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MECANIQUE DANS L'ESPACE DE PHASE

L'APPROCHE DES DEFORMATIONS

B.BOULAT
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UNIVERSITE DE LAUSANNE

CH-1066 EPALINGES SUISSE

(22. II. 1990, revised 28. V. 1990)

Abstract: This paper is concerned with the mechanics of a particule. Firstly, we construct an algebraic
structure which allow us to recover all the mechanics, this structure does not depend on the classical or
quantal nature of the particule. With the help of the deformation theory of algebraic structure we link the

two cases, classical and quantal, more closely. Secondly we define a representation of the Hilbert space,

very next to the Bargmann representation, the properties of which allowing us to treat in a unique way
the reversible dynamics of an either classical or quantal particule.
Ce papier traite de la mécanique d'une particule. Premièrement on construit une structure algébrique

nous permettant de retrouver toute la mécanique, cette structure ne dépendant pas de la nature classique

ou quantique de la particule. Avec l'aide de la théorie des déformations des structures algébriques nous
relions les deux cas, classiques et quantiques, de manière plus forte. Deuxièmement nous définissons une

représentation de l'espace de Hilbert très proche de la représentation de Bargmann, dont les propriétés vont

nous permettre d'écrire de façon unique la dynamique réversible d'une particule classique ou quantique.
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INTRODUCTION

Ce qui est connu sous le nom d' " axiomatique quantique "[1],[2], a développé un ensemble
de concepts physiques d'où l'on peut dériver une structure mathématique à même de décrire
une particule physique. Les qualités " quantique " ou " classique " ne jouent pas de rôle
au niveau du développement de la théorie, mais apparaissent comme solutions possibles
de problèmes posés à l'intérieur de cette théorie.
Cependant les calculs se réalisent usuellement dans des représentations particulières de ces

solutions, obligeant à décider de prime abord de la nature quantique ou classique de la
particule. Le but de ce travail est de développer un formalisme mathématique permettant
d'éviter ce choix primordial et de ne le faire qu'à posteriori, à la fin du calcul. Voyons dans

quelle mesure ceci a pu être réalisé.

Physiquement une particule est caractérisée par ses propriétés. Ce qui conduit à choisir
un ensemble d'observables. L'ensembles des propriétés actuelles déterminant l'état. C'est
sur ces deux notions d'observable et d'état que l'on va s'appuyer.
L'exposé va s'organiser de la façon suivante :

Le premier chapitre est consacré à des rappels de mécanique classique et quantique. Dans
le second chapitre on parle d'observables et de dérivations; plus précisément on y construit
une structure algébrique qui permettra de traiter indifférement le cas quantique et le cas

classique. Le troisième chapitre exposera succintement le formalisme de déformation du
produit d'une algèbre.
A l'aide des éléments introduits dans les chapitres deux et trois on va pouvoir dans le

chapitre quatre parler de mécanique et retrouver dans un formalisme mathématique unique
le cas classique et le cas quantique, bien que ce dernier ne soit à ce stade pas pleinement
justifié, car pour cela on doit se placer dans le cadre de l'espace de Hilbert. Pour ce

faire dans le chapitre cinq on va décrire une représentation particulière de l'espace de

Hilbert. Outre la justification du cas quantique précédement introduit, les propriétés
de cette représentation vont nous permettre d'écrire dans le cas réversible une équation
d'évolution unique, au niveau des états. On va retrouver aussi de façon transparente le
théorème de Van Hove sur l'impossibilité d'une règle de quantification générale.

Chapitre I : Rappels

1.1 : Mécanique classique
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On représente l'état d'une particule classique par un point d'un espace à sept dimensions
E, l'espace des états de cette particule. Ce point donne l'instant actuel du temps, ainsi que
la quantité de mouvement et la position actuelles de la particule pour cet instant. L'espace
des quantités de mouvement et des positions est appelé l'espace de phase et on le note T.
Dans tout ce travail on identifiera r à R ™.

Une observable est la donnée à chaque instant d'une fonction sur T. L'ensemble .F(r) des

observables, muni de la structure d'espace vectoriel et du produit usuel des fonctions sur
R n forme donc une (R-algèbre commutative, triviallement de Jordan.
Soit F(T) D TV C°°(r; (R), l'algèbre des fonctions C°° de T dans R. Soit E°°(r), l'algèbre
des champs de vecteurs C°° sur T. H°° peut être identifié à l'algèbre de lie des dérivations
de TV.

L'évolution de la particule est la donnée d'un champ de vecteur X' sur E, tel que :

X' dt + X X e s°°(r)

Si X ne dépend pas de t, on peut se restreindre à calculer sur T. Par définition X est
hamiltonien si l'on peut écrire :

ixïl -dH
où fi est une deux-forme symplectique sur T et H € N. La deux-forme symplectique induit
sur TV une structure d'algèbre de Lie donné par le crochet de Poisson :

V/,srSTV on a {f,g} ix,ix,iï

Xf est tel que iXf iï df

x9 est tel que ixsSl dg

Soit Y un champ de vecteur sur E. Une courbe intégrale de Y par x S E est une courbe

7 lisse satisfaisant :

g(a) Y(7(s)) 7(0) x

Si / est une fonction sur E on définit, pour s G R. :

où (j)sest la projection du flot définie par Y soit:

<j> : E xR—» E

(p,s)i—? <t>(p,s) <t>,(p)

tel que :

<j>3i o (j>3 <j)s+s,

^la=0 Y
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Y.f.ds Lyfs

Les intégrales premières sont telles que

Y.f,= 0

soit avec :

y d3 + x x e E°°(r)
d.f. -x,f. (*)

ceci définit un problème aux limites une fois /0 donné, /o /o(a, •)• On choisit s — t, t le

temps. Considérons X indépendant du temps. X définit alors un flot V"t sur T. Soit :

/0(a) /o(V>t(a),0) #/o(a,0) (**)

avec comme condition initiale /o(a, 0).Les /Ó sont des fonctions sur T qui prennent en
a la valeur que prend la solution du problème aux limites (*) pour la condition initiale
/o /oCV'tC0) 0) s°it donc une valeur égale à f0(if>t(a, 0). On a défini ainsi une courbe dans
l'espace des observables, courbe satisfaisant l'équation (**).
Dans le cas où X { H} on obtient :

^7o {fl,H}
Par analogie avec la mécanique quantique on appelerait cette équation d'évolution, l'équation
en forme Heisenberg.

1.2 : Mécanique quantique

L'état d'une particule quantique est la donnée de l'intant actuel t et d'un rayon dans
l'espace de Hilbert complexe, Tit. A chaque observable est associé un opérateur
autoadjoint dans Tit. On postule que l'ensemble des observables forme une R-algèbre de Jordan
J. On ne postule pas ceci de façon générale, mais on montrera en se plaçant dans une
représentation particulière de l'espace de Hilbert que l'on peut considérer ce produit comme
le symétrisé du produit de Moyal. Les dérivations sont celles de J. Elles contiennent comme
sous-espace celles de l'algèbre de Moyal.
L'évolution d'une particule quantique est une évolution qui préserve sa nature quantique,
soit la structure de l'espace de Hilbert et à l'intérieur de celle-ci l'interprétation des états
et des observables. Une évolution déterministe et réversible est la donnée d'un groupe à un
paramètre d'opérateurs unitaires dans l'espace de Hilbert, les Tit étant considérés comme
identiques entre eux. Pour une telle évolution soit Pt le projecteur représentant l'état, on
a l'équation :

itijPt HPt - PtH [H, Pt]



944 Boulât H.P.A.

où H est le générateur auto-adjoint de l'évolution et % est la constante de Planck divisée

par 27T. H est considéré indépendant du temps. Ceci étant la version qu'on appelle
"Schrôdinger" de l'évolution déterministe réversible. Dans la forme Heisenberg l'état est
fixé et ce sont les observables qui dépendent du temps. Pour une observable A on obtient
alors :

ihjtAt [At,H]

avec H toujours indépendant du temps.

Chapitre II : Observables et Dérivations

Soit une particule. On postule que les observables associées à cette particule forment une
algèbre de Jordan J réelle dont on note le produit, en tant qu'application bilinéaire de
J x J dans J, P0 :

P0 : J x J —? J

(f,9)^Po(f,9)
Po (A/ + fig, h) XPo(f, h) + pP0(g, h)

Vf,9,he J,\,peR
Po(f,g) Po(g,f) V/,,eJ

Po(P0(f,f),Po(f.g)) P0(f,Po(Po(f,f),g) Vf,geJ
On suppose de plus J de la forme :

J Jo + J\

avec J\ XJq A une indéterminée

En tant qu'espace vectoriel J est donc %i gradué. On verra par la suite que J est une
algèbre ^-graduée, soit AJi J0, mais dans un sens différent de celui usuellement utilisé.
On considère le sous-espace vectoriel T C EndJ x EndJ des éléments de la forme :

F (Mf,DF)

avec Mf, l'opérateur de multiplication par / dans J :

Mf.J —> J

gr~,Mf(g) P0(f,g)
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et DF, une dérivation de J :

DF:J —y J

g .—» DF(g)
DF(P0(g, h)) P0(DF(g), h) + P0(g, DF(h))
Sg,h € J

La condition pour que DF soit une dérivation de J s'écrit aussi :

[DF,Mg]=MDF(g)

Remarque : on a donné à T la structure d'espace vectoriel canonique.
On fait de T une algèbre en y définissant pour deux quelquonques de ses éléments F et G,
F (Mf,DF) et G (Mg,DG) :

FG= (mpo(/„) -X[\(MD^ -"*,</))]'5^°]
où :

[DF, DG] =DFoDG-DGoDF
et o étant la composition usuelle des endomorphismes de J. Nous avons bien défini là une
application bilinéaire de T x T —» T. Soit :

[F, G]=FG- GF

Pour F (Mf,DF) et G (Mg,DG) on obtient :

[f'g1 a(mDf(9)-mDg(/),[Z)f,ög])

On a les propriétés :

(i) [F,G] -[G,F]
(ii) [F, [G, H}} + [H, [F, G]} + [G, [H, F}] 0

Muni du produit [.,.], T est une algèbre de Lie [10].
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Chapitre III : Déformations

Soit A une algèbre sur un corps K et V l'espace vectoriel sous-jaçent à A. Le produit P
de A est une application ii-bilinéaire :

P :V xV —yV

Soit V[[t]] le J\-espace vectoriel des séries formelles dans l'indéterminée t, soit les éléments
de la forme :

u(t) (uo,tUi,t2U2,...,tnUn,tn+1Un+1,...)

Toute fonction 7<"-bilinéaire de V x V dans V, en particulier P peut être étendue à une
fonction 7\-bilinéaire de V[[i\] x V[[t]] dans V[[£]]. Supposons qu'il existe une fonction
A'-bilinéaire :

/W : V[[t}} x V[[t]] —» V[[t]}

telle que Va, b G V[[i]], on ait :

[/(<)(«,6)]n= E *m«.a)
i+>+k=n

où ai, 6j, G ^4 et i^ est une fonction TT-bilinéaire deVxV—yVetoùF0=P. Supposons
que P munisse A d'une structure d'algèbre "qualifiée" c'est-à-dire (^4, P) est une algèbre
soit associative, soit de Lie, soit de Jordan. Supposons encore que /''' conserve la
qualification originale celle donnée par P de A. On dira alors que /*¦*' est une déformation
de la structure d'algèbre qualifiée de A.

III.1 :Applications

III. 1.1 : Déformations d'une structure d'algèbre associative.
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Dans ce cas l'algèbre de départ A est associative. On doit avoir :

fW(fW(a,b),c)=fW(a,fV(b,c))
Va,6,ce V[[t}] donc

J2 Fk(F,(ar,b3),Cj) - Fk(ar,F,(bs,cj)) =0
r+«+j + * + l ">

VmGlN

En particulier pour a, b, c G A donc la composante d'ordre 0 de V[[t]] on obtient :

E Fk (Fi(a, b), c) - Fk (a, F,(b, c)) 0

k+l=m

Ce qui donne pour m 0 :

Fo (F0(a, b), c) - F0 (a, F0(b, c)) 0

P(P(a,&),c)-P(a,P(6,c))=0

ce qui est la condition d'associativité que satisfait par hypothèse l'algèbre originale. Pour
m 1 on a :

(*) Fi(F0(a,b),c) + F0(F1(a,b),c) - F0(F1(a,b),c) - F1(a,F0(b,c)) 0

L'équation obtenue permet d'aborder les problèmes de "rigidité" :

On dit qu'une algèbre est rigide si toute déformation est équivalente à la déformation
triviale celle où tous les Fi sont nuls On ne précisera pas l'équivalence voir [3]

On obtient des informations sur la rigidité de l'algèbre en étudiant sa cohomologie. Dans
le cas associatif, la cohomologie étudiée est celle de Hochschild. La relation (*) permet
d'identifier Pi comme un élément de Z2(A, A) l'espace des deux cocycles de A à coefficients
dans A de cette cohomologie. On a le résultat que si :

H*M A) - Z2(A>A)" [A'A)~ B2(A,A)

est trivial alors l'algèbre est rigide. B2(A, A) : espace des deux cobords de A.

III.1.2 : Déformations d'une structure d'algèbre de Lie.
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Dans ce cas l'algèbre de départ est de Lie. On doit avoir :

(i) /W(a,o) -/«(ô,a)
(n) /(<)(fW(a, b), c) + /(<) (/(<)(6, c), a) + /<«> (/«(c, b), a) 0

Va, 6, c G V[[t]] donc

(i') E i?Jb(a.-,6j)--c?ifc(&/,a,-) 0

i+j+fc=m

(il") E F,(Fk(ai,bj),c3)+Fl(Fk(bj,c3)ai)+Fl(Fk(c3,ai),bJ)=0
i+J+«+t+l m
i,>,«,*,I,m€N

en particulier pour a, b, c G A :

(t") Fk(a,b) -Fk(b,a)

(ii") E F,(Fk(a,b),c)+F,(Fk(b,c),a)+F,(Fk(c,a),b)=0
l+k=m

Pour 77i 0 on récupère la condition posée par hypothèse que A soit de Lie. Pour m 1

on obtient que Pi doit appartenir à l'espace des deux cocycles de A à coefficients dans A
de la cohomologie de Chevalley de A. (voir[3,4]).

III.1.3 : Déformation d'une structure d'algèbre de Jordan.

Dans ce cas l'algèbre de départ est de Jordan. On recquiert :

(i)fM(a,b) fW(b,a)

(n)/(<) (/(()(a, a), /«(a, b)) /« (a, /<«> (/«(a, a), b))

Pour a, b G A on obtient :

(z')P*(a,6) F*(6,a)

(ii') E ^(^(a,«),^(a,6))-^(«,^(^(«,a),&))=0
«+i+fc=m

Pour m 0 on récupère l'hypothèse faite sur la nature de Jordan de l'algèbre originale.
Pour m 1, la relation obtenue ici force la définition d'une cohomologie appropriée de A,
dans laquelle Pi sera vu comme un deux cocycles de A à coefficients dans A
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Chapitre IV : Mécanique

On peut maintenant aborder la mécanique d'une particule et voir dans quels cas il est

possible de ne pas décider à l'avance de la nature quantique ou classique de cette particule.
On va d'abord reécrire dans le cadre ci-dessus proposé les deux théories.

IV. 1 : Le cas classique

Soit TV C°°(R2n,R) l'espace des fonctions C°° de R2n dans R que l'on munit d'une
structure d'algèbre pour le produit usuel. Soit :

J Jo © Ji J\ A Jo Jo N

On définit Vf,g€ J :

M(p,q) f(p) (q)(f-g)i A' J2 (-i)M(M)/(p)-<?
p+»='
p,q,i&Z

p q l;
autrement.

Les dérivations de J sont de la forme :

X JT<°> + \X^ Xw, X(1) G H°°(R2n)

On a donc :

{f= (Mf,DF)\f £j,DFe Derj}

et :

A
VP,GG^ ™=(M,3 + -MDp(g)_DGU),-[DF,DG])

&G)=X{MD^-o*UvIDf>DgÏ)

En particulier avec F (M/,0) et G (0,XG) on a :

[F,G]=(-\MXaf,0)
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IV.2 : Le cas quantique

Il faut considOrer pour l'instant ce qui suit comme des définitions. Ce n'est que dans le
cadre de l'espace de Hilbert que l'on aura la justification de la qualification quantique de

ce cas. Considérons l'espace vectoriel TV sur Rdes fonctions polynomiales sur R " à valeur
dans Rainsi que des fonctions S de R2" dans R. Soit Vjv[[<]] l'espace des séries formelles
dans l'indéterminée t à coefficients dans TV. Sur Vjv[[<]] on définit le produit :

Po M : Vtf[[t]) x Vs[[t]] ¦— VN[[t]]

(u ,v)i—y P0(u,v)

avec :

[Po(u,v)]n= E pk,o(ui,Vj)
i+j+k=n
(-1)" 2kPk,o(u„Vj) {ui,Vj}

et {ui, Vj} Ui.Vj

où dans une base Pi,P2,---Pn,Qi,Q2, ¦¦¦Çn de R2n on a :

tu v\2k *«iftA»!& \<*2kß2kß UQ v\u,UJ — /«t,\| " "aioj...«« uuß\ß-i...ßiku

P Q

(A«ß)=p(0 -In\
q\i« o ;

Soit :

j«=jr©Aj0w j^=vN[[t\]
On étend le produit P0 à jW comme suit :

V«,VGJ« [P^(u,v)]n= E H%i,Vj)
i+i+k=n

pkl ¦ (N © XN) x (TV 9 ATV) —> TV © ATV

[rf&<*>"i)]->t{-Qk E (-^)MM(\T{^)^)yk
2k

p+q=l
p,q,i&b

u|p) G XpN,v<f) G A»TV

«<«)={;; i'-,_liautrement.

On a que P0 est une déformation de la structure d'algèbre de Jordan de J. Pour obtenir le
cas quantique, il va falloir donner une valeur à t, ce que l'on fait en considérant l'application



Vol. 63, 1990 Boulât 951

linéaire :

rpO) :VW __ N

u Ea""n tt£ß

où T>a C Vjv[[t]], est donc l'ensemble des séries composées d'éléments de TV, sommables
dans TV pour la valeur particulière t a, a G R. Voyons ce qu'il en ait de la stabilité de

Va vis-à-vis du produit Po (cas a ^ 0, le cas a 0 étant trivial) :

(l)Soient u,v G T>a tels que les un soient des polynômes et n fini. Vu la définition des

Pk,o on obtient alors une somme finie pour t/>„ IP0 (u,v)\.

(2)Soient u,v G T>a tels que xjya (u), tp„ (v) G <S(R2n). On peut montrer alors que
^4° (p0(0(m, v)) G 5(R)2n, ceci pour la valeur a 1. [Voir D. Arnal,[5]].

Le cas quantique correspond justement au cas a 1. Au cas a 0 correspond la restriction
du cas classique au TV défini dans ce paragraphe. Dans le cas où l'on a donné une valeur
à t, selon le schéma introduit ci-dessus on a :

[p0%)W)]=E«B E pio(«*.»i)

Dans le cas quantique on a donc :

/ G TV © ATV

Dp une dérivation pour ce produitT=\(Mf,Dp)

IV.3 : Le cas canonique

Supposons que Jo en plus d'une algèbre de Jordan, soit une algèbre de Poisson c'est à dire
que J0 est muni d'un produit Px tel que Jo, Pi) soit une algèbre de Lie et V/ G Jo, P\(f, ¦)
est une dérivation de J0 relativement au produit P0 soit :

Pi (f,P0(g,h)) Pi (P0(f,g),) + P1 (g,P0(g,h))

On étend Pi à J J0 © A J0 de la façon suivante :

Pi(f,g)= E A'+«(-i)m(™>P1 (/w,y<«>)
p,q=0,l
PA<3k

KP,q) \0, autrement.
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On a alors que V/ G J, Pi(/,.) est une dérivation de (J, Po). Considérons le sous-espace
vectoriel C de T formé des éléments :

F (Mf,Dp)
avec DF P\(u,.) u Ç. J

Pour F (Af/,Pi(u,.)) et G (Mg, P,(v,.)) on a :

FG= M„„ + è^/ N,£[Pi(u,.),Pi(»,.)]
I ft(/,f) 2 (ft(.,,)-i\(.,/)j'2l n ;' u n

M„,t + -M/ x,^Pi(Pi(w,u),.)i
^ *.(/,«) x 2 (ft(«,,)-ft(.,/)j'2

1V U ' h 'J

Par conséquent C est une sous-algèbre de T. En particulier considérons dans la définition
de F et G, u f, v g. On obtient :

TO-K^ + 5M(^-^)'^^^->
M/ \,ôA(Pi(/,5),.)I (Po(/,s)+APi(/,«)J 2

On voit qu'ainsi on a définit sur J un nouveau produit :

P P0 + APi

IV.3.1 : Le cas canonique classique

On prend J comme dans le cas classique. On définit P\(f,g) comme :

Pi(f,g) \ E A>+«(-ir<M>{/<'V'">}
p,q=0,l

{/W,*W}
est le crochet de Poisson de / et g, lui-même défini de la manière suivante. Soit fi la
deux-forme symplectique sur R2n. On définit :

{/«^•>}^Wy(i)fi
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où Yf({\ et Yg(j) sont tels que :

iYjU fi <fc«>

Dans les coordonnées canoniques pi,P2, ¦¦¦,Pn,gi, 92> • ¦¦,(ln de R n on écrit :

1
2n

fi — 7 dpi A dgi

d'où {/(i),0(i)} ^A^aa/«a^

avec (A«*)=(£ t""

IV.3.2 : Le cas canonique quantique

On fait la même remarque que dans le cas quantique. Considérons V}v[[*]] comme dans le

cas quantique. On définit P{ comme suit :

[A(t)Mn= e ^(^v»)
i+j+k=n

où P™ : (TV © ATV) x (TV © ATV) —? TV © ATV

et [Piïifugjf E V+<(-VmM (l)2k+\fîP\9?}2k+1
p+q+l=l ^ '

OÙ lf{p) aiq)\2k+1 - — \<*ißi\<*2ß2 \c2h+1ßlk+lg r(p)aou Wi )J/j J ~ (01.4.1)! " c'aiQ'2..a2* + lJi uPlP2—P3k+iyj

On a que Pj est une déformation de la structure d'algèbre de Lie de J. Le cas quantique
canonique correspond au cas t 1, dans l'esprit de ce que l'on a fait précédemment pour
le cas quantique.
Soit :

p(t)=P0(t)+AP1W
Considérons l'application bilinéaire :

P(D VÏ0 0 P« 0<«> o P0(0 + Atf<° o pW

p(1) + p(1)

où P0(1) #oPf Pffa^cPf

(î)
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Le produit :

P'1' P0(1) + APj(1)

est un produit de type Moyal c'est, à l'identification de A et fa-î i près, le produit de

Moyal On peut montrer que c'est seulement pour cette valeur t 1 que le produit est

associatif.

IV.4 : Discussion des résultats

On a vu dans un premier temps quelles structures algébriques on pouvait construire, qui
puissent contenir au niveau de l'algèbre des observables et des dérivations de cette algèbre
le cas classique et le cas quantique comme cas particulier. Ce cadre est unique que la
particule soit classique ou quantique. Dans le cas classique on sait que les dérivations de

l'algèbre des observables C°° sont les champs de vecteur C°° On les a dans notre
formalisme et l'on peut donc considérer des évolutions qui ne sont pas hamiltoniennes.
Dans le cas quantique l'algèbre de Jordan des observables est spéciale soit A une algèbre
associative, d'espace vectoriel sous jacent V, et dont le produit est noté P, l'algèbre de

Jordan spéciale J associée à A, est l'algèbre de même espace vectoriel sous jacent V, mais
dont le produit est le symétrisé du produit P On sait montrer dans le cas algébrique
dimension finie que l'ensemble des dérivations d'une algèbre de Jordan spéciale coïncide
avec celle de l'algèbre associative associée (voir Jacobson[9]). Nous ne sommes pas dans
le cas algébrique et nous pouvons seulement montrer que toute dérivation de l'algèbre
associative associée à notre algèbre de Jordan, est une dérivation de cette algèbre de

Jordan.

Dans le cas canonique on écrit l'unique équation d'évolution pour une particule :

Soit H (0, [ —h]p(t)) une dérivation de J**' avec h G V}v[[i]] et soit F3 I M 0 1

on écrit :

MR£^] =[F„H]

Pour t 0 on obtient :

j-sF3 (M{flM,Q)

qui est bien l'équation d'évolution déterministe réversible classique " en Heisenberg" Pour
t 1 on obtient :

AAéF'=(Mt'-fcW)'°)

On peut d'ores et déjà annoncer que cette équation est l'équation d'évolution déterministe
réversible en "Heisenberg" d'une particule quantique. Il faudra cependant attendre les

résultats du chapitre suivant pour avoir une justification totale de ce fait.
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V : Mécanique dans l'espace de Hilbert

V.l : Une représentation particulière de l'espace de Hilbert

On décrit sommairement cette représentation. Pour plus de détails, on consultera [10].
Soit :

Go(p, «)=(£)'exp (-*-£*-

Gm(p,q) h) m! (q-ip)mGo(p,q)

et soit Q l'espace vectoriel complexe des combinaisons linéaires des Gm, m G N, tel que
l'application :

(,,.):ÇxÇ—><E
(G,G')r-^(G,G')

(G,G') JJ^(G.G')(P,q)(^dpdq^

soit définie. définit sur Q un produit scalaire, soit une forme hermitienne définie
positive. On a :

D'où pour G Y,m otmGm am G C, Vm.

<g,g> EK»|2
m

La condition pour que G J2m amGm appartienne à Q est donc que :

El«m|2 < OO

m

La convergence forte dans Q implique la convergence en chaque point. L'espace de Hilbert
G est donc un espace de Hilbert de fonctions. De plus :

\po,qo}:Q—?€
Gi—y G(po,qo)

L'application [po,Ço] est V(po,<7o) G R2 une fonctionnelle linéaire bornée d'où par le théorème

de Riez :

G(po,qo) (Cp0,q0,G)
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pour un ePOigo uniquement déterminé et VG G Q. On déduit :

|G(Po,«ô))| |(c,.,,„,G)|<||e,0,,0||||G||

L'inégalité étant l'inégalité de Schwartz. Les vecteurs ePiî seront appelés les vecteurs
principaux. On a :

(G, H) jj 2(G,ePtg) (ePt1,H) \(dpdq)

Les \ePtq, (p,q) G R } forment un ensemble complet.

On montre que L2(R, dx) et G sont unitairement équivalents.
Soit A cet isomorphisme unitaire. A établit un isomorphisme entre les opérateurs linéaires
sur L2(R, dx) et ceux sur G, notamment :

M A'1 LA

où L est un opérateur dans G et M un opérateur dans £2(R, dx). Les domaines respectifs
sont reliés par :

V(M) A~1V(L)

Soit dans L2(R,dx) les opérateurs :

âf — (x - ¦£-} V (a*) C X2(R, dx)

â=-j=(x + j-} V(à)c L2(R, dx)

Définissons dans G les opérateurs a* et a comme suit :

(a*)(p,q)

(aG)(p,q)

_1

V2[
1

72

(q - ip)G(p, q) + — (dp - idq) G(p, q)

ih
(q - ip)G(p, q) + Y (dp - idi) G(p>q)

Dans les deux cas la définition est valable si le membre de droite est un élément de G, ceci
définissant dans G les domaines D (a^) et D(a) de a' et a respectivement, â* et â étant
des opérateurs fermés on a que AcAA~l eiAàA*1 sont fermés et on vérifie :

D'où l'on tire pour :

AiïA-1 af

A aA~l a

(AXA-1 G) (p,q) qG(p,q) + ^dpG(p,q)

h d 1 / tset pour — -— — —t= (a — a'
i dx iy/2 v '

hd^
i dx

A'1 G (p,q)=pG(p,q) - ^dgG(p,q)
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On peut maintenant revenir à la justification du cas quantique défini au paragraphe IV.3.2
Pour ce faire identifions A à i y/—ï dans le produit P^fa On a :

PW (q, G) (p, q) qG(p, q) + ~dpG(p, q)

P«1» (p, G) (p, q) pG(p, q) - jdgG(p, q)

Convenons d'écrire P'1', P et définissons lp et lq comme :

lq(G) P(q,G)
lp(G) P(P,G)

On a alors identifié dans notre représentation les opérateurs de position et de quantité de

mouvement comme étant respectivement lg et lp. On vérifie :

[lq, lp] IqOlj, - lpolg =itl

Ainsi se trouve justifié à posteriori la dénomination quantique apparaissant dans le chapitre
IV.

Soit l l'opérateur qui agit dans G de la manière suivante :

°G„

'pGn(G) P(^F(Gr«'G")'G)

Z est VG„ un projecteur. Si G G G, le projecteur sur G s'écrira :

1

Pa a2 v ' ' a2l^=-2P(G,G) -2G,G

V.4 : Applications

Soit r RJn et S { S G Aut (r) 5*fi fi

Aut(r) : l'ensemble des automorphismes de Y.
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fi : La deux-forme symplectique.

S est un groupe. Pour S G S définissons :

Us -G —» G

G i—y USG tel que :

(Usg)(a) as(a)G(S-1(a)) a e T.

as: S—?€, \as(a)\ 1 Va G T

Us a les propriétés :

•Us est linéaire.

• (USG, USH) (G, H) VG, H G £. En effet la forme volume sur T est ßfi" et l'on a :

S*fin fin fin=fiAfiA...Afi
•Us1 Us-i
De plus on a :

(UsG)(a) (ea,UsG) (Us-rea,G)

(UsG)(a) as(a)G (S'1 (a)) (ss(«)V(.)'G)

d'où :

Inversement supposons que

On a alors :

D'.

Usca as(a)eS(a)

Usea as(a)eS(a)

(UsG)(a) (ca,UsG)

(ss(«)Vi(.)'G)

«s(a)G(5-1(a))

(Z7sG)(a) as(a)G(5-1(a)) VG G G

Soit {V7,7 G R} un groupe à un paramètre continu, unitaire dans l'espace de Hilbert. Via
le théorème de Stone on a :

d

%U^ Bif>
7=0

B auto-adjoint.

Ayant identifié B comme un /&, b une fonction sur R " on a dans notre représentation,
pour lpa le projecteur de rang 1 associé à G G G '•

[h,lpG] k>>,Po]p^u^u-1
7=0
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On a fait d'autre part l'hypothèse que Uy soit tel que l'on puisse définir [6, PG]P- Dans les

coordonnées pi,qi,i 1,2, ...n, si 6 est tel qu'il soit au plus quadratique en les pi,qi on a :

[b,PG] [b,PG]pm

Via l'isomorphisme qui à une 1-forme associe un champ de vecteur, donné par :

ixfi <—? X

on associe à db le champ de vecteur Xi, :

iXbiï db

Xf, définit alors un groupe à un paramètre 57 d'automorphismes de F tel que :

(i) s;n fi
(ii) Si Vs est le groupe à un paramètre unitaire, continu dans G associé à 57 :

(VSlG)(a) G(S-1a)

On a alors :

r. d„ Tr_x]
[1>,Pg1p(0)L-J^^1

7=0

h^Poip

Pour V (G) l'espace projectif associé à G, U-, et Vs., définissent la même transformation :

U7 ß(j)Vs, \ß(j)\ 1

Donc on retrouve le fait bien connu de l'impossibilité d'une "règle de quantification "au
delà des polynômes quadratique en p, q. Ceci provient du fait que la dérivation [b,.]p
coïncide avec [6, .]P(0) seulement si b est au plus quadratique en p et q.

On a cependant le fait intéressant suivant :

Moyennant l'identification d'un état classique (p0,qo) G R2 avec le rayon de l'espace de

hilbert ep0]îo G G, on peut écrire une équation d'évolution unique, en Schrôdinger, pour
le cas quantique et classique. Ceci n'est du reste pas limité à l'équation d'évolution,
mais s'applique aussi aux équations que l'on obtient en considérant les représentations
des groupes à un paramètre de Symmetrie du système dont le générateur peut s'exprimer
comme une fonction en p et g compatible avec le produit P.

Supposons qu'une particule soit soumise à un potentiel V(q) où V(q) est un polynôme ou
encore une fonction S en q. l'hamiltonien H s'écrit :
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Sans connaître la nature quantique ou classique de la particule, on montre que l'on peut
écrire l'équation d'évolution :

ih-PG [H,PG}p{t)

où PG est défini comme précédemment. Traiter le cas quantique revient à faire t 1 dans
PW. Le cas classique consiste lui à choisir pour G un ep q,p,q G R et à faire t 0 dans
p(<).

Deux oscillateurs couplés

Nous allons traiter le cas de deux oscillateurs couplés. Comme dans la méthode usuelle on
va considérer un changement de variables amenant à considérer deux particules fictives,
l'une au centre de masse et l'autre appelée relative. La nouveauté introduite par un des

auteurs dans un problème similaire, toutefois traité là dans le formalisme habituel [11]
consiste à considérer la particule lié au centre de masse comme une particule classique.
Soit donc deux oscillateurs de même masse, couplés par un ressort. L'hamiltonien de ce

système s'écrit :

p2 p2 1 1
h 2^ + 2rï + 2ma;2(91 ~ a)2 + 2mw2(92 + a)2 + Xmuj2^1 - q2)2

Effectuons le changement de variables :

fa
qa 2(91 + 92) qr qi - 32

pa pi + P2 Pr 2^1 ~ P2)

On postule donc que les variables du centre de masse sont des variables classiques, ce qui
revient à dire que l'algèbre de Jordan générée par les pG et qG est selon le schéma introduit
au paragraphe IV une algèbre de Jordan classique. Les variables de la particule relative
seront elles considérées comme quantiques, donc l'algèbre de Jordan qu'elles génèrent sera
une algèbre quantique (voir IV). La connaissance de l'algèbre générée par les pG et qG et
de celle générée pax les pr et qr nous permet de connaître quelle type d'algèbre engendrent
lespi,9i et p2,92-
Il n'en demeure pas moins que dans notre formalisme nous ne sommes pas obligés à ce
stade de choisir la nature classique ou quantique des particules fictives en présence. Voyons
le déjà dans le formalisme du paragraphe II :

Soit a une observable relative à la particule liée au centre de masse, a est donc de la forme

a ai ® I
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Dans le formalisme du paragraphe III on lui associe A (Ma,0). La forme d'une observable

b liée à la particule relative est :

b I ® b2

Dans le formalisme du paragraphe III on lui associe B (M&,0). L'hamiltonien du
problème s' écrit :

2 2 4A
1 (g) mu a

1+4A
hG ® I + I ® K
TiG + Tir

où : u>g u et u>r a>(l + 4A)ï A TiG et Tir sont associés :

HG (0,[ ,-HG]pit))etHr (0,[ ,-nr]p(l))

Soit A3 (resp. à B3) la courbe dans l'espace des observables associées à A (resp. à B), on
a I' équation du mouvement :

A (hfsAs) [AS,HG] (resp.A (n^B^ [B3,Hr])

Si l'on préfère se placer en Schrