since two actions differing by such terms
are no longer equivalent.
As in the last section, let n be the ADM-momentum,

n'U-lw^'g,, ^(K'i-g'J'K). (36)
4 2

From now on, the tensor indices of g and n are suppressed, n g := nügjk.
The Hilbert Lagrangian in the 3+1-split reads (ADM-Lagrangian plus
divergence terms) :

-|^ tr(ng) - aH - ßjH1 - tr(gll)-

+ Vgl-^=tr(gn)ßj - 2nijßj + alj| (37)
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Setting again a=1 and ß=0, we obtain for the variation of (37) :

s(-|5) -tr{(n+Hg)ôg} + tr{(g-Hn)8n> - tr{ gon}' .(38)

On the other hand, we consider the restricted variation of the Hilbert
Lagrangian in its usual form :

S(^)= ^VgoniR' + Vgfl^ ' (39)

<!>":= g^v5coaV(ev) •

Using the connection forms (4), the components of <I> are (in the

homogeneous case) easily found to be :

Vg

2

Vg

Vg<D° ^(Kij5gy + 2 SK1, -tr(gSn), (40a)

Vg<i>k ^-(gij5Xkj -gki8Vji) tr(Fk8g) (40b)

In order to calculate the covariant divergence term in (39), we use

VgV. ^ Vg {<&>%+ o/v(eH) Ov }= Vg {<D% + cû^(ev) <DV +Ciij Oj}

(VgV)^ + VgCjjO1 (41)

Since ordinary spatial derivatives vanish, only the n=o term contributes.
Together with (40), (41) and 8(Vg g^Rü VgG'iSgy equation (39)

now reads :

8(^) -^tr{G59} - tr{g8n}' + tr{F5g}. (42)

Now we can compare the two expressions (38) and (42) for the variation
of Vg R. The problematic terms containing the time-derivative of §n
cancel each other out, and we have the identity
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tr|[n+Hg+F-^G]5g - tr g-Hn 8n =0 (43)

which immediately shows, that the space-space components of the field

equations G=0 are equivalent to the following modified Hamiltonian

equations :

g Hn -n Hg + F (44)

H =-^R - 2<n,n>w F C'kFk (45)

After a Legendre transformation we obtain the corresponding modified

Lagrange equations (24) derived in the second section by explicit
calcula- tion:

L tr{ng}-H -^-l<g,g>w DabL Fab.
2 8

1.4.2. Interpretation of the modified equations

Summarizing, we can consider the following finite dimensional

modified Hamiltonian system:
Proposition 4.1.
Let x=(guv,nuv) be the phase space coordinates, XH the Hamiltonian vector
field belonging to H and Xc an additional (constraint) vector field :

Xh J gradxH
*>

Xc (0,-F) (46)

H VgGoo VgQ-R - 2<n,n>wJ (47)

Then the field equations are equivalent to the equations for the finite-
dimensional dynamical system evolving with zero energy and with

*) J is the symplectic standard form :

il'iti üüi _ f_*L aH

'.ag '3nJ~l an'ag
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respect to the flow W of the vector field X :

X := XH + Xc (48)

Proof: Let Dx denote the derivative in the direction of X. The
total time derivative of a function f(x,t) on the integral trajectories of

¥ is :

f — + Dx f + Dx f

If f does not explicitly depend on t and since XH is a Hamiltonian field,
we can also write, using Poisson bracket notation:

{f ,H} f - DXcf (49)

Setting f equal to the component functions of g and n, we obtain the

equations of motion (44):

Hn={g,H} g -Hg {n,H} ri+ F

» (50)
Oy 0

The zero-energy condition is equivalent to the time-time component of
the field equations:

H 0 « G«, 0 (51)

Since H must be conserved due to the Bianchi identity, we obtain the

following condition, setting f equal to H:

0= {H,H} H + tr(FHn) tr( FHn) (52)

This equation is only satisfied if the remaining time-space components
of the field equations hold,

tr (FHn) C'|ktr (F*g) C',k Gok/Vg -4 <n,F>w (53)
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The equations Gok 0 are equivalent to the requirement for the force
densities Fk to be perpendicular to the cotangent bundle with respect to

the De Witt metric. A

In the language of classical mechanics the modified
Hamiltonian system describes a particle ("the universe point") evolving
under the influence of a potential VgR and three additional
nonholonomic d'Alembertian forces Fk (forces that perform no work),
which is in some sense the simplest non-Hamiltonian system with

energy conservation.

1.5. Perfect fluids and cosmological constant

Let us finally extend our formulation to models with a non-

vanishing cosmological constant and matter. For definiteness the matter
is assumed to be a perfect fluid with energy-momentum tensor T^v,

T^=(p+p)u^uv - pg^v (54)

pressure p and energy density p. u^ is the cosmic 4-velocity, satisfying

g^uv 1 (55)

Contracting the Bianchi identity for T^v with u^and using u (1/2lng)'
we obtain

patVg + a,(pVg) 0

Assuming an equation of state of the form

P P(Vg) cVg"x (56)

we have the well known relation

p A.-1 p (57)

where the cases 5i=1 and ?i=4/3 correspond to incoherent dust and to
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threedimensional radiation, respectively. X=2 describes "stiff" matter or
equivalently homogeneous scalar fields. The components of the energy-
momentum tensor can now be written as

T00 cVg-* Tok 0

Tij cgij(1-MVg-x ¦ (58)

Defining the matter Hamiltonian as HM VgT00> we have the equations

H^ü =0 H^ ^Tij (59)
aij 2

which mean that VgT00 may be considered as a potential and ^9/2 T'i as

the corresponding force. The same statement holds for the cosmological
term since

Vg

2
(VgA)g.. ^f-gijA (VgA)n'i - 0 (60)

The complete potential now reads (where k is the coupling constant)

V(g) ^R - KcVg(1"X) - Vg"A (61)

and the Hamiltonian becomes

H Vg { G00(g,n) - KT00(g) - A } (62)

The extension of the Hamiltonian formulation to models with perfect
fluids or a cosmological constant does not cause new difficulties since
in both cases the additional terms may be described by introducing new

potentials.
If we restrict ourselves to the class-A models, which are

defined by the condition

aj 0 » Cjj 0 (63)

where Ck
Cjj, nlk + Skj a,] n[l,k] 0
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the additional vector field Xc vanishes and the system becomes
Hamiltonian; X XH. Since in this case the metric can be diagonalized
time-independently [35], the dimension of the phase space reduces to six.

Moreover, the constraints 0 <n,Fk>w are identically satisfied, since the
Fk are traceless. Writing the metric in the coordinates Xj and x (Xj := lngM,

dx := g-1/2dt),

g eIXi dx2 + Se'fae')2 (64)

the Hamiltonian becomes H(x,p) g H(g,n) :

H(x,p) (Zpj)2 - 2(£pj2) + V(x) (65)

V(x) le2xiR(x) - Kce(1_x/2)2fa - KAeIX> (66)

and the field equations are equivalent to the canonical equations for H

and the zero-energy condition :

_an dp an dx
H Q

3x dx dp dx
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II. Non-Hamiltonian autonomous equations for
(n+1)-dimensional homogeneous models

The field equations for the (n+1)-dimensional homogeneous
models form a Hamiltonian system with constraint forces the monotonie

behavior of Vg renders the interpretation of the evolution as the
motion of a particle in an explicitly time-dependent potential. Considering

vacuum models, we show that this explicit time-dependence of

the potential (and of the extra force terms in class-B models) may be

eliminated completely. Using suitable coordinates, we obtain a system
with a (2n-2)- dimensional phase space, for which we can also give a

Ljapunov function in terms of the n-dimensional Ricci curvature.

11.1. Introduction

The study of higher-dimensional cosmological models is

mainly motivated by a possible geometrical unification of the
fundamental interactions. In this context, an important question is whether
the Einstein equations provide a mechanism which causes a dynamical
compactification of the extra dimensions. Another interesting problem
concerns the nature of the cosmological singularity, which has been

especially treated for highly symmetric cosmological models, such as IR

xRcdxRcD (where Rcd and RCD are isotropic d- and D-dimensional
Riemannian spaces) [9-12,36]. Since even in (3+1) dimensions some

anisotropic cosmological models exhibit a very complicated (chaotic)
behaviour of the scale factors [5,19,37], it is convenient to consider also

anisotropic cases in higher spacetime dimensions [20,38]. Assuming
spatial homogeneity, the chaotic behaviour does not occur in models with

more than (3+1) dimensions [8,20] whilst it can be present in most

inhomogeneous cosmological models up to (9+1) dimensions [15,38].
Discussing the behavior of scale factors is mostly replaced by

the examination of the ergodic and mixing properties of the so called
mixmaster map (see also section IV.8). This map has been introduced for
the first time for the Bianchi type IX [5,19] and subsequently was
generalized to the higher dimensional cases [38]. Treating the evolution
of scale factors within this framework is based on the assumption that
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the Kasner solution is as good an approximation during successive time
intervals as it represents the only nonchaotic approach to the cosmological

singularity. In the following we shall introduce coordinates
which are adapted to the symmetries of the internal curvature and to the

scaling properties of the Hamiltonian. The assumptions mentioned above
will turn out to be provable within this formulation and, additionally,
the discussion of the highly symmetric models is simplified to the
treatment of the equations in a phase plane.

In the second section the Hamiltonian formalism is generalized

to the (n+1)-dimensional cosmological models. If the Lie group
acting on the space like hypersurfaces is unimodular then the field

equations can be written in Hamiltonian form. Otherwise we must add

constraint forces (standing perpendicular to the momenta with respect
to the De Witt metric) to the equations of motion as for the class-B
Bianchi type models in (3+1) dimensions.

The properties of homogeneity of the Ricci tensor of a n-di-

mensional Riemannian space (G,y) are discussed in the third section.

Splitting the metric y into a d- and a D-dimensional part, the Ricci

curvature falls into four pieces of which each has a fixed behavior under
different transformations in the two subspaces of (G,y).

In the forth section we give a symplectic transformation to
coordinates which are adapted to the scaling properties of the curvature.
The new "anisotropy" and "volume" coordinates are related to the Jacobi

coordinates [39] of classical mechanics. The potential and the force
terms separate into a factor which depends only on the relative

(anisotropy) coordinates and a factor which includes the volume-
depending part. Since in addition, the kinetic part of the Hamiltonian is

indefinite (the signature of the De Witt metric is (n-2)), we can consider
a Hamiltonian system for (n-1) degrees of freedom with a time

dependent potential instead of an autonomous system with a 2n-
dimensional phase space. There also exists a special relative coordinate

corresponding to the ratio of the d- and the D-dimensional part of the
volume. On the one hand this coordinate will turn out to be suitable in

discussing the highly symmetric models (such as IR x Rcd x RCD in Part III)

whilst it yields a necessary criterion for the existence of non-chaotic
solutions on the other hand.
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Finally, in the last section, we shall show how the explicit
time-dependence of the potential and the force terms can be eliminated.

Using the scaling properties of the Hamiltonian, one can derive a

conserved quantity depending on (n-1) coordinates from the original
constraint equation. Instead of the explicitly time-dependent equations
of section four, we obtain an autonomeous system for (n-1) degrees of
freedom. The treatment of the resulting equations is simplified by the
existence of a Ljapunov function which we derive at the end of this
section.

11.2. The field equations

Considering (n+1)-dimensional cosmological models we shall

repeat some aspects of the Hamiltonian formulation and fix some notations

in this section. As in (3+1)-dimensional homogeneous cosmology,
the Gjj-equations are identical with the equations of motion for the

Lagrangian VgG_00 up to some constraint forces Fjj

DijL - Fij 0 <=> Gij 0 (1)

L := Vg"Gbo := -1 (VgE) - -Ug°, g°>w (2)
d. O

where the minus sign superscript refers to the opposite sign of the first
term compared with the expression for VgG00, and Djj=8/ 3 g j j

-d/dt3/9g,jjt is the Euler-Lagrange derivative with respect to g^. The
n-dimensional De Witt metric and its inverse are

Wijkl= 27g(9i(k9l)J'~"rPr9ij9kl) (3a)

W^1 ÜE (gi(kgl)i _ 2gijgkl) (3b)

W°k,Wktab=l5,(a8{))

The forces Fab are expressions in terms of the structure constants of the
Lie group G
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F% := Ck(Fyb:= -Vgg'Cb.j (4a)

Cabij := 1/2 Cj (Cabi- 8aCb) (4b)

Cb := C'ib (4c)

Using the conjugated momenta nü, the Hamiltonian becomes VgG00 :

H := nij g[j - L V^G^ -|- R - 2 <n,n>w (5)

nij := dUdg]s -1/4 Wijklgki (6)

The equations of motion (1) are the modified Hamiltonian equations :

flj- *L -nfa =|tl + Fü (7)
anIJ 39ij

The constraint H=0 implies that the forces must stand perpendicular to

the canonical momenta with respect to the De Witt metric, which is

again equivalent to the Gok equations :

0 ^7 {H,H}-g;j Fij VgCkGok=-1/4 <F,n>w (8)
dt

If the metric contains only diagonal elements, gjj=ôjjQp, we can use the

canonical pairs (Xj,P'), the time coordinate x and the Hamiltonian h :

(Xj.P1) := (Ingiuri) ; dx := dt / Vg (9)

h(X,P) := VgH l(gR)(X)+T(P,P) (10)

The modified Hamiltonian equations (7) now read

Xi>T:=^- ; -P'>T:= § +F (11)
ap1 aXj

where the quadratic form T(P,P) and the forces F' are defined as
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T(P,P) := — (IP')2 - 2L(P')2 (12)
n-1

F := VgF'j -ggJJ'c'ijj (13)

Using a/3Xj -Pj3/3Pj + gjd/dgi and H=0 we obtain (11b) from (7) :

ih.,gia(i£H) _niVg-iti
ax, 3gj an'

-Vg n'g, + Fngii + rigj - P1,, - F1

The Hamiltonian formulation for (n+1)-dimensional homogeneous
cosmological models is thus completely equivalent to the (3+1)-
dimensional case. The field equations form a finite dimensional Hamiltonian

system if the Lie group acting on the spacelike hypersurfaces is

unimodular. Otherwise, if the traces of the structure constants do not

vanish, the equations of motion must be modified and the system is no

longer Hamiltonian but can be written in the form (7).

II.3. Symmetries of Rjj

The discussion of the field equations (7) or (11) is simplified
in coordinates which are adapted to the symmetries of the Hamiltonian.
We shall thus treat the scaling properties of the Ricci tensor in this
section. Let Rjj denote the Ricci tensor of the n-dimensional Riemannian

space (G,y) with metric y -gjj0'® 0J and structure constants C'jk of G:

dG1 + -Cjk0jA 9k 0 (14)

Defining Àkij and the constants tjj and Sjjk|ab as

XM] := -1/2 (Ckij + Cijk- Cjki (15a)

tjj := CjCj + 1/2 Ckj|C'jk (15b)

Sjjk,30^ 1/4 CaikCbj| (15c)
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we can write the Ricci tensor and the Ricci curvature as follows :

Rj] -X j| X jk - C\X jj (16)

R -[tij + sijk,abgklgab] gij (17)

Using the Bianchi identity or by direct calculation we obtain with (4) :

|5-=Rij--p=Fifa (18)
agy Vg

The homogeneity of R implies the vanishing of the trace of Fy : Since tjj
and Sjjk|ab are constant expressions in terms of the structure constants
we have for any Xe IR

R(Xg,j) r1R(gjj) (19)

and after a differentiation of (19):

_9R

aggy— -R (20)

Comparing (18) and (20) we obtain g j j F
Ü 0, which also derives from the

algebraic identity £aCaaij 0 (4a)- ,n the case 0* a diagonal metric, gy

Sjj-gj 8yexp(Xj) the expressions (16,17) reduce to

Ra= ^CkalC'ake~Xa + CkCaake-x^

+ 2 sak e Xi ~Xk "Xa - SjkaeXa_Xi_Xk (21)

R — tj e"Xi - Sjjk eXk_Xi_xi (22)

and instead of (18) we obtain

— FT - ÌF1 (23)
aXj g
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The constants tj and syk are defined as

k ._ kk
sij •— siijj

(Cj)2+ 1/2 Ckj| C'ik

1/4 (Ckjj) 2 > 0

(24a)

(24b)

where the semi-definiteness of the s,jk will play an important role in

the discussion of the asymptotic behavior of the scale factors. In the

following we use little Latin letters for indices running from 1 to n,

Greek and capital Latin letters for indices between 1...d and (d+1)...n,
respectively. Assuming a metric of the block form

(g
(g) ouv

0 (G) U
(25)

the curvature and the forces can be written as follows

R Rd + Rd + Rod + RiDd

Fab= (Fd)ab + (FDfi

(26a)

(26b)

Each of the quantities Rd, Fd etc has a fixed behavior under different re-

scaling of the d- and the D-dimensional part of the metric (25):

' |1V -> xg HV 3IJ -¥ AG, (27)

Applying (27), we obtain (Rd,Fd/Vg) -» \-i (Rd,Fd/Vg), (RD,FD/Vg) -»

A~1(rd>fd^9)> RdD -» ^A"2RdD and RDd -» A*.-2RDd, which is easily seen
from the following expressions for Rd, Fd etc:

Rd

Rd

RdD

RDd

-tVv+ s,v^8gaßg75 + 2s,vA£DGABGCD] gHV

-[tIJ+sIJA^GABGcD+ 2sIJaJ6 gaßg78 ] GIJ

- S|jABr gy8G G

c CD p. n^vnaß

(28a)

(28b)

(28c)

(28d)
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(Fd/Vg)ab := - CV g^v (29a)

(FD/V^)ab := - CablJ GIJ (29b)

Now we can set X and A equal to g-1/d and G1/D, respectively, and use

Rd(gnv.G,j) g"1/d Rd(g-1/dgHV,G-1/DG|j) g"1/drd (h^.Hu)

where the determinants of h^v and H|j are equal to one, to write R and

(F/Vg)ab in the following form :

gR z k a [ rd + k rD + k2 rdD + k
1

rDd ] (30a)

g(F/Vg)ab ZK"" [ (fd)ab + K(fD)ab ] (30b)

The little rd,fd etc are the same expressions in h^v and H|j as the capital
Rd,Fd etc are in g^v and G|j, but they only depend on (n-2) degrees of

freedom. The special variables z and k appearing explicitly in (30) are
identified with the "volume" g and the ratio of the two determinants of g
and G in (25):

z := g^ (gG)1-1/n (31a)

k := (g^-y2 g1/dG-1/D (31b)

Instead of d, D and n we shall often use the quantities a, a» and y:

\fà ' y:=V^t-a :=
°

; co := ^ / ~ ; y := ^ / ^— (32)

Whenever we are able to split the metric such as in (25), there exists,

additionally to z, another special coordinate k which is a measure for the

"total" anisotropy. For all homogeneous models (in any space dimension)
the potential (30a) is proportional to a polynomial of maximally third
degree in k and is linear in z (and so are the force terms (30b)). The rd, fd

etc. are independent of z and k. Since they are only functions of "local"

anisotropies, they reduce to constants for all highly symmetric models
of the form IR x Rcd x RCD (Rcd and RCD are subspaces of constant
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curvature). In this case the ratio k and the product z of the
determinants are the only variables in the system. Using z as a time
coordinate we are finally left with the problem of a one-dimensional
motion k(z) as we shall explain in the fifth section. Instead of z and k

we shall often use their logarithms xn and xd :

xn := 1/Vny2 In z 2/Vn In Vg (33a)

xd := 1/co In k VDTnd In g - VdTnD In G (33b)

11.4. Volume and anisotropy coordinates
11.4.1. n=3 as an example

The three-dimensional homogeneous models were often
treated in the literature (for detailed lists of refs., see [19,33,35].
Discussing the diagonal Bianchi type cosmologies, the introduction of the
linear combinations xj=AjjXj has turned out to be useful. The Xj are the

logarithms of the diagonal elements, and the linear map A : X_e IR3 -» x e

IR3 is represented by the matrix

(A).. :=
i J

f -1/ VJF 1/ V2 o Ì
1/Vë 1/Vë -2/Vé~
M yfà M y/ï V y/3

(34)

Since A"1 AT, the momenta also transform with A: E e IR3 -» ß.€ IR3

and the kinetic part in (10) becomes together with (12)

T(P,P) -> TA(p,p) T(ATp,ATp) P32 - 2(Pl2 + p22) (35)

The first two components of x are anisotropy coordinates and the third
is the volume coordinate introduced in (33a): xn= x3= 1/V3 ZXj 2/Vn

InVg 1/(Vny2) ln(z). Since gR contains only linear terms in z, it must

separate in all cases into an x3-dependent part and a part which is

independent on the volume coordinate. Taking the Bianchi types VIII

(lower sign) or IX as an example, we obtain from
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R + e_Xl ± e"x2 + e_X3 — [ eXl~X2~X3 + eX2_Xl_X3 + eX3_Xl_Xz] (36)

after using the transformation X. ATx the following expression for the

potential:

gR e2//Jx3 [ e^27^2 {l-chrVSxi)} - 1/2 e"2^27^2

+ 2e"1/VÏÏX2ch(x1/V2') ] z»P(x1,X2) (37)

The Hamiltonian now reads

h p32-2(p12 + p22) + iz(x3)^(x1,x2) (38)

where only ,P(x1,x2) contains the information about the Lie group.
Introducing the new time T:=V2x3 and using the constraint h=0, we can
consider the explicitely time-dependent Hamiltonian hj -P3(x-|,2.Pi,2>T)
whenever the solution x3(x) is a monotonie function of x. This is the case
for x e ]-°°,x0[ where x0 is the solution of Vg(x0) > Vg(x) Vx for the Bianchi

type IX and x0 «> for all other three-dimensional models :

hT := -p3(Xj,Pj,T)/V2 (Pi2 + P22) - 7eïT,P(Xi,x2)
4

-,1/2

(39)

The equations for the evolution of xi2 and pi_2 are the Hamiltonian

equations for the explicitely time-dependent Hamiltonian hj:

dxj xi>T 1 dh/apj 3hT
(40a)

dT V2x3,T V2" dh/3p3 3pj

dp, Pj.x 1 3h/dXj 3hT

dT " V2x3,x
~ ~VF 3h/3p3

*" ~"r5x~
(40b)

The configuration space is now two-dimensional and the solutions of the
field equations may be considered as the trajectories of the "universe

point" moving in a time-dependent potential of the form exp(yT)4'(x.). We

shall next generalize this concept to an arbitrary number of dimensions.
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11.4.2. The general case n>3

In this section we shall give the generalization of the
transformation (34) for the higher dimensional cases. Additionally to the
volume coordinate z (or xn) we shall also introduce the special
anisotropy coordinate k (or xd) (31,33). In the new coordinates we can
write the po- tential in the form z¥(k ,xi...xd_i xd+1 ...xn.i) where
Ki+avp js a polynom of maximally third degree in k (30):

gR z k " [ rd + k rD + k2 rdD + k
1

rDd ] (41)

The functions rd and rp etc depend only on the (n-2) coordinates x-|...xd-i
Xd+I"xn-1.

Proposition 4.1.
Let A and Bk (k=d,D) denote the linear transformations A : IRn -> IRn Bk :

IRk-> IRk1 represented by the matrices

A :=

1/Vn

B 0

VD/nd VD/nd - Vd/nD - Vd/nD

0 B^

1/ Vn 1/ Vn" 1/Vn

(42)

B.

f -1/V2 1/V2 0

- 1/ Vë -1/ Vê 2 /Vë 0

0

0

.0

.0

.0
1/Vk(k-1) -1/Vk(k-1) (k-1)/Vk(k-1),

Then the mapping X -> x AX P -> p APisa symplectic transformation
of the 2n-dimensional phase space which especially introduces the co-
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ordinates xn Inz/Vny2 and xd lnic/co, diagonalizes the quadratic form

T(P;P) (12):
n-1

TA(p,p) ^Pn2 - 2 2 Pi2 (43)

and brings the function gR(X) (17) into the form (41).

Proof: Since A-1 AT, the transformation is symplectic. The

lines of A are orthogonal to each other and the sum of all elements in

each line vanishes (except in the n'th):

n n

J^Ajj VÏÏ8in XAÜAJk (ATA)ik 8ik

J=1 1=1

For the n'th and the d'th component of x we have

xn AnjXj= -^£Xj _^,ng =^lnz
xd

* 1 v d+1

Using (12) we obtain for the kinetic part of the Hamiltonian the diagonal
expression (43): T(P,P) -» TA(p,p) =T(ATp,ATp) =2/(n-1){Ii(ATp)i}2-2
(p.AATp) 2/(n-1) (Vn 8jn Pj)2-2p2 2/(n-1) pn2 - 2[Pl2+p22+...+Pn.i2]. A

Instead of the pair xn,pn we shall use x0,p0 ):= { xnV(n-1)

pn/V(n-1) } and the notation x x0,x p p0,p_ The kinetic and the

potential part of the Hamiltonian now read (with riy := diag (1,-1 -1) :

TA(p,p) 2 Tiy PjPj 2 ti (p,p) (44a)

(gR)(x) ey*°*¥{x) (44b)

In the new coordinates we thus have the following
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Proposition 4.2.
The modified Hamiltonian equations in the canonical conjugated
coordinates (x,p) read :

h 4 1ti(P,P) + -UYX°¥(x)
c. o

(45)

ah ah
x0 .t := -r- -Po .x := — (46a)

dpo 3x0

ah 3h 1 vxx,T := — ; -û,t := — + -eÏX° $(x) (46b)
dQ. 3& 2

where the n'th (o'th) component of the extra force $.(&) vanishes. The

potential *P and the force are given as

^(x) K-« [ rd + k rD + k2 rdD + kt1 rDd ] (47a)

JHÖÜ 2k-« [Aid + KAfD] (47b)

where rd, fd etc. depend only on &. without xd and (|l(x_) stands
perpendicular to the momentum with respect to the Eukliedian metric of
IR1-1.

Proof: From Proposition 4.1. we know that the modified
Hamiltonian equations written in the coordinates (x,p) must still be of

the form (11). Using equations (13) and (30b) the transformation of the
force terms yields

FU Ay Fj =AijV~g Fjj Ay z K~a [ (fd)j + k (fD)j ] le?"" cpj (48a)

where the n'th component of the force vanishes since the traces EjCijjk
are zero for all j,k (46):

cpn 2AnjK-a[idJ + kìJ ] -^K-a(CVHh^+CjjKKHKK) 0.

The orthogonality is finally obtained from (8) with A"1 AT since the
n'th component vanishes :
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0 <F,n>w -^-XX,XF> - 2(ATx,T)jFi
4g

2xj>T (AF)j z xj,t cpj ~ CB.SÖ • A (48b)

The Hamiltonian (45) represents the generalization of (38) for
all higher dimensional diagonal models. The information on the Lie group
is contained in the force vector $.(x) and in the potential ^(x.). The

equations of motion for (x0,p0) are Hamiltonian equations without
modification, no matter whether the Lie group is unimodular or not.

As in the (3+1)-dimensional case, we can introduce the time T

V(n-1) xn x0 and use the constraint h=0 to obtain a time-dependent
Hamiltonian hy -p0( &, ß, T) :

hT := -p0 (x,ß,T)
„1/2

|p|2 _ l^Qç) (49a)

The evolution equations for hj can be written in Hamiltonian form whenever

the equations for h are Hamiltonian :

(49b)

(49c)

dx
_

x,T

dT x0,x

dh/dQ.

4p0

ahT

dß _ ßrr_ ah/ax ahT

dT
~

x0,T
"

4p0 ~17

If we also have to take the extra force terms into account, the equations
(49c) for ß must be modified and have the unpleasant form

dß ahT 1
1— + — hT eY ° ©

dT 3x 8
7 *

The discussion of the explicitly time-dependent equations
(49) turns out to be rather difficult even in (3+1) dimensions where the

system has only two degrees of freedom, x-j and x2. The potentials have

exponentially steep walls which expand as T-> -oo (t -> 0). The question
of whether a solution behaves regular near the cosmological singularity
is equivalent to the question of whether there is an infinite sequence of
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reflections from the potential walls [19]. If the equipotential hyper-
surfaces (lines) are not closed (as is the case in (3+1)-dimensional
cosmology for the Bianchi types I...VII), the universe point can move in

directions where no collisions take place and the solution behaves
regular as T -> -oo. |f, on the other hand, the equipotentials are closed or
if there is only a set of directions of vanishing measure where they are

open (as in the Bianchi type VIM and IX models), the problem is more
difficult and one has to find out if the universe point is (after each

collision) fast enough to catch up again with one of the expanding walls.
In order to make the system treatable in this form, the exponentially
steep walls are usually replaced by infinitely steep ones and the
universe point is assumed to propagate freely between two reflections.

Using these assumptions, the following properties of the system are
known:

In (3+1) dimensions the solutions for type VIII and IX behave

ergodic [40] and chaotic [19] near the cosmological singularity, whereas
the solutions for the other Bianchi types show a regular approach to the

singularity since their equipotentials are not closed.
The (4+1)-dimensional homogeneous models have been

classified by Fee [41]. Since none of the Fee types has closed equipotential
walls, chaos is not expected to occur in this dimension [8] (this need not

be true for inhomogeneous models as we shall explain in part IV).

Within the framework of moving equipotentials, models in

more than (4+1) dimensions have mainly been discussed for cases with

higher symmetries [11] and were found to behave regular as t-»0 (see
Part IV).

The method of explicitly time-dependent potentials is

(especially in higher dimensions) rather unpleasant since it requires
assumptions of the mentioned kind. Another approach, which has turned
out to be successful, starts with the question whether there is a time to

and a constant vector a e IRn with Ecj Soj2 1 such that a solution
of the form gj(t) t2oi may be a good approximation for all t < t0. Using
the Levi-Malcev decomposition for Lie algebras [21], such a stable
generalized Kasner solution may be found for all homogeneous models in

more than (3+1) dimensions [20]. In this context one has to assume that
the generalized Kasner solution is the only regular approach to the

cosmological singularity and that the transitions from one Kasner epoch
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to the next one takes place instantaneously.
In the next section we shall show that in all homogeneous

vacuum models the explicit time-dependence of the modified
Hamiltonian equations can be eliminated. Within the new set of
autonomous equations we shall later (Part IV) find a necessary condition
for the existence of regular solutions and we shall also show that the

generalized Kasner solution is in fact the only regular general approach
to the singularity in homogeneous cosmology.

11.5. Reduction to an autonomous system

The invariance of the Hamiltonian constraint under simultaneous

rescaling of the volume coordinate and the momenta and the
behavior of Vg as a function of x make it possible to eliminate the

explicite time dependence in the equations of motion (49). In order to

show this, we first consider the function x0(x) :

Proposition 5.1.
Let Ç(x) x(x) p(x) be a non-stationary solution of the modified
Hamil- tonian system (46)

!;.*= -U.h}-/ ; (/.JÇ,) o (50)

with Hamiltonian h(^) 0 and additional constraint force / of the form

/= le?xo o, a, o, g>(x) (51)

h 2ti (p,p) + 1 eYX° ¥(x) TA + V (52)

Then x0(x) is either monotonically increasing for all times or it has

exactly one local extremum which is also the global maximum.

Proof: Let x0'(x0) 0. We first show that x0"(x0) < 0 : Using x0'=
4p0 and p0'= -yV(x) we obtain from h=0 at x=x0: p0'= -2y |ß|2 and thus

x0"(x0) < 0. If xq"(x)*0 then any critical point of x0 is a local maximum
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and the statement follows. Let us thus consider the case where x0"(x0)
also vanishes:
Let x0'(x0) x0"(x0) 0 .We show that x0'"(x0) 0 x0(4)(x0) < 0 : From

(/,JÇ') 0 and (51) we know that ß ,$.) 0. Using this and ß, -1/2

exp(y x0) (W+^) and ¥'= -4( V¥,ß), we obtain

¥' 8e"7X° (ß,ß')

*¥" 8e"ÏX« [(ß',ß') + (ß,ß") - 4yp0(ß,ß')]

Together with p0(x0) p0'(x0) 0 and p0'(x0) -2y |ß|2(x0) 0 we have W'(z0)
0 and ^"(xo) 8 exp(-y x0) |ß'|2 > 0. Differentiating the equation x0"=-2y

exp(yx0) *F(x) twice with respect to x yields at x x0 : x0'"(x0) 0 and

x0(4H*o) -2y exp(yx0) V"(x0) -16 y |ß'|2 < 0 and 0 only if ß'= 0 at x0
If x0(4)(x0) * 0 the statement follows again since the first non-

vanishing even derivative of x0 is strictly negative.
If, finally, x0(4)(x0) also vanishes, we have p0(t0) ß(x0) 0 and p0'(t0)
ß'(x0) 0 which imply p0(k)(x0) ß<k)(x0) 0 for all k > 1 This is

immediately seen from the coupled equations of motion for p0(x) and ß(x) at x0

by induction. Assuming that p0(t) and ß.(x) are analytic functions for
finite x, we thus obtain the stationary solution p(x) 0. A

Using x0 as a new time coordinate we shall now eliminate the

explicite time dependence of the modified Hamiltonian equations (49) by

considering the following

Proposition 5.2.
Let the modified Hamiltonian system (50-52) be given as in Proposition
5.1 and let I be the x-interval where x0 is increasing I := ] -oo,x0 [. Then

(for p0 * 0,oo) there exists a diffeomorphism ti : \ e IR2n -» r\(C) e IR2n a

projector P : rj e IR2" -» Pt] e IR2"-2 and a vector field W : Ptj € IR2n"2 ->

W(Pri) e IR2n"2 such that on I the 2n modified Hamiltonian equations (50)

together with the constraint h=0 correspond to the (2n-2)-dimensional
autonomous system

-£:PnU) W(PtKO) (53)
dT



1006 Heusler H.P.A.

and the equation x J F Pr| (T')) dT' where T:=-x0(x).

Proof: For p0 * 0,°o let tj(cj) be the regular transformation

/
n té) := (do ,J<, y0 Y-) x0- -In p02 x In p2 -S-

v ' Po y

and the projector (Ptj)j := (1 - 80j ® 80j i.e. Ptj (x y) We shall show

that it is possible to find an autonomous system (53) for (x,, y). Having
solved these equations, x (T) is obtained by an integration :

x(T) -fT2e^T'/2|^ltl|1/2dr
J W(X(J'))

(54)

and one has the solution in parametric form x. x_(T), x0 -T, x x(T)
for T e x"1(l), which is equivalent to the solution x x.(x) x0 x0(x) of

(50-52) after having solved x x(T) for T on the interval I. The Hamiltonian

in the ^-coordinates separates in the y0-dependent part

h (ti) ey° e(&,y,q0) =ey° 2(1-|y|2) + -eYq°,i'(x) (55)

and so do the equations of motion for x and y :

- _
ah

_
1

y0 3e

aß p0 ay

ae
Po —

ay
(56a)

1
r -

y —[u-yPoi
Po

1

Po

ah 1 vx ah
— + — er ° $ - y —ax 2 3x0

-Po
de 1 va ae
— + — e'Ho© - y —3x 2 3q0

(56b)

2 Po'
do X0 - — —

Y Po
Po

2 3e
4 +

y 3q0 j
(56c)

Using the time coordinate T, -dT := dx0 4p0dx, these are (2n-1) autonomous

equations for the (2n-1) coordinates q0 X.. y )• Since the
transformation Ti(cj) is constructed such that the new Hamiltonian separates
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in the y0-dependent part, the Hamiltonian constraint h(^) 0 holding in

the 2n-dimensional phase space reduces to the new constraint

e q0 x y 0 (57a)

for the (2n-1) quantities x, y, and q0 Solving (57a) for q0,

1

do - In '4MÎ^
^ VOL) J

(57b)

and using the time T, the right hand sides of the equations (56a,b)
become only dependent on x and y :

dx
dT *

dy 1 ,- i tj V¥ + cp, x
¦£*r — 1 - lyl {yy. —^ oo (58)

These are now the 2n-2 autonomous first-order differential equations.
Using finally q0 x0 - 1/y ln(p02) -T - 1/y ln[(-dT/4dx)2] the constraint
(57) can be written in the form

-T'-£
-2/y

M-1
V "VOL) J

1 ff

which for a given solution x(T), y.(T) of (58) can be integrated with

respect to T and yields (54). A

Some comments are reasonable:

Using the original time coordinate t dt Vg dx and the

relation Vg exp(Vn/2 xn) exp(1/2y x0) exp(-T/2y) we can also

write

t (T) -f 2e~1'/{2yn^T)) |
ly(r)l ~1

|1/2 dT
J mtx mi (59)

The cosmological singularity is achieved as x0 « InVg -» -«
i.e. as T -» +O0. If Vg has no local maximum then the long time behavior
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may be discussed considering (58) for T -» -oo whereas otherwise T is

only an admissible time for T e [T0,oo[

If the original system can be written in Hamiltonian form
then $.(x) vanishes and the last term in (58) is a logarithmic gradient. If,

on the other hand, the Lie group is not unimodular, we still have from

(50,51) the orthogonality between the extra force $.(x) and the "velocity"

y with respect to the Eukliedian metric of IR"-1:

U(x), y) 0. (60)

The last term in (58) may also be written as

i=1

This is obtained after multiplying (23) with A, Ajj 3R/3Xj 3R/3xj Ay
Rj -2/g Ay FJ, using (48a), gR exp(y x0) *¥(x) and g exp(x0/y) :

+ q>j An RJ i=1 ...n-1
g axj g

Vl IJ

The system (58) also possesses a Ljapunov function to which

we shall pay attention in the following

Proposition 5.3.
Let the function L : (x,y) € IR2n"2 -> L(x,y) e IR be defined as

Ivi2- 1

L(x,y) := -^ (62)
V(x)

and let (for T>T0) r(T) x(T),y(T) be a trajectory in the (n-1) x (n-1)-
dimensional phase space of (58) for which L(r(T0)) * 0,oo. Then

L | r > 0 and * 0 for T * °° (63a)
L° | r < 0 and 0 only for y 0 or T oo (63b)
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(where L|r := L(r(T)) and L°|r denotes the orbital derivative of L along

T), i.e. L is a Ljapunov function belonging to the semi flow induced by the

vector field W on the phase space.

Proof: Multiplying the second equation of (58) by y we obtain

together with (gLy)=0 and dV/dT (VY.y.) (where " ° " denotes the
derivative with respect to T):

2yy° (y2)° 1 -y2) (yy2 - ^-°

or the integral equation

v2 - 1 v2 - 1

^77T(T) ^77T (To> exP¥ 00 *? (20
-y\ y2(T')dr (64)

where we have used sig(|y|2-1) sigvP(x) which follows for any physically

relevant solution of (58) from the constraint (55,57). From (64) we
can conclude that L|r is continuous, positive and that it does not vanish

at finite times T>T0. Differentiating (64) we also obtain (63b)

dL
dT

Y(y2L)|r < 0 (65)

where the "=" sign only holds for L=0 or y 0. A

Using equation (64) we can write the transformation (59) to

the cosmological time in the form (with t(oo) 0)

t(T) -J exp if{*"">* it)«- dT' (66)

which is as an example helpful for the discussion of the generalized
Kasner solution which we shall discuss in the following

Proposition 5.4.

Let Oj(t) be the Kasner "functions" defined as
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Gj(t) := -In 9i(t)/ gi0

t/ t
(67)

o /

and let the generalized Kasner solution be defined as usual g/gj0 t2°'
where the constants ox satisfy the two relations

X »i S 0i2 =1 (68)

Then the functions (67) in the time coordinate T read

n-1

XAjjXj(T)- -===~ Vn(n-1)
CTj(T) / 2 In t(T) i =1...n (69)

and any solution of (59) satisfying

y fi fi const with I fi. I 1 (70)

is a generalized Kasner solution (68).

Proof : Using the transformation X ATx with Anj 1/Vn Vi
and -T x0 V(n-1) xn we obtain (69) from (67) :

gi exp(Xj) exp

n-1

XAuxjC0-
L 1

Vn(n-1)
exp[2ojlnt(T)]

For *F 0 we have lyl 1 from the integral equation (64) and thus y fi.

with Ifil 1 from (59). This is indeed the Kasner solution since (66)

yields in that case In (t/to) - (T-T0)/ 2y and together with (59b) and

y e. we have x Xq + fi (T-T0). Inserting these equations in (69) the

time-dependence cancels out and the Kasner exponents become

Gj -y
n-1

2-Aji6j
vïïo^ry Y(AE)j (71)
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where E e IRn is defined as Ej := ej for j=1...(n-1) and En := -1/V(n-1).
The relations ATA 1, EjAjj Vn 8jj and E2 lei2 + (n-1)-i 1/y2

guarantee the Kasner conditions to be fulfilled :

-Vn"
EjCj =-ySjjAjjEj =-yVÏÏZj 8njEj -y-^= 1

EjGr y^AE.AE) /(E.E) y2// 1

II.6. Conclusion

Introducing volume and anisotropy coordinates and rescaling
the canonical momenta we have shown that the explicite time
dependence of the modified Hamiltonian equations can be eliminated. Our

system consists in the (2n-2) autonomeous first-order differential
equations (D),

dx
dt * ^ 1(1

dT 2
lyf) yy.

VY + iP
00 (D)

for which we can also find a Ljapunov function L(x,y) (62). Any solution
of the diagonal field equations is obtained from a solution of (D) by the
transformation (A) and the integration (I):

9i (T) exp

n-1

SAjjXj(T) exp
Vn(n-1)_

(A)

f r
t (T) -J dT'exp-^-j dT" |y_(T")|2+-L

n-1
(I)

In the next Part we shall use these relations to discuss the behavior of
the (n+1)-dimensional homogeneous models near the cosmological
singularity.
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III. Cosmological models with product topology

The field equations for cosmological vacuum models of the
form IR x Rcd x RCD, where Rcd and RCD are d- and D-dimensional
Riemannian spaces of constant curvature can be reduced to a two-
dimensional autonomous dynamical system. Discussing the phase portrait
we show that all solutions exhibit a Kasner-like behavior near the

cosmological singularity. For all decompositions n d + D (d,D * 1),

these models have d contracting and D expanding scales or vice versa
as t -> 0.

III.1. Introduction

In Part II we have introduced coordinates which are adapted
to the symmetries of the internal curvature and to the scaling properties
of the Hamiltonian. The field equations for an (n+1)-dimensional
homogeneous vacuum model were reduced to a system of (2n-2)
autonomeous first-order differential equations. In order to obtain a

better understanding of the dynamics described by this system, we shall
in the following discuss the qualitative behavior of some highly
symmetric spacetimes.

The cosmological models that we shall treat now have a
product topology of the form IR x Rcd xRc" where Rcd and RCD are d- and

D-dimensional Riemannian spaces of constant curvature, respectively.
Most models studied in the literature are assumed to have a product
topology [9-14]. The cases where, additionally, Rcd and RCD are isotropic

spaces are especially discussed in [9,10,13,14]. The qualitative behavior
of the solutions near the cosmological singularity is found to be

dependent on the assumptions on the energy momentum tensor. For the

vacuum models IR3 x SD and S3 x SD the solutions exhibit a line-like

singularity with D expanding and d contracting scales as t -4 0 [13].
In our formulation the advantage of writing the field equations in terms
of anisotropy and volume coordinates reflects in the fact that the phase

space becomes two-dimensional.
In the second section we shall first reduce the general

system to the two-dimensional case and then give an analytic solution
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for the case where either Rcd or RCD is flat.
The different possibilities for the behavior of the solutions

are analysed in the third section. The aim is to show that for all initial
conditions (up to a set of vanishing measure) the trajectories approach a
Kasner-like solution. Whenever the curvatures of the subspaces have the

same signs, the two exact solutions (Kasner solutions) r+(T) (x0+T,1)
and r.(T) (x0-T,-1) divide the phase plane into the connected

component S := { (x,y) | |y| < 1 } and its disconnected complement in

IR2. The fact that every trajectory has to remain in S or IR2 \ S at all

times together with the existence of a Ljapunov function causes the
solutions either to approach the boundary of S or to perform an infinite
number of oscillations. We shall show that the logarithmic derivative of

the curvature function *P(x) determines which of these two possibilities
is realized. Finally we shall extend our arguments to the case where Rcd

and RCD have different curvature and show that the oscillatory behavior
can be excluded in all cases.

In the last section we shall extend the discussion to a toy
model which still has a two-dimensional phase space but nevertheless is

closely related to the general case where no symmetry restrictions on
the Lie group G are made. We shall consider two cases and show that

oscillatory solutions can not exist for n > 3 in the first case and n > 9

in the second case. These are exactly the critical spatial dimensions
separating the chaotic and the regular regime in homogeneous and in

inhomogeneous cosmological models [15-18,20]. Our toy model may thus

serve as a help for an intuitive understanding of the dynamics of the full

equations, which we shall discuss in Part IV.

III.2. The system and the phase plane
III.2.1. Reduction to a two-dimensional system

In Part II (chapter II.5.) we have introduced the 2(n-1) first-
order differential equations :

dx- dy 1 ,2 fa V¥ + (d ,i
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Having solved these equations for the anisotropy vector x e IR"-1 we
obtain the solution of the field equations performing the transformation
(2) and the integration (3):

9i(T) exp

n-1

XAjixj<T> exp
Vn(n-1)

(2)

t(T) -j dT'exp-Ij cdT' ly(T")l2+
1

n-1
(3)

We have also mentioned that any solution satisfying y. fi. with an

arbitrary constant unit vector e_ is a generalized Kasner solution

(Proposition II.5.4.).
Let us now discuss the system (1) for cosmological models

with a product topology of the form IR x Rcd x RCD where Rcd and RCD are
d- and D-dimensional Riemannian spaces of constant curvature,
respecti- vely. Considering the transformation (II.42) x AX and the
scale factors g1=exp(X1) gd=exp(Xd) gd+i=exp(Xd+1) gn=exp(Xn)
we see that the only non-vanishing components of x are xd and xn. The

function exp(xd) describes the evolution of the ratio of the two scale
factors of Rcd and RCD (II.33) whereas xn is related to the new time
coordinate T through -T x0 V(n-1) xn. The vector x e IRn_1 thus
reduces to the the scalar xd where from now on we shall suppress the
index d and often use k instead of xd :

k := e" co := VnTdD (4)

In general, the functions rd,rD,rdD,rDd,fd and fp defined in section II.3.

depend only on xi...xd.i,xd+1...xn.1. In our case where the only non-vanishing

component of & e IRn"1 is xd they reduce to constants :

rd const

rdD rDd 0
rD const

fd fD 0 (5)

rdp and rod are vanishing since for product topologies no structure
constants of the Lie group G with both sorts of indices u,v e 1...d; l,J e d+1...n
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do exist (ll.28c,d). We thus obtain from (5) and (11.47)

¥(xd) K-a rd + k rD <p(Xd) 0 (6)

The system (1) reduces to two autonomeous differential equations of
first order for x and y

x y y -!-(i -y2)[yy-l(x)] (7)

where we have introduced the logarithmic derivative l(x) of ^(x). The
discussion of the solutions of the field equations for the scale factors
g(d)(t) and g(D>(t) belonging to the isotropic subspaces Rcd and RCD with
the curvatures rd and ro is thus reduced to the treatment of the

trajectories in a phase plane. Having found a solution x(T) of (7) the
two scale factors gi gd =:g(d)(t) and gd+i gn =: g(°)(t) and the

cosmological time t are obtained in parametric form (see chapter II.6.):

g(d)(T)

g(D)(T)

t(T)

KD/n exp

K"d/n exp

Vn(n-1).
T

Vn(n-1)

-j dT'exp-lj dT" y2(T")+
1

n-1

(8a)

(8b)

(9)

where we have used the definition of A (II.42) and £ AjjXj Adixd =D/n

ln(K) (j—1 ...n-1 if i e1...d X AjjXj =-d/n ln(ic) if i ed+1...n). We remind
that T is only a well defined time coordinate either in the expanding
(Te [T0,oo[) or in the contracting regime of the n-dimensional volume.

The Kasner functions are defined as in the general case (II.

67,68). Now there exist two generalized Kasner solutions yd ed ±1.

The corresponding Kasner exponents are obtained from gj -y [ Adiyd -

1/V(n(n-1))] (11.71),

i e 1...d ^l 1

Oi — -v> 1)

i e d+1...n: op} :=:= G; — 1 +ryJÏM (10)
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and satisfy the conditions (11.68):

óo_dl + Dg£> d[oid|]2+ D[g^]2 1

If d *1 and D *1 there are always d positive and D negative (or D positive
and d negative) exponents. Near the singularity any generalized Kasner
solution of IR x Rcd x RCD thus consists either in d expanding and D

contracting (yd=-1) or in D expanding and d contracting (yd=+1) scales.
Since we shall show that any solution of (7) approaches either yd=-1 or

yd=+1, this behavior is generic for all solutions of IR x Rcd x RCD (with d,D

>1). Although solutions with n expanding dimensions can not exist in

homogeneous vacuum models of the above type, they may occur in more
realistic models with non-vanishing energy-momentum tensor T^v [9,13,

14]. To prove the above statement, we shall consider how the shape of

l(x) affects the phase portrait of (7). We shall especially distinguish the

cases where l(x) is bounded (W(x) has no zeros, i.e. Rcd and RCD have both

positive or negative curvature) and where l(x) has a singularity i.e. Rcd

and RCD have different curvature). As a starting point we consider the

case where either Rcd or RCD is flat and (7) can be solved analytically.

III.2.2. An analytic solution for rd 0

In order to become familiar with the plane dynamical system
(7), we shall first treat the case where either Rcd or RCD is flat, i.e. rd

0 or tq 0. As T -> oo (t -> 0) the solutions exhibit the expected Kasner

behavior y:= yd -> ±1 which we shall also prove in the next section for the

remaining cases where none of the curvatures vanish.
Let us now solve (7) for rd 0 and rp * 0. The logarithmic

derivative l(x) then reduces to a constant l0. Together with (6) and k
exp(o)x) we have

[rDK1_a],x
l(x) —- o)(1-a) =: l0 >0 (11)

rDK1~a

where a D/n and co (n/Dd)i/2 (11.32).
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Proposition 2.1.
Let r(T) x(T),y(T) be a solution of

1

x=y y =-(1-y )[yy - i0] (12)

with y(T0) * l0/y d / D(n-1) )1'2 and let S be the strip

S := { (x,y) | |y| < 1 } (13)

in the phase plane IR2. Then

i) r(T0)e («OS => r(T)6 («)S VT,
ii) y(T) -> ±1 as T -» oo

iii) y(T) -» l0/y as T -> -oo for r(T0) e S

iv) y(T) -» ±oo as T -^ T* > -oo for r(T0) <t S

Proof: i) Since l0 is finite, no solution of (12) can intersect

one of the special solutions r±(T) := x0± T ±1) for finite T.

ii) The second equation of (12) can be integrated with respect to T and

yields

y-ip/y
Iyo-'o/y

Yo-1

y-1

l+'o'Y,
y0+i

ly+1

J-U
exp[(1-(l0/y)2) y(T-T0)] (14a)

for D*1, i.e. 1-l0/y > 0, whereas for D=1, i.e. 1-l0/y 0 we obtain

exp
y-1 y0-1

y-1
vYo-1J

y0+fa

ly+1
exp[2y(T-T0)] (14b)

The right hand sides of (14) tend to infinity as T-> oo and so must the

left hand sides, which in both cases is only possible if y->+1 or y->-1.
iii) For r(T0) e S we have |y(T)| < 1 V T and we obtain y -> l0/y as T ->
-co in (14a) and y -» 1 l0/y, D=1) in (14b).

iv) If r(T0) «ë S then |y(T)| > 1 V T and the minimum of the left hand

sides in (14) is easily seen to be strictly positive and to be attained only
if y +00 or y -oo. Since the r.h.s. in (14) are monotonically decreasing
to zero as T -> -oo, there exists a finite time T*< T0 with y( T") +o° if
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y(T0) > 1 and y( T*) -«» if y(T0) < -1. The qualitative behavior of the
solutions is shown in fig.2.1. A

rD>

irfay

<0

&.

rD>0

fig.2.1.

Qualitative behavior of
the solutions of (12).
As T increases, all

trajectories either tend

to y -1 ory= 1. As T

decreases, the solutions
inside the strip |y| < 1

approach the dashed line
whereas the trajectories

lying outside the

strip reach |y| oo after

a finite time interval.

The physically relevant solutions are those with sig(y2-1)
sigOF(x)) sig(rD) (Proposition II.5.3.) and we thus obtain the following

Corollary 2.P.

Let Rcd be flat and RCD have non-vanishing curvature. Then
i) every solution approaches one of the two possible generalized Kasner
solutions y ±1 as T -> oo (i.e. t -* 0):

g<d> -> t2<^.+ g<°> -> t°(Dl (15)

ii) if RCD has negative curvature, the scale of the flat space tends to a
constant whereas the scale of RCD diverges as T -> -oo (i.e. t -> oo),

iii) if the curvature of RCD is positive, the n-dimensional volume reaches
its maximal extension after a finite time t*>t0 (i.e. T*<T0).

Proof: The first and the second statement follow from Pro-
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position 2.1.ii) and from Proposition 2.1.iii) and (8), respectively, since

g(d)(T) _» exp{T[Dcol0/yn - 1/Vn(n-1)]} const and g(°)(T) -»

exp{T[-da)l0/yn - 1/Vn(n-1)]} exp{-T/yD}. The last statement is due to

Proposition 2.1.iv). A

III.3. The properties of the two-dimensional system

Let us now analyse the two-dimensional dynamical system
(7) for a class of functions l(x) as general as possible. We shall first

assume that l(x) is bounded for finite values of |x|. This holds true
whenever the curvatures of the two subspaces have the same sign

(see(6)).

Proposition 3.1.
Let r(T) be a solution of (D) and let l(x) : x € IR -> l(x) e IR be a

differentiable function satisfying the conditions

|l(x)| < oo vx Mm l(x) * 0
|x|-*-

l(x) > (<,=) 0 for x > (<,=) x0 lx(x0) * 0 (16)

Then

i)r(T0)e (e)S => r(T)e (i) S VT,
ii) po := (xo-°) is the on'y critical point of (7) and P0 is a stable node or

a spiral point as T-> -»,
iii) L(x,y) is a Ljapunov function of the system :

L(x,y) := (y2-1) exp -f l(x')dx' (17)

iv) P0 is an asymptotically stable solution of (D) as T -> -«,
v) (7) has no periodic solutions, no limit cycles and no bounded solutions.

Proof: i) Since l(x) is bounded, no solution of (12) can
intersect one of the special solutions r±(T) of (D) for finite T.

ii) The function l(x) has exactly one zero at x x0. P0 is thus the only
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critical point and the linearized system has the eigenvalues

1 ± A -4'x(Xo)*1.2 - J nAT
Since the derivative of l(x) at x0 is strictly positive, the eigenvalues are
unequal and Re(A.12) > 0. Thus P0 is either a stable node (0 < lx(x0) < y2/8)

or a stable focus lx(x0) > y2/8 > 0).

iii) No solution of (D) except r+(T) can have |y(T)| 1 at a finite time
T. Since l(x) is bounded the integral 1 l(x')dx' is finite for finite
x-intervals. For a solution r(T) e S we have L|r < 0 (if T * °°) and the
orbital derivative of L along r is positive semidefinite (dL/dT)|r -y
y2 L|r > 0 and vanishes only if y 0 or T oo. The functions L and
dl_/dT are satisfying definiteness conditions of opposite signs and L is

thus a Ljapunov function of the two-dimensional system (see also

Proposition II.5.3.).
iv) The asymptotic stability theorem [42] states that if there exists a

positive definite function L(x) which has an infinitesimal upper bound
and if dl_/dT is negative then x(T) x0 is an asymptotically stable
solution. In our case P0 is thus an asymptotically stable solution as T-»-«>.

v) Since any trajectory in IR2 \ S has index zero (there are no critical
points in IR2 \ S there exist no periodic solutions and no limit cycles
in IR2 \ S. Let us now consider the trajectories in S: At any finite time T

we have L|r(T) < 0 and the function (dl_/dT)|r(j) is strictly positive on

every trajectory with r(T0) * P0 (up to the set of vanishing measure on

the T-axis where r(T) intersects the x-axis and (dL/dT)|r(T) vanishes).
There are thus no bounded solutions as T-4» except of the instable

one r(T) P0. We can also introduce the level set y(L) of L,

Y (U) := { (x,y) € S | L(x,y) L0} (18)

and use a similar argument as in the Poincaré-Bendixon theorem : Every
solution has to intersect each of the closed level curves y(L) with L >

L(r(T0)) exactly once. The statement is now a consequence of y( L0+ AL

3y(L0) 3... dP0=7(-oo) for AL > 0. A
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Next we shall show that the solutions of (7) in S either
wind infinitely often around the critical point P0 or approach
asymptotically one of the Kasner solutions r±(T) as T -> oo. The

behavior of l(x) for large values of |x| determines which of the two

cases is realised.

Proposition 3.2.
Let y(3>) denote the set of the orthogonal trajectories to y(L) (18), Qj

(i=1...4) the Hh quadrant of the phase plane with respect to P0 and

n(r,T0) the winding number of r with respect to P0 in the interval

[T0,~[ :

n(r,To) := --M (p(T)dT
2 Jt JT„

(19)

where tg (q>) := y/(x-x0). Let the assumptions on l(x) be the same as in

Proposition 3.1. (16) and let r(T) e S V T be a solution of (7). Then

i) r(T) intersects the trajectories y(O) in the same order as cp(T) := P0-

p(cosT.sinT) (p<1)
ii) r(T) passes the Qj in cyclic order,
iii) either there exists a T' with r(T) e Q, V T>T' or n(r,T0) =«v T0<oo.

Proof: The orthogonal field to y(L) points in the direction of

(I(x)-1, (y2-1)/2y =:VO since Va |(X)-1, (y2-1)/2y 0 and (V<5 VL)
0. The variation of O along the circle cp(T) is thus

i 1-v2
do|c(T) (£-,VO)dT —-f—K ' 2y l(x)

2v2
l(x) (x-x0) + -^—

1-y2
dT

Since |y| < 1 and l(x) (x-x0) > 0 by the assumptions on l(x), we have

sig[d<D|c(T)] sig [y(x-x0)] =-(-1)' in Q,

On the other hand, the variation of O along a solution r is obtained by

using (7):

do|r(T) (T-,V<I))dT —L- [y2+e2|(x){l(x)-yy}]dT
y l(x)
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with e := (1-y2)/2 < 1. The expression in brackets is positive for all

(x,y) e S\P0 This is clear for l(x)-yy > 0 and l(x) > 0, whilst for l(x) < 0

we have [...] > y2(1-e2y2) + e2 yy l(x) > 0. If l(x)-yy < 0, we can write the

bracket in the form e2l(x)2 + y(y - l(x) ye2) > e2l(x)2 + y2(1 - y2e2) > 0,

since y,e < 1 and |y| < 1. We thus obtain again

sig[do|r(T)] sig [y l(x) ] -(-I)1 in Qj

ii) Since every y(<ï>) contains the critical point P0, cp(T) intersects all

y(O) whilst passing the quadrants in cyclic order and so does r(T) by i).

iii) Except of P0 there exist no critical points in Q2. Using the first
equa- tion of (7), we have for r e Q2 : dx/dT y < 0 which can not hold

for all times without r crossing the y-axis and entering Q3. The

analogue behavior holds in Q4 and thus every trajectory that does not
wind infinitely often around P0 stays either in Q^ or Q3 for V T > T'. A

Next we shall consider the question of how the behavior of

l(x) for |x| -» 00 determines which of the two possibilities n(r,T0) 00

or r(T) e Q-i ,3 V T > T0 is realised. If the graph of l(x)/y is located
outside the strip S for large values of |x| then the winding number of r
around P0 turns out to be infinite (later we shall see that this can not

happen in the cosmological models, where l(x) is the logarithmic
derivative of ^(x)).

Proposition 3.3.
Let the assumptions on l(x) be the same as in Proposition 3.1.(16) and

let there exist an R e IR such that

|l(x)| > y for V x : |x-x0| > R > 0 (20)

Then every solution r(T) e S has infinite winding number n(r,T0) v T0

(fig.3.1.).
Proof: Using Proposition 3.2. we only have to show that no

solution can stay in Q-| or Q3 as T -> 00. Let r(T) e Qi V T > T'. Since
there is no critical point in Q-[ and since dx/dT y > 0, there exists a

time T" such that |x(T) - x0| > R, VT > T". From the assumption on l(x)

we obtain for the second equation of (D) : dy/dT < (1-y2)( yy - l(x) )/2 < 0
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V T > T" and r intersects the x-axis after a finite time. The same

argument also shows that r(T) g Q3 V T > T'. A

lixV-7

HT)

X-X-o

fig.3.1.

The solutions for a function

l(x) which is located

outside the strip S

for large |x| have infinite

winding numbers. The

arrows point in the direction

of increasing T and

the cosmological singularity

is at T oo.

Let us now discuss the case where l(x)/y has a horizontal

asymptotic which is located inside S. We shall show that every
trajectory enters the region between this asymptotic and the boundary
of S, stays in this region and approaches either r+ or r. as T-> oo.

Proposition 3.4.

Let the assumptions on l(x) be the same as in Proposition 3.1.(16) and

let there exist two positive, finite constants R+ R. e IR such that

l(x) < -y for V x : x < x0 - R.

l(x) < y for V x : x > x0 + R+

Let us define l+ := lim l(x) as x -> «, and let S+ be the semi strip
(fig.3.2.)

S+ := { (x,y) e S | x > x0 + R+, yy > (l+ + y)/2 } (21)

Then every solution r(T) e S fulfils :

i) r(T') e s+ => r(T) e s+ v t > r,
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Ü) 3 T' : r(T') e S+

iii) r(T) -> r+(T) as T -> oo

Proof: Since l(x) -> l+ < y as x -> « we can choose R+ such

that l(x) < (l+ + y)/2 for x > x0 + R+ Let us define the set with boundary

y(L0) (18) (fig.3.2.) :

SLo > { (X,y) e S I L(x,y) < L0 }

i) For r(T) e S+ we have the inequalities

x- y >0 y £-(1 -y2) -d++y)-i(x) >o

which obviously guarantee r(T) e S+ at all later times,

ii) Let L0 be such that S\_Q n S+ * { }. Since L|r(jj is increasing on every
solution r(T)*P0 there exists a time Tc such that r(T) remains
outside S|_o for all times T > Tc. Thus r(T) can not wind infinitely often

around P0 without entering S+ where it has to stay by i), i.e. n(r) * oo.

From Proposition 3.2. we thus see that either r(T) e Qi or r(T) e Q3 as
T-» oo. Using the same arguments as in Proposition 3.3. it is easy to show

that r(T) can neither stay in Q3 nor in Q-|\S+ and thus r(T) e S+ as
T->oo.

iii) Let r(T) e S+ V T > T0. Then we have yy - l(x) > (l++ y)/2 - l(x) > 0

and thus we obtain the inequality

2dy
(1-y2)[yy-(l+ + y)/2]

> dT

which after integration yields

2yy-(y+l+)
2yy0-(y+U)

4y(A „ \ V1+yoi-y0
1-y J V 1+y

ï-L
:exp -(y-l+)(3y+l+)(T-T0)

Since (y-l+)(3y+l + is strictly positive, all solutions r(T) e S+ fulfil

y->+1 as T ^ oo. A
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J
à\^\\\\\\\\\\T

2̂)

SS-y?

x-x

fig.3.2.

The region S Lo and the

strip S+. S+ is not

empty if the function

l(x) has a horizontal

asymptotic inside the

stripS. Any trajectory

then enters the

dashed semi strip

after a finite time

interval.

I(x)/y

Until now we have considered solutions of (7) for bounded
functions l(x). Using l(x) 'F.x/'F and (6) this corresponds to the
situation where *P has no zeroes, i.e. rd and Rq have the same sign.
Since sig^ sig(y2-1) the solutions inside the strip S are those with

rd < 0 and rp < 0. We thus have the following

Corollary 3.5.
Let Rcd and RCD have negative curvature and let n d+D > 3. Then

i) as T -> oo (i.e. t->0), every solution of (7) approaches one of the two

generalized Kasner solutions (see 10,15):

g<d> - t20-? g(D) -* t2g;(D)

(22)

ii) as T -» -oo (i.e. t -» oo), the ratio of the scale factors approaches the

constant value

g(D) drD

Proof: i) From (6) we obtain the expression

l(x) — co

rd/rD+e°
- a (23)
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and l(x) fulfils the assumptions (16)
l(x) has the horizontal asymptotics

of Proposition 3.1. Additionally,

Nm l(x)
X-M-oo

o»(1 -a) lim l(x)
X-»-~

-eoa

Since we have

-G)(X -V D/ nd > --V (n-1)/ n

V (n-1)/ n

-y d* 1

co(1-a) V d / nD < y D* 1

(24)

(25)

there exists for all choices of d and D with d + D n > 3 at least one

non-empty set S+ or S. S. is the analogue to S+ in Q3 (21)). If

neither d=1 nor D=1 then even both sets are nonempty. Using
Proposition 3.4 we know that every solution has to approach either r+ or

r. as T-» oo which are the Kasner solutions with Kasner indices o(d)_

and o(D)+ or o(d)+ and o(D)_, respectively.
ii) As T-»-oo, every solution approaches the critical point P0 (see
Proposition 3.1.). Since x0 is the zero of ¥,><, we obtain k0 a rd / [(1-a)
rD] Drd / d rD. A

r+(T) +1'
y *>^Hx)/y

HI 1

^ un

/ s 1
|([|ff

w /x-"x0

L/y -1 r_(T)

fig.3.3.

If the function l(x) has

a horizontal asymptotic
in the strip S then all

solutions tend towards

the Kasner solution

(x,y) (T,1)asT ->°°.

Fig.3.3. shows the behavior of the solutions in the case where the
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asymptotic l./y is located outside S whilst l+/y is inside. Thus all

r(T) -> r+(T) as T -> °o (t -> 0) and r(T) -> P0 as T -» -oo (t -» oo).

Next we shall discuss the solutions of (7) which remain
outside the strip S for all times. These correspond to the situation
where both subspaces have positive curvature. Since this part of the

phase plane is unbounded and contains no critical points the situation is

simpler than before.

Proposition 3.6.
Let the assumptions on l(x) be the same as in Proposition 3.1.(16) and

let |l(x)| < y. Then every solution r(T) e IR2 \ S of (7) has the following
properties:
i) y(T) is monotonically decreasing (increasing) in the region y>1 (y <1),

ii) y(T) -> +1 (-1) for y(T0) > 1 (y(T0) < -1),
iii) 3 r < T0 : |y(T*)| oo

Proof: i) We consider the case y > 1. The second equation of

(7) yields the inequality

dy/dT V2(1-y2) (yy-l(x)) < Y/2 (1-y2) (y-1) < 0

which holds along any trajectory in the region y > 1 and thus dy/dT < 0.

ii) Integrating the second inequality above we obtain

exp
2 2

y-1 y0-i.
fy-ii
ly0-iJ

fy°+1i
vy+1 J

> exp[2y(T-T0)]

We thus have y -> 1+ as T -^ oo.

iii) Let us define the time T':=-T and integrate the inequality with

respect to T':

exp
y-1 y0-i

'y-iify0+i^
y+1y0-i

< exp[2y(T0'-T')]

Since the left hand side is always greater or equal to the positive constant

(y0+1)/(yo"1) exP[-2/(y0-1)] exp(2yT'0) (and equal only if y oo),

the inequality becomes wrong as soon as exp(-2yT') < 1 =: exp(-2yT'*)
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and we thus have y(T'*) oo at a finite time T'*> T'0 (i.e. T*< T0 A

Using this Proposition we obtain the following

Corollary 3.7.

Let Rcd and RCD have positive curvature. Then

i) as T -> oo (i.e. t-> 0), every solution of (7) approaches one of the two

generalized Kasner solutions (22),
ii) The n-dimensional volume reaches its maximum after a finite time t*.

Proof: The function l(x) has the same properties as in Corollary

3.5., but rd and rD now are positive constants. Since l(x) is

monoto- nically increasing, the horizontal asymptotics (24) are the
lower and upper bounds of l(x). Using (25) the assumption |l(x)| < y in

Proposition 3.6. is fulfilled and the corollary immediately follows from

Proposition 3.6.Ü) and iii). A

Let us finally consider the case where the curvatures of Rcd

and RCD have different signs. The function xF(x) then has a zero and its

logarithmic derivative l(x) is no longer bounded.

Proposition 3.8.
Let l(x) : IR \ {xp} -» IR be a differentiable function with

Mm l(x) 1+ |l±| < y ; Mm l(x) ±«o
x-*±°° x->x±

Then every solution r(T) of (7) satisfies

i) r(T) -> r+(T) or r.(T) as T -> oo

ii) 3 T* < T0 : y(T) -, -oo as T -> T*.

Proof: We shall not go into the details of the proof since
these are similar to the arguments used in the preceding Propositions.
The only difference consists in the zero of ^(x). Multiplying the second

equation in (7) with y and using yl(x) (d^/dTJ/y we obtain the

equation in the integrated form
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y*<T> - 1 +
y°"1
¥„ ^(x) exp -yf y2(T')dT'

where (y02-1)/xl'o has to be positive (Proposition II.5.3.). Whenever
*P(x(T)) vanishes for finite times, y2(T) becomes equal to one and the

trajectory intersects the boundary of the strip S.

Going backwards in T-time it is easy to see that all solutions intersect
y=-1 and enter the region Q2+ := { (x,y) e Q2 | (x,y) e S }. In Q2+ the

trajectories approach y -oo after a finite time T* which can be

shown as in Proposition 3.6.
As T -> po, i.e. as the scales approach the cosmological singularity, the

solutions can behave in two different ways: If there exists a strip S. e

Q3 (i.e. if the asymptotic l./y is located in side S) and if the trajectory
enters S. then it stays there and approaches the Kasner solution r.(T).
If on the other hand, the solution does not enter S. it has to leave Q3, to

enter Q4 and to intersect y +1 at the point P+. Subsequently r(T)
remains in Q^ := { (x,y) e Q-\ | (x,y) e S } and approaches the other
Kasner solution r+(T) which is easily seen using l+/y< 1. A

¥<0 ¥>0Qi

CO\P+ Ix
a m

x-x

Q*

^ UT)

Ix
a+

\

fig.3.4.

If the function l(x)

has a pole then the

solutions intersect

the boundary of the

strip S. Since the

asymptotics of l(x)

are located inside

the strip S, all

solutions either tend

towards (x(T),y(T))

(T,1)or(-T,-1).
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The behavior of the solutions is illustrated in fig.3.4. According to the
condition sig*P(x) sig(y2-1) the trajectories are located inside

thestrip S in the region where *P(x) is negative whereas they have to

stay outside S if ^(x) is positive.

Corrolarv 3.9.
Let Rcd and RCD have different non-vanishing curvature. Then

i) as T -> oo (i.e. t-> 0), every solution of (7) approaches one of the two

generalized Kasner solutions (22),
ii) the average scale factor (or equivalents the n-dimensional volume)
reaches its maximum after a finite time t*.

Proof: Let rd < 0 and rD > 0. Then the function l(x) is given
by (23) where rd/rD now is a negative constant. Together with l+

co(1-a) < y, I. -eoa > -y and xp 1/co In (-rd/ro), we have l(x) -> l+ as
x -> ±oo, ||±| < y and l(x) -> ±oo as x -> xp±. The corollary thus follows
from Proposition 3.8. A

III.4. Summary

In the preceding sections we have shown that the generic
vacuum solutions of cosmological models, consisting in a product of two

isotropic Riemannian subspaces with arbitrary dimensions, approach a

generalized Kasner solution as t -> 0. Since the latter are defined as gj ~
t,2oji there are only two possibilities satisfying E q £ oj2 1. Thus, if

neither d=1 nor D=1, there always exist d contracting and D expanding

scales near the cosmological singularity (or vice versa). In the

exceptional case where either Rcd or RCD is one-dimensional, there is a

solution with (n-1) dimensions approaching a finite value whereas the
one-dimensional scale factor vanishes as t -> 0. Discussing the long
time behavior, we obtain a constant ratio of the scale factors if both

subspaces do not have positive curvature. If either rd or rp is positive
then the n-dimensional volume is bounded and reaches its maximum after
a finite cosmic time t*.

We have shown that the shape of the logarithmic derivative
of ¥ with respect to x for large values of |x| determines the behavior
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of the solutions as t -> 0. The reason why all models of the form IR x

Rcd x RcD exhibit only Kasner-like solutions near the singularity is thus

simply due to the fact that at least one of the asymptotics of l(x)/y is

located inside the strip S. Kasner-like solutions could not exist if both

asymptoticis of l(x)/y were located outside (or on the boundary) of S, as

we have demonstrated in Proposition 3.3.
Before we turn to the discussion of the general equations (1)

we shall briefly consider a "toy model" which also has a two-
dimensional phase space. But instead of vanishing rdrj and rpd we

assume these to be negative constants.

III.5. A toy model

As shown in Part II, the function *P(x) : IRn1 -» IR can be

written in the form

Y(x) K-« [ rd + k rD + k2 rdD + xfa rDd ] (26)

where rd, rD,...depend on xi...xd.1,xd+1... xn_i and k := exp(co xd). In the

preceding section we have considered product topologies for which rdD,

rDd vanish and rd,ro are constants. In order to make a step towards the

general homogeneous models, let us now assume that the "mixed
curvatures" rdD and rDd are also non-vanishing constants. Having in view
the general situation where rdD and rDd are negative semidefinite
functions (II.28) of x^ ...xd.-j ,xd+1... xn.-|, we restrict the discussion of

(7,26) to the case where rdD, rod ^ 0. We shall distinguish between the
situations where both constants rdD and rod are strictly negative and
where rp,! vanishes. In the first case, oscillating solutions can not exist
if n > 10, whilst in the second case the critical dimension is n 3. In the

general situation the Levi-Malcev theorem [37] renders a decomposition
n d +

identically

D possible, such that the function rDd(xi... xd_i ,xd+i ...xn_i)
vanishes for n > 3. The non-existence of chaotic solutions in

homogeneous models with n > 3 corresponds thus to the non-existence
of oscillât ng solutions in the toy model with rDd 0.

Let us now discuss the trajectories of the system (7,26). The
function ¥(x) has maximally two zeroes since rdD, rDd < 0. The
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logarithmic derivative l(x) still has the horizontal asymptotics l+ and
I. as x -> ± oo.

If ¥(x) has exactly one zero or no zero at all (i.e. I(x) has one
pole or is bounded), the situation is completely analogue to the
discussion in section 3. The question of whether the trajectories
approach a Kasner solution or not can be answered by investigating
whether one of the asymptotics of l(x)/y is located inside the strip S.

The new case where l(x) has two poles is related to the
situation where l(x) is bounded, i.e. *F(x) < 0 (as far as the behavior of T

-> oo t -> 0 is considered. Since the region where ^(x) is positive is

bounded by the zeroes x-j and x2 the trajectories must be located
inside the strip S for x < x-j and x > x2, and again the asymptotics of

l(x)/y determine whether a Kasner solution is approached or not

(fig.5.1.). (The long-time behavior (i.e. T -> -oo) is different from the

cases discussed up to now, since the critical point (xo,0) is located in

the "forbidden" region {(x,y) | x e [x-|,x2] |y| < 1 } of the phase plane).
Using the fact that (independent of the number of zeroes of

*P(x) the asymptotics of l(x)/y determine the behavior of r(T) as T ->
oo and writing l(x) in the form

rD k2 + 2rdD k3 - rDd
l(x) co a +

rd k + rD k2 + rdD k3 + rDd

(27)

we can now easily discuss the behavior of the solutions of (7) as T -> «.

Corrolarv 5.1.

Let rdrj, rpd < 0. Then as T -^ oo

i) no solution of (7,27) can approach one of the generalized Kasner
solutions r+(T), r.(T) if n < 9,

ii) all solutions approach either r+(T) or r.(T) if n > 10 and d,D*1.

Proof: i) The asymptotics of l(x) (27) fulfill the
inequalities:

i ¦ „ x so x
2d + D VF

l+ := Mm l(x) co(2-cc) > -=x->~ VndD Vn

L:=liml(x) m(-1-a)=-ip±d <_ ^ (28)
x->-~ VndD Vn
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For n < 9 we have |l±/y| > [(8/n) (n/(n-1))]1/2 > 1 and neither l+/y nor

L/y are located inside the strip S. No solution can thus approach r+(T)
or r.(T) as T -> oo (t -> 0).

ii) The asymptotic l+/y is located inside S if l+/y < 1. Using D n - d

this is equivalent to d2 + d 3 - n + n < 0. For n > 10 this inequality
holds whenever 2 < d < n-5. On the other hand, L/y > -1 holds if 2 < D <

n-5 or ebuivalently 5 < d < n-2. Thus for all d e [2 n-2] either the
negative or the positive asymptotic of l(x)/y is located inside the strip S

and the solutions of (7,27) approach either r+(T) or r.(T) as T-> »
(i.e. t -> 0). (As is easily seen, the same statement holds for n 10 if d

e [3 n-3]). A

IxIx
¥>0 VP<0V<0

?/*
r+(T) y=+l

Xo

x-x

y=-1

TJJ)fa/y

IU)

Ix

fig.5.1.

If l(x) has two poles and

both asymptotics are

located outside the strip S

then the trajectories can

not approach a Kasner

solution. The behavior is

similar to the case where

l(x) has no poles (fig.3.1.).

Let us now consider rod 0 which will be the relevant case
in all higher-dimensional homogeneous models.

Corrolarv 5.2.

Let rdD < 0, rod °- Then for arbitrary choices of n,d,D (d*1), all

solutions of (7,27) approach one of the generalized Kasner solutions

r+(T), r.(T) as T -* oo t -» 0



1034 Heusler H.P.A.

Proof: Instead of (28) the asymptotics of l(x) (27) fulfill the

inequalities :

i i- is x /ox 2d + D ^ VF
l+ := Mm l(x) co(2-a) __ > -=¦

x-» ~ V ndD V n

VÜ d*1 VrPT
l_:=liml(x) =co(-a) =--—: >--^=L -y. (29)

x-»-~ Vnd Vn

Depending on n the positive asymptotic of l(x)/y can be located inside

or outside the strip S, whereas the negative asymptotic l./y is always
(d*1) located inside S. Thus every solution which does not approach

r+(T) has to approach r.(T) (after a certain number of oscillations,
depending on the initial conditions). A

in the general case which we shall discuss in the next Part,
the function ¥(&) may be written in the form (26) where rd,rD,rdD> and

rod are functions of x-j ...Xd-i,Xd+i...xn_1. Whenever n > 3, there exists a

decomposition d + D n with d * 1 such that the structure constants of

G appearing in rrjdfa-) vanish (II.28). The above Corollary, stating that
the plane toy model with vanishing constant rod has no oscillating
solutions, then finds its generalization in the fact that the general model

with the identically vanishing function rDd(...) has no chaotic solutions
for n > 3 Moreover, the first Corollary 5.1. states that if all terms in

*P(x_) exist, the critical dimension is increased to n 10. This is in

agreement with the supposition that chaos does not occur in

inhomogeneous cosmological models with n > 10 [16-18].
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IV. Regular and chaotic solutions in (n+1)-
dimensional cosmological models

Homogeneous models in an arbitrary number of dimensions
are discussed. Approaching the cosmological singularity, the generic
solu- tions of the field equations are either oscillating functions or
behave like general Kasner solutions. Using the (2n-2)-dimensional
autonomous system derived in Part II, a geometrical condition which

guarantees the existence of regular solutions is found. It is shown that
in homogeneous cosmology chaos may only occur in (3+1) dimensions. The

arguments are also generalized to inhomogeneous models where the
critical number of spatial dimensions is found to be n=10.

IV.1. Introduction

The behavior of the scale factors near the initial singularity
has been discussed for higher-dimensional cosmological models in

[8,15-18,20]. Apart from the cases treating a product topology [9-14,36]
there exist essentially two different approaches to the general problem.

The first approach [15-17] bases on the discussion of the

ergodic properties of the generalized "mixmaster" map [4,5], which is the

discrete dynamical system describing the change of Kasner exponents. In

order to discuss the problem within this framework, one has to assume
that the generalized Kasner solutions are admissible approximations
during successive time intervals (Kasner epochs). If the number of space
dimensions increases n=10 then there exists a non-empty set of Kasner

exponents in which no further transitions can take place and the
solutions thus behave regular as t -» 0.

The second approach uses the Hamiltonian formulation [18],

describing the motion of the "universe point" in a time-dependent potential.

The evolution is replaced by a sequence of free propagations
interrupted by collisions with the moving potential walls [19]. (In order to

obtain a bouncing law, these are usually assumed to be infinitely steep.)
Again the critical dimension is found to be n 10, since for n > 10 the

velocity of the equipotentials exceeds the velocity of the "universe
point", arid there exists a last bounce as t -> 0. As was pointed out in
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[18], these arguments hold for inhomogeneous as well as for
homogeneous models. The fact that the critical number of space
dimensions in homo- geneous cosmo- logical models is decreased to n

3 is due to the absence of some equipotential walls.
In the following we shall propose a third approach which also

yields the same critical dimensions in homogeneous as well as in in-

homogeneous cosmological models. The advantage of this method is that
it works without the approximations mentioned above. We shall give a

condition rendering it possible to decide whether or not there exists a

set X x Y in the phase space where the solutions behave monotonie. The

solutions entering this region approach a generalized Kasner solution as
t ->• 0. Since we do not replace the field equations by a discrete
dynamical system, the question whether the solutions in fact enter the
set X x Y seems to be more difficult to answer within our framework
than it is for the mixmaster map [15].

In the second and third section we shall discuss the behavior
of the modulus y := |y_|, where ye IRn"1 is the velocity vector of the

system (Part II, eq(58)). Using an integral equation for y, we shall show
that either the modulus y(t) is an oscillating function as t -> 0 or the
vector y(t) approaches a fixed point e_e Sn"2, i.e. the solutions approach
a generalized Kasner solution

In order that the cosmological model behaves regular as t -»
0, a necessary condition concerning the Lie group G must be fulfilled.
Roughly speaking, the combination of all hyperspheres C|<jj(y) := | y - ojsjjl
- I ajxijl 0 coupling to non-vanishing structure constants Ckjj must not

contain the hypersphere Sn"2 Hkjj are constant vectors of Rn"1). This
criterion is derived in the fourth section and, in the fifth section, it is

shown to hold whenever G has at least a two-dimensional subgroup.
For the cases in which the condition mentioned above holds

we shall construct an invariant set X x Y in the phase space in section
six. Every solution entering this set approaches a generalized Kasner
solution. To close the discussion of the homogeneous cases, we use the
Levi Malcev decomposition [20,21] for Lie algebras to show that X x Y is

not empty for all Lie groups except SO(3) and SO(2,1).
In section eight we finally extend the discussion to the in-

homogeneous models. Since our criterion only affects the geometrical
configuration of the hyperspheres C|sjj(yj=0 coupling to the non-
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vanishing structure constants Ckjj it still holds in the case where Ckjj

depend on the spatial coordinates. In order that the model behaves

regular near the cosmological singularity, we re-derive n=10 for the
critical number of spatial dimensions.

IV.2. The behavior of the modulus of the momentum

Let us now consider the full system (II.58)

with the functions g> : &e IRn"1 -> $.()l) e IRn"1 and *¥ : x e IRn"1 -» ^(xj
e IR As we have shown in Part II, (p.(x_) stands perpendicular to y with

respect to the Eukliedian metric of IR""1, (ß.(x) y 0. The function

*P(x) can be written in the form

¥(x) -tj exp[2y (Oj,x)] -s,jk exp [2y(&kij, x )] (2)

where we have introduced the constant vectors a.j eLkij e 'Rn1 with

components fitj)t a^j), defined as

(O,), := -(2y)-l AT,,

(Okij)t := "(2y)-1 [ ATit + ATjt - ATkt ] te {1...n-1}. (3)

A is the n x n matrix introduced in (II.42.) and y V(n-1)/Vn (II.32.).
The constants tj and Sjjk are defined in terms of the structure
constants of the Lie group G (II.24):

tj (Cj)2+ 1/2 Ckj|C'ik

Sjjk= 1/4 (Ckjj)2 > 0 (4)

Using Xj ATjt x, + ATjn xn where t runs from 1 to (n-1) and ATjn
1/Vn V i, expression (2) for ^(x) follows from (II.22) and (3):
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-t, e~Xi - Sük eXk-)faxi e-x„/Vn ^(ö

Instead of the second (n-1) differential equations for the
vector ye IRn1, we can also discuss the equations for the modulus

y(T) := |y(T)| e IR+ and the unit vector â(T) := y(T)/y(T) e S"-2. We shall

show that the evolution of the modulus y is closely related to the
behavior of the d'th component yd in the two-dimensional model
discussed in the previous part. Although the motion of â(T) on the

hypersphere Sn_2 can be very complicated, â(T) has to approach a fixed

point e_ on Sn_2 when- ever the modulus y -* 1 as T -*¦ =» (i.e. t -> 0).

Thus, in order to decide whether the trajectories behave like generalized
Kasner solutions, we shall be able to restrict ourselves to the discussion
of the modulus y(T). Before we show that y(T) is either an oscillating
function in T or approaches the constant value y 1 as T -> oo, we
first derive an equation for y(T):

Proposition 2.1.

Let the functions q, c^ : y e IR""1 -> q(y), ckij(y) e IR be defined as

Cj(y) := | y - q,\ I 2 - I ai I

Ckij(y) :- I y - fitkij I 2 - I Okij I (5)

and let <D> denote the mapping O : r(T) e IRn"1 x IRn"1 -> O(T) e IR :

-yJ y2(T')dT" (6)O(T) :=¥(x.(T))exp

defined on every trajectory r(T) x.(T) y(T) of (1). Then every
solution of (1) fulfils the equation

y2(T) 1 + <D(T) (7)

and together with the definition (3), O(T) may also be written as

d>(T) := -t'j exp •yj Cj(y(T'))dT' - s j : exp -yj ckij(y(T'))dT' (8)

where t'j and s'jjk are constants with sig( t'j s'jjk sig( tj Sjjk
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Proof: Differentiating (7) with respect to T we obtain from
(1), d(y2)/dT (y dy/dT), (^(x) y) 0 and V*P, y d¥/dT:

dO/dT 2yy 2 1 „,™i d<F/dT 2

0 -^- -[yy -y(y.,£)yj —^ yy 0)

in agreement with definition (6) for O. Using (6), (2) and x(T) Jy(T')
dT' + const we can write

0>(T) -t'j exp
f f

y J (y2-2eçjy)dT' -s"jk exp -yj (y2 - 2 fiLkjjy dT

which is identical with (8) since y2 - 2 ajy. | y - fi.j I2 - I SLj I2 q(y).
The constants t'j and s'jjk differ from tj and Sjjk in some exponential
factors depending only on initial conditions. A

Before we apply (7) and (8) to discuss the behavior of y(T),
let us take a closer look at the functions Cj(y), ckjj(y) defined in (5).

Proposition 2.2.
Let Cj(y), ckjj(y) be the functions defined in (5). Then { q(y) 0 } and

(ckij(y) 0 } are hyperspheres in IR"-1. They all contain the origin y Q.

and, if i * j, their radius is either R-j or R2 :

R: := R(q) R(ckij) 1/2 if k e { i j}
R2 := R(ckij) 1/2 [ 1 + 2/y2 ]1'2 if k e { i j } (10)

Proof: The centres of { q(y) 0 } and { ckij(y) 0 } are <&j

and akjj The radii |&j| and |flj<jj| are computed using the definitions (3)

and the relations E ATit A,j (ATA)jj - ATin Anj ôjj - 1/n for the

matrix A defined in (II.42) (the sum over t runs from 1 to (n-1)):

l*l 2 -4lAi. AT., -4fl -1) =(2y)-2y2 1 - R,2

(2y)2 t=1 (2y)2 V n J 4
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For the modulus of &kij we either obtain R-) (k e {i,j}) or R2 (k e {i ,j}):

n

/ (A kt~A j r~A jt) (A tk_A ti-A tj) - (A kn -A jn-A j „) (A nk-A „-A nj)lucili2
(2y)2 t=i

(i*l)
(2y)-2[3-2Ski-2 8kj + 2 8jr1/n ] (2y)"2 [y2+2 (1 - ^-8kj) ]

If neither i nor j are equal to k we have lakijl2 (2y)"2 [y2 + 2 ] [1 +

2/y2] /4 R22. If k e {i,j} but i ^ j the expression (1 - 6kj - ôkj)
vanishes and thus lakijl2 R-|2 A

Next we shall show that every solution with non-oscillating
modulus y(T) (as T -> oo) approaches y 1. We thus assume that there

exists a time T* such that y(T) is a monotonie function in T for T > T*

and, choosing T* big enough we thus have either y(T) > 1 or y(T) < 1 V T

> T*. Let us first consider the simpler case y(T) > 1 V T > T*:

Proposition 2.3.
Let r(T) be a solution of (1,2) with monotonie modulus y(T) > 1 V T >

T*. Then y(T) -> 1 as T -> oo.

Proof: We show that the assumption lim y(T) * 1 for T -> oo

leads to a contradiction. Since y(T) > 1 we obtain

Cj(y) |y-al2 - I ai I2 > (lyl-1 ail)2 - lai2
y y - 2 i al y y -1 > o

where we have used Rt 1/2 (10) in the last equality. According to the

assumptions, y(T) is monotonie for T > T* and does not approach y-1.
The inequality y (y-1) > 0 thus yields

J Cj(y(T'))dT' > J y(T')[y(T')-1] dT' oo. (11)

Now we are able to give an upper bound for the limes of <&(T). Using (11)
in (8) we obtain
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I i m O (T) - s'j j Mm exp Y J ckij(y(T'))dT' <0 (12)

where the last inequality is due to the fact that the Sjjk are quadratic
expressions in terms of the structure constants (4) and that sig(s'jjk)
sig(Sjjk). Since y(T) > 1 V T > T* and lim (y(T)) * 1, equation (7) yields
Nm O(T) lim (y2(T) - 1) > 0 which is in contradiction to (12). Thus, if

there exists a time T* such that the modulus of y is a monotonie function

with y > 1 VT > T* then y has to approach the constant value y=1. A

Next we shall show that the same statement also holds in the
situation where y(T) < 1 V T > T*-

Proposition 2.4.

Let r(T) be a solution of (1,2) with monotonie modulus y(T) < 1 V T >

T*. Then y(T) -> 1 as T -^ oo.

Proof: We first show that (1) has no stable critical points as
T -> oo (i.e. t -» 0). As already mentioned in Part I, all critical points are
located within the region |y| < 1. Their coordinates are Pc Xc, 0.

where &ç has to be a solution of (V^ + (p.)(*c) 0. The 2(n-1) x 2(n-1)
matrix M corresponding to the linearized system (1) at Pcis

M
n-1 n-1

faW 1V,,
where Ijj:= Vj{(Vj»F + (pj)/^}. The quadratic form Q(6) := (e,M0), 0 8^ e2,

Q(9) Gìx e2, m q^x e2) e1,e2) -1/2 e2 ,i eo +y/2 \ e2|2 is not

negative semi-definite, thus M has at least one eigenvalue with strictly
positive real part and the critical points of (1) are instable as T -> », i.e.

t->0.
Let us now consider a solution r(T) for which y(T) is a

monotonie and bounded function with y(T) < 1 for T > T*. Thus we have

dy/dT -> 0 and y(T) -> y„ e [0,1] as T -^ ». Multiplying (1) by y, the

equation for y2(T) becomes
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^ <i-yfary*-^) (13)

Let ym * 1. Since the I.h.s. of (13) has to vanish as T -4» and since f(T)
:= y (1-y(T)2) -> i„ y (1-y,*,2) > 0, the second bracket on the r.h.s. of

(13) also must approach zero as T ^ ». The function g(T) := -(1-y(T)2)

(d^/dT)/^ is thus bounded asT->» and g(T) -> g^ -y -yj- (1-y^2) < 0.

From the integral equation

y2(T)
-T .T

y2 + J g(s)e~F(s)ds eF(T) F(T):=J f(s) ds
' rt I rt

following from (13), we can see that for unbounded F(T) every solution
y2(T) with y2(T0) * -jTo g(s) exp(-F(s)) ds is not bounded as T -> ».
Since we have f(T) -» f„, > 0 by the assumption y«, * 1, the function
F(T) is unbounded in our case and thus (up to a set of initial conditions
with vanishing measure) y(T)2 ->¦ » in contradiction to y(T)2 e [0,1] V T.

The only possibility to avoid this contradiction for a bounded and
monotonie modulus y(T) is to assume y(T) -4 1 as T ^ ». A

IV.3. The behavior of the momentum y_(T)

near the singularity

Having shown that the modulus y(T) approaches y=1 whenever

it is a nonoscillating function for T > T*, we shall next turn to the

behavior of the direction â(T) y(T)/y(T). The important observation is

that â(T) tends towards a fixed point e_ on Sn"2 whenever y_(T)

approaches Sn_2 (i.e. the modulus y(T) -» 1). In order to show this we
first have to discuss the integrals of the functions q(y_(T)) and

Ckij(y(T)) defined in (5). In the generic case (with y -» 1) all integrals
JTCj(y(T')dT' diverge as T->». The situations for which exactly one of the

integrals (for instance JTCb(y(T')dT' is bounded correspond to instable
solutions with y -» 2^.
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Proposition 3.1.
Let r(T) be a solution of (1,2) with monotonie modulus y(T) for T >T*.

Then

i) either I°°Cj(T) dT » for all i or there exists exactly one bounded

integral J°°Cb(T) dT

ii) dCj(T)/dT -4 0 Vi if no bounded integral J°°Cb(T) dT exists and

dCb(T)/dT -» 0 if J°°Cb(y(T')dT' has an upper bound.

Proof: i) Let i*j. From definition (5) we obtain q + Cj > 2y2 -

2y la + ajl ¦ Since

1 1
I a + a I — +

4 4 (2y)2
(6,|-1/n

H n-2
2(n-1) 2

and since y(T) approaches y=1 monotonically as T ^ », T0 can be chosen
such that y > (1+1/V2)/2 for T>T0 and we obtain

r°° r°° — 1 r°°
I (Cj + Cj)dT>| 2y (y-1/V2 )dT > faj dT (14)

Thus there exists mostly one index b with lim J°°Cb(T) dT * +».
ii) Since J°°Cb(T) dT is the only bounded integral and since O(T) -» 0

as y -» 1 (7), we obtain from (8) :

.T T

t'b exp -yj cbdT' +2s'ijk exP "^J ckij dT' ->0 (15)

where the sum contains at least one non-vanishing term as T -» ». Using
the differential equation (1), definition (6) and equation (7), we obtain
after a differentiation of (5) with respect to T:

-^¦r (flb-y.) I yy-fcCD - v^exp

(fib, no exp -yj y2dT'

-yj y2dT'

as T-> (16)
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The second step is a consequence of O(T) -> 0 y -> 1 and of dy/dT -> 0,

implying dO/dT -> 0 and thus also exp(-y JTy2dT') (y.,Y.¥) exp(-y
jTy2dT')- (d*F/dT) -> 0. Now we can use (2) to calculate the gradient of *F

and again (5) in the exponents to write

^-> 2y{ t',(o,«b) e-^cidT'+ 8',jk(aw,jfe) e-^CküdT'}. (17)

From (17) we can conclude that 0%/oJ -,0 V b if all integrals tend to

infinity as T -> ».
If, on the other hand, there exists one bounded integral J°°Cb(T) dT, only
the term with i b can give a non-vanishing contribution to the first
sum as T -> ». Using (15) and (a&.ab) I/4 w© obtain

^-s2ys'jke-^ckiJdT'
dT ' IJ (akij.ab) - — (18)

The bracket always (V k,i,j,b) vanishes or is negative since

1

(fikij.fib)
(2y)2

8ib + 8jb - 8kb -
' n (2y)

(1-1/n -2 4

where the inequality is due to the fact that no akij with i=j exists (syk
0 for i=j). If a bounded integral j~Ckij(T)dT with k,i,j such that

(ajdj.fi-b) *¦ 1/4 would exist then -dCb(T)/dT would approach a

non-vanishing positive value and the integral J°°Cb(T)dT could not be

bounded, which is in contradiction to the assumption. The only integrals
f°°ckij(T) dT that can co-exist with j°°Cb(T)dT are those with (a^at»)

1/4, i.e. b e {i,j}, b*k. Thus either the bracket in (18) vanishes or the
factor in front of the bracket approaches zero as T -> » A

In the preceding Proposition we have seen that the solutions
with y -> 1 as T -» » admit either none or exactly one bounded integral
j°°Cb(T)dT. The first case corresponds to the generic situation whereas
the second case occurs only for special initial conditions. More

precisely, we have the following
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Proposition 3.2.
Let r(T) be a solution of (1,2) with monotonie modulus y(T) for T >T* and

for witch 3 b, such that Fcb(y(T'))dT' < B2 < ». Then

i) y -» 2ob as T -> »
ii) r(T) is not a generic solution.

Proof: i) Using dcb/dT -» 0 (Proposition 3.1.) and !Tcb(T')dT'<
B2, we first show by contradiction that cb -* 0 as T -> »: Let lim cb(T) *
0. Then 3 8 > 0 such that V T0 3 T-j with cb(T1) 8 (or -8). Since

lim(dcb/dT) 0 we can choose T0 such that |dcb/dT| < 82/(6B2). Let T2 :=

T1 + 6B2/8. For T > JA we have cb(T) q,^) + dcb/dT(T*) (T - T^ > 8 -

82/(6B2) (T - T-|). Integrating this inequality in the interval [T-)^] we
obtain Jcb(T')dT' > 8AT [1 - 8 AT/(12B2)] 3B2 > 2B2 in contradiction to
/TCb(T')dT'< B2. From Cb(T) -> Owe now obtain 2ccby -* y2 -» 1 and thus

with lati 1/2, y-> 2ab- This shows that for a solution with bounded

ITCb(T')dT' the magnitude of the oscillations of each component has to

vanish as y approaches Sn_2. In this case the only possible limit for y is

2ab which is the only common point of the spheres q>(y) 0 and Sn_2.

ii) Since O(T) must tend to zero as y -» 1 (7), the asymptotically non-

vanishing term t'b exp [ -yf Cb(T') dT'] in (8) must be compensated by

some terms of the form s'bjk exp [-y |T q<bj(T')dT']. Using (5) we obtain

t'b + s'bjk exP [ 2y x aj - ak )] -» 0, which is only possible for a set of
initial conditions with vanishing measure (t'b and s'bjk depend on initial
conditions ; t'b := Uj exp 2yab 2<o) )¦ A

As we shall see later, these special solutions correspond to

instable Kasner solutions Considering the Bianchi type IX model in (3+1)
dimensions as an example, we sshall find three solutions (fig.7.1.) with y
-» 2ab as T -* ». In the time-dependent Hamiltonian formulation, these
are exactly the special solutions where the "universe point" is moving on

a straight line inside one of the three infinitely thin channels. In

agreement with Proposition 3.2, the directions of the channels are 2ai
(V3/2 -1/2) 2as (-V3/2 -1/2) and 2a3 (0 1).

Let us now discuss the generic cases with y -» 1 as T -> 0:

Corollary 3.3.

Let r(T) be a generic solution of (1,2) with monotonie modulus y(T) for
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T>T*. Then

lim y(T) - a e Sn_2 (19)
T—»oo

Proof: Using Propositions 3.1. and 3.2. we have dq/dT -> 0 Vi

as T -* » and thus a,dy/dT) -> 0 Vi. Since the vectors a form a (not

orthogonal) basis of IR"-1, we obtain dy/dT -» 0 and also da/dT -» 0,

using y -» 1 and dy/dT -> 0 (Propositions 2.3. and 2.4.). The unit vector â

thus approaches (not necessarily in a monotonie way) a fixed point e_ on

the hypersphere Sn"2. (The case where â is oscillating around e_ with an

asymptotically non-vanishing magnitude, but such that dâ/dT -> 0, will

be ruled out later by a stability consideration.) A

IV.4. A geometrical condition for |y(t)| -» 1

Until now we have assumed a monotonie behavior of the
modulus y(T) for T > T* and have shown that in this case the vector

y(T) approaches a fixed point s. e Sn'2. In this section we shall show
that the solutions can only exhibit this behavior if a necessary condition

concerning the configuration of the hyperspheres Ckij(y) 0 is fulfilled.
In order to find this condition, we first investigate the set of points e_e

S"-2 which can be approached by the vector y(T).

Proposition 4.1.
Let Dt (Ds) be the combination of the inner of all hyperspheres q(y) 0

(Ckij(y) 0) appearing in expression (8) for O,

D, := u {Cj(y) <0 } Vi with tj * 0
i

Ds := u {ckij(y) <0 } Vijk with Sjjk * 0 (20)
ijk

and let E be the set of all points of Sn2 which are located outside (or
on the boundary) of all hyperspheres Ckn(y) 0 :

E := {Ê e S""2 |â e Ds } (21)
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Then for almost all solutions r(T) of (1), y(T) can only approach points
belonging to E as T -> ».

Proof: Let lim y(T) * 2ai Vi and |y(T)| -» 1. Then there exists

an e>0 such that q(y.) > 0 V y e Ue(a) and thus 3 T*(e) such that

C|(y(T)) > 0 VT > T*. All integrals F q(y(T')) dT' thus tend to infinity as
T -> 0. Let us now assume that the unit vector e_ « E and that,
nevertheless, y -> a as T -> ». Then a is a point of Ds and there exists

an e>0 and an index triple m,n,l such that qmn(y) < 0 Vy e Ue(a) and
thus 3 T*(e) such that qmn(y(T)) < 0 VT > T*. This yields the following
estimation:

f c,mn(T')dT' < (T*-T0)cmax - f |clmn(T')|dT'

which is finite, since the maximum of qmn(y(T)) over all T e [T0,T*] is

finite. Thus, expression (8) for O contains at least one term in the

second sum which does not vanish as T -> ». Since all terms of the first

sum vanish JT q(y(T')) dT' -> » as T -> » and since all terms of the

second sum are positive, we obtain lim O(T) * 0 and thus from equation
(7) lim|y(T)| *1, which is in contradiction to the assumption that y(T)
approaches a point of Sn_2. A

Let us now show that the solutions approaching a point a e E

are stable. In order to see this, we consider the trajectories &. &o +aT.
Since |a| 1, these are exact solutions of (1) for all directions a e Sn_2.

Proposition 4.2,
The generalized Kasner solutions (II.70) r(T) ^ + aT a) lai 1 are

i) instable solutions of (1) if q.î E

ii) stable solutions of (1) if a e E\3E a * a •

Proof: The 2(n-1) x 2(n-1) matrix M corresponding to the non-
autonomeous linearised system for (ji,y) := (& - &o - fiT y - a) at (0,0) is

M(T)
0. 11 Ìn-1 n-1

°n-i B ® (^r(T)-yfi)
(22)
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The only non-vanishing eigenvalue of M is equal to the trace and the

corresponding eigenspace is spanned by a (The equation (a ® û) y A. y
(h., y) a implies y (i a and thus X (a Q) tr (a ® a) )¦ Using (2) we

obtain

X(J) 2y
t'j (agi) exp[2y(a,aj)T] + s'jjk (a,flkij) exp[2y(£,fikij)T]

_ j_

t'j exp[2y(Ê,a-)T] + s'jjk exp[2y(a,akij)T] 2
• (23)

i) If a £ E then there exists at least one qmn with qmn(a) < 0, thus

(a.aimn) > 1/2. Let l,m,n be such that (a.amn) * (fî-.akij) Vk,i,j. Since

(a,a) < lai 1/2 Vi, the terms with the exponents [2y (a,aimn) Tl
dominate as T -> » and we have

MT) -* 2y[ (a.amn) - 1/2 ] as T -» » (24)

Since (a.aimn) > 1/2, there exists a time T*, such that X(J) > 0 VT > T*

and thus (u,Y.) (0,0) i.e. & ,y Zq + aT a is not a stable solution of

(1) as T->»
ii) Let a e E\3E. Then ckjj(a) > 0 V k,i,j and thus (a.fikij) < 1/2- Since
sV(T) -» 2y [(a a) -1/2] as T -> », where (a, a) := max {(a awj) (e., a)}
< 1/2, there exists a time T\ such that X(J) < 0 VT > T*. The equation for
the component of y. in the direction of a reads

d(y,a) /dT X(J) (y,a) + o(v2) where X(T) < 0 VT > T*.

Thus we obtain (y,a) ->1 as T^» and, together with y->1 we have y->a- A

As a consequence of the preceding Propositions, the solutions
of (1) can behave in two qualitatively different ways as T -» ». Which

way is realized depends on the existence of a non-empty set E e Sn"2:

Corollary 4.3.
Let E e Sn"2 be defined as in Proposition 4.1. and let r(T) *(T),y(T)
be a solution of (1,2).
i) If E \ 3E { }, then r(T) cannot approach a generalized Kasner
solution (up to a set of initial conditions with vanishing measure) and
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the modulus of the "velocity" vector y(T) is an oscillating function with

non-vanishing magnitude as T -> » (i.e. t -> 0).

ii) If E \ 3E * { }, then r(T) can approach a generalized Kasner solution,

x ,y x«, + aT a with a e E \ 3E.

The condition that E \ 3E is not empty is at least necessary
for a generic solution to approach a generalized Kasner solution. If we

assume that there exists a time T* with â(T*) e E\3E then we can
show that â(T) e E\3E VT > T* (see section 7) and the condition also

becomes sufficient. This assumption must still be justified by

discussing the ergodic properties of the system (1,2). We shall however

not treat this question here since it seems to be more difficult than the

corresponding problem for the mixmaster map [33].

IV.5. A consequence of the Levi-Malcev
decomposition for the Lie algebra g

In the preceding sections we have reduced the problem of

whether a solution behaves regular as T -» » to the question of whether

there exists a region E e Sn"2 such that ckjj(a) ^ 0 for a e E and all

k,i,j with Sjjk * 0. This condition depends only on the configuration of

the hyperspheres coupling to the non-vanishing constants Sjjk which are

de- fined as the squares of the structure constants Ckjj of g. The

following Proposition shows, that E \ 3E is not empty, whenever g has

at least a two-dimensional subalgebra. Let us again use small Latin

letters for indices running from 1 to n, Greek and capital Latin letters
for indices between 1...d and (d+1)...n, respectively.

Proposition 5.1.
Let Gsj be a d-dimensional Lie subgroup of G with d > 2. Let ad denote

the "south pole" of Sn"2 with respect to the d-axis, ad := (0 0,-1,0,..,0)
and let Dt and Ds be defined as in Proposition 4.1. (18) and

Q := { y e IR"-1 | | y - ad I < P } > (25)
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where p := 2 - [ 3 + 1/V2 ]1/2 > 0. Then

i) E \ 3 E is not empty
ii) ûnD, flnDs {}.

Proof: We show that none of the hyperspheres Cj(y) 0,

Ckij(y) 0 contain the point ad • Let us define 8 and A as

(2*"1a*4\/^ïï ¦ A:=-(2*"1A-4V^ (26)

Denoting the d'th components of the centres ai and akij with cij and

cckjj, we obtain the following possibilities using (3) and (26) :

«K|iv aKuN «jl -5 (27a)
« K|iN «KMN « m A (27b)

a kMN [ S + 2A ] (27c)

a k^v -[ A + 28 ] (27d)

If gd is a d-dimensional (d > 2) subalgebra of g then all structure
constants of the form CK^V vanish and thus

S|ivK= 0, VKe [d+1 d+D] V jiv e [ 1 d ] (28)

(Due to the Levi-Malcev decomposition, such a subalgebra always exists
for n > 4 ; see also section 7.) In this case H*(x) (2) contains no terms
with exponents 2 y a ku.v > x. and thus the terms with F c ku.v (T')dT'
are also absent in the corresponding expression for O (8). The most

negative d-component the vector akij can have is thus not -[ A + 28 ] as
in the general case, but only -8 (27a,d) :

1 I D~~ d-2 1 / n-2 1

(akii)d >-8 --./—— > ---/ >~ .(29)v-Kij^o 2 V d(n-1) 2V2(n-1) VF

Since all hyperspheres contain the point y 0 and since by (29) the d'th
component of all centres is greater than -1/2, none of the hyperspheres
can contain the "south pole" ad of Sn"2. More precisely, there exists a
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neighborhood Q of ad such that no element of £2 is contained in either

one of the sets Ckij(y) < 0 or q(y) < 0. Let y e ß, then

Ckij(y) I y - akijl2 -1 akijl2 y2 - 2 (akij, y - ad) - 2 (akij, ad)
> (1-P)2 - 2 R21 y - adi + 2 (okij)d * (1-P)2 -2 p - 2/V8 0,

where we have used (25),(29) and R2 < 1 for n > 3. For y e Q we thus
obtain Ckjj(y) > 0 since the spheres c«p,v do not exist. This proves ii).

Defining E as Sn2 n Q we also obtain i). A

IV.6. Construction of an invariant set in the phase space

Let us now assume that g has a subalgebra gd of dimension d

> 2. Any solution r(T) with y(T) e QVT > T* then fulfills ckîj(T) > 0 and

Cj(T) > 0 VT > T* for all hyperspheres appearing in (8). We thus obtain |y|

-» 1 from equation (7) and the solution approaches a Kasner solution as T

-> » (i.e as t -> 0).
It remains to show that y_(T) stays in Q if y_(T*) e fl for a

(sufficiently late) time T*. In order to see this, we have to consider the
whole (n-1) x (n-l)-dimensional phase space. Using the representation
(11.47) for ^(x) we are able to construct an invariant set X x Y e IRn"1 x
IR"-1 with Y e Q. and to show explicitly that y(T) approaches a fixed
point a e E as T ->• ».

In the second part we have written *F(x) in the form

¥(x) k-« [ rd + k rD + k2 rdD + iH rDd ] (30)

where rd, rD etc. depend on Xi,...,xd.1,xd+i xn.i and k := exp(coxd). The

advantage of writing ¥(x) like this consists, on the one hand, in the

explicit xd-dependence and, on the other hand, in the fact that now the
terms which are proportional to k-1 are vanishing: The function rD has
been defined in the Part II (section 3). It is proportional to s^vK exp [ Xk

- X^ - Xv ], where X ATx. Since all terms in rod now contain a vanishing
factor s^vK (CK^v)2/4, the terms in (30), which are proportional to rc1

do not appear if g has a subalgebra gd which is at least two-
dimensional.



1052 Heusler H.P.A.

Let us now construct the invariant set X x Y. We shall assume
that the region where ¥(x) is positive is simply connected and bounded in

IR"-1. (All candidates for an irregular behavior of the scales, as the
Bianchi types VIII and IX, belong to this category. The other cases in

which *F(x) is positive for a set of directions x/|x| with non-vanishing
measure correspond to models with open potentials for which the
solutions behave like Kasner solutions as T -> »). Let us define M as

M := max |x_|

<FQ£)>0

Before we construct X x Y, we give the following estimation for the

logarithmic derivative of *P(x) with respect to xd :

Proposition 6.1.
Let ¥(x) K-« [ rd + k rD + k2 rdD ] z := x \ xd e IRn2 and M < ». Let Q

be defined as in (25) and

Q_ := { yeQ | |y| <1 }

X, :={*elR-1| xd < - M- 1 In (l + JL) } (31)

Then there exists an e > 0 such that
i) ld(x) := (d17dxd) / Y >-( eoa + e for all xe Xe (32)

ii) [ y yd - 'dOO ] < °> for all (x,y) e Xe x Q. (33)

Proof: Let e := [y- eoa ]/2, where y [(n-1)/n]1/2 a D/n and

co [ n/Dd ]1/2 (II.32). Since the dimension of the subgroup Gd is d > 2,

we have y/coa > V2 [(n-1)/(n-2)]1/2 > 1 and thus e > 0. For the radius p

of Q (25) we obtain

p_! <_ifi i) <_i(i +.nn=-io+«=_-n+-l).2\ -IJ) 2{ V d(n-1 J 2^ y J y V waJ

If the first statement holds, we can use this estimation to prove the
second one :
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Y Yd " 'dOO < y (P"1) + eoa + e < - wa (1 + e/coa) + eoa + e 0

Let us now prove i). If G consists in a product of two groups then the
factors which depend only on structure constants with both sorts of

indices vanish, i.e. rdD(z) rDd(z) 0. Since M is finite, the functions

rd(z) and rD(z) are negative semidefinite. The logarithmic derivative of

Y(x) with respect to xd becomes

Id 00 co a +
rD CZ) k

rd (Z) + rD (z) k
> -eoa > -(wa + e)

In the case where g has a subalgebra gd, the function rdD(z) does not
vanish identically but is negative semidefinite by the definition (II.28c).
We can then write W(x) in the form

^(X) rdD(z) K"« [ K - K1 (Z) ] [ K - K2(Z) ] (34)

where k-j (z) and k2(z) are bounded functions with e~(äM < k-j (z) < k2(z)
< e(àM, since *¥(x) < 0 for | xd| > M. For x e Xe we thus obtain from (31)

K2(Z)
.,-1

Kl(Z)
> ^.^Mg-M^-1 >[1_eln(1+2ffl/e)]-1 =_J_

2(0

The logarithmic derivative of *P(x.) with respect to xd now satisfies the

inequality (32):

ld(x) a\ -a +
*1(Z)

-1

1 -
K2(Z)

-1

> (Û ¦a -2-^-
2(0

-(oxx + e). A

Using inequality (33) we can now give an invariant set in the phase space
IRn-1x |Rn-1.

Corollary 6.2.
Let Y:= {ye IRn"l | |y| < 1 yd < -1 + p2/2 }

Then

X := Xe with e := [ y - roa ]/2

r(T*) eXxY => r(T) eXxY VT>T*.
(35)
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Yd

<1m S^Hiî

hfikij

y

fig.6.1.

The hypersphere fl
contains no points with c(y)

<0 since all centres of
the c-spheres are located

above the dashed hyper-

plane, fl contains the
subset Y, which is a part
of the invariant set X x Y.

Proof: If y e Y then we have yd < 0 and thus from (1) dxd/dT <

0, i.e. x remains in X and |y| remains smaller than one. Since Y is a subset
of fl_, we obtain yyd - ld(x.) < 0 for (&,y) e X x Y from (33), and the
derivative of yd is smaller (or equal) than zero :

^ 1(1
dT 2

y )(yyd-id(x)) <o

Thus, if (&,y) e X x Y, the d-components of & and y cannot increase, and

we obtain (x.,y)(T) eXxYVT>T* if (a,y)(T*) e X x Y. A

Since r(T) remains in the set X x Y and since û d fl. d Y we

see that y(T) e fl V T > T* and thus y(T) -» a e E as T -> ». A similar
Corollary can also be proved in the case where y(T*) e fl+ := {y e fl | |y| >1).

IV.7. Conclusions

Using the results of the preceding sections, we can now show

that chaotic solutions in (n+1)-dimensional homogeneous models can
only occur for n 3. If n > 3, the scales behave regular approaching the

cosmo- logical singularity.
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Corollary 7.1.
Let G be the Lie group of an (n+1)-dimensional homogeneous model. If n >

3, there exists a non-empty set E, such that any generic solution
approaches a generalized Kasner solution with Kasner indices oj e E.

Proof: Since for n > 4, any real n-dimensional Lie algebra has

a subalgebra, there always exists a decomposition n d + D, such that
CKu,v 0 V |i,v e [1,d] and V M e [d+1,n]. (This is a consequence of the
Levi-Malcev decomposition [21] for a Lie algebra into a semisimple and a

solvable part [20].) We can thus apply the preceding Propositions to
construct a non-empty invariant set X x Y (35). Every solution r(T) of

(1) entering X x Y then approaches a generalized Kasner solution with

y(T) -4£eE Sn"2 n fl as T -> », i.e.as t -> 0.

The Kasner exponenets are parametrized in terms of a (H-71)
and fulfil I" oj2 E" ox 1, since |e| 1 (II.68). Using (25), we have

|a-adl < P and together with (11.71) we obtain the set L :

a, =-y

n-1

ZAiiei —
ny

|£| 1 ede -1.-1+J A (36)

In Part II we have discussed the models consisting in a
product of two isotropic subspaces. These had a two-dimensional phase
space with coordinates (xd,yd). The condition for the scales to approach a

Kasner solution consisted in the existence of a horizontal asymptotic of

l(xd)/y inside the strip S { (xd,yd) | |yd| < 1 }. The toy models discussed
in III.5. satisfied this condition if rod vanished (III.29), since then

lim l(xd)/y -VD/d(n-1) > - VT72 V(n-2)/(n-1) >-1 (37)
xd-

This estimation obviously corresponds to the estimation (29) for the

d-components of the centres akij (if g has subalgebra which is at least
two-dimensional :

d>2

2(akij)d > -2 8 > V 2(n-l;
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The region in the plane toy model where yd can approach the value -1

now corresponds to the set X x Y where the vector y can approach a

constant unit vector £e E.

Let us finally consider the (3+1)-dimensional homogeneous
models (Bianchi types) as an illustration.

Corollary 7.2.
The only (n+1)-dimensional homogeneous models which cannot approach a

stable Kasner solution as t-> 0 are those which correspond to one of

the Lie groups SO(3) or SO(2,1) (i.e. the Bianchi type VIII and IX models).

Proof: Using Corollary 7.1., the only candidates are based on

3-dimensional Lie groups. We have to show that the only groups for
which the set E \ 3E in S1 (20,21) is empty are SO(3) and SO(2,1).

E := { a e S1 | Ckij(a) > 0 V k,i,j with Syk * 0 }

For n=3, the hyperspheres Sn"2, Ckij(y)=0 and q(y)=0 reduce to circles.
Since the radius of all circles q(y)=0 is R-j =1/2 (10) and since all

Cj(y)=0 contain the origin y 0, we have q(a) ^ 0 V a e S1. Let us thus

consider the circles with radius R2 1/2 [1 + 2/y2]^2 1 (y2=2/3).
These couple to the constants Sjjk with k e {i,j}, i*j (Proposition 2.2).
For n=3 there exist at most three circles of this kind, Ci23(y.) 0,

c23i(y.) 0 and c312(y) 0 Their centres are located on S1 and on a

triangle with equal sides, since |ai23l 1 and since

(fii23 -fi3i2) la212 - la I2 - Ifi3l2 + 2(tti .fife) -- ¦

4 2nf 2

If at least one of the structure constants C123, C23i, C312 vanishes then

not all three circles are present and the set E \ 3E obviously is not

empty. The only cases in which E \ 3E {} corresponds thus to the Lie

groups with structure constants C123 * o, C23i * 0 and C3i2 * 0 which

areSO(3) and SO(2,1). A

Fig.7.1. illustrates this situation. The combination of the sets

Ckij < 0 contains all points of the set |y| < 1. The centres are ai23
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(-V3/2 1/2) a23i (V3/2 1/2) and a32i (0 -1). The cenres of

the small circles radius Ri=1/2 are ai (V3/4 -1/4) a2 (-V3/4

-1/4) and 03 (0 1/2). The set E \ 3E is empty, and E consists in the

three points 2ai, 2a2 and 2a3. As already mentioned, there exist three
instable solutions with Kasner indices (oi,a2,03) (2/3, -1/3, 2/3) for

¥.-» 2ai, (-1/3, 2/3, 2/3) for y -> 2a2 and (2/3, 2/3, -1/3) for y -> 2a3
For each of these cases there exist two identical contracting scale

factors and one expanding scale as t -» 0.

J2

<0 <0c2323

<0c3

yi

fig.7.1. SO(3) and SO(2,1) are the only Lie groups for which the combination

of all sets Ckij ^ 0 contains the whole hypersphere (circle) |y| < 1.

Using k exp(roxd) exp [V(3/2) x2 ] the potential ^(x) (2,

11.37) may be written in the form (30)

¥(x) K"« [± 2ch(x1/V2) + (l-ch^x^) k -1/2 iH] ,(38)

where the upper (lower) sign holds for SO(3) (SO(2,1)) and the term
which is proportional to k-1 now does not vanish. As is well known [19]
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and easily seen from (38), there exist three directions in the (xi,x2)-
plane where the equipotentials of *P(x) are not closed In the
time-dependent Hamiltonian formulation of the problem (II,section 4.1.), the
"universe point" can only move in one of these directions without
colliding with a potential wall. The directions are 2ai, 2as and 2a3 in

agreement with the directions of the instable Kasner solutions
mentioned above.

IV.8. A comment on inhomogeneous models

Let us finally extend the discussion to inhomogeneous cosmological

models. The arguments are of the same kind as in the preceding
sections. The structure terms Ckjj are still constants with respect to the

time coordinate, but they now depend on the spatial coordinates. The

explicit form of these functions does not affect the following
discussion. The important point is that in contrast to the homogeneous

case, there now exists no decomposition n D + d, such that all CK^V
with nv e [1,d] and K e [d+1,n] vanish. The most negative d-component a

centre a^j of a hypersphere ckjj(y) 0 can now have is no longer -8 but

-(28+A) (27). Thus, even for n>3, there may exist some hyperspheres
containing the "south pole" ad of Sn_2. In order to find the critical number
of dimensions, we again have to answer the geometrical question
whether there exists a set E on Sn_2 which has no common points with

Ds (21). (Ds is the combination of the sets { q<jj(y) < 0 } where now all

k,i,j must be taken into account (20).)

Proposition 8.1.
Let Sjjk * 0 Vk*i*j*k and let Ds be the combination of all corresponding
sets { Ckjj(y) < 0 }. Let E:={£e S""2 | e«Ds}.
If n > 10, there exists at least one decomposition n D + d, such that E \
3E is not empty.

Proof: Let us show that either a whole neighborhood of the
"south pole" or of the "north pole" (with respect to the d-component) of
Sn"2 is located outside the set Ds. This is the case, if either the most

negative d-component of all centres aj<ij is greater than -1/2 or if the
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most positive d-component is smaller than +1/2. Using equation (27), we
obtain the conditions

-[A+ 28] > -1/2 or [8 + 2A] < +1/2

Together with (26) and D+d=n we obtain the following inequalities :

d-d(3 + n) + 4n

d2 + d(3-n) + 4n

d-

d +

3+n

2

3-n
2

+ -(9-n)(n-1) <0
4

¦ 1

+ —(9-n)(n-1) < 0
4

If n < 9, none of these inequalities is fulfilled and the "south pole" as
well as the "north pole" are contained inside the set Ds If, on the other
hand, n > 10 then the first inequality holds for all decompositions with
[n+3 - {(n-9)(n-1)}i/2] < 2d < [n+3 + {(n-9)(n-1)}i/2] A

Since the choice of the decomposition n=D+d only concerns
the definition of the coordinates introduced in Part II, section 4.2., we
have shown, that for n > 10 there always exists a point a e Sn"2, a real

number p > 0 and a set fl := { y e Rn"1 | | y - a I < p }, such that fl n Ds

{}. Approaching the initial singularity in (n+1)-dimensional (n > 3)

cosmological models, the generic solutions of the field equations behave
thus

chaotic if n < 10 and monotonie if n > 10 in inhomogeneous

cosmological models ;

chaotic if n 3 and G SO(3) or SO(2,1) and Kasner-like
in all other homogeneous cosmological models with an
arbitrary number of dimensions.
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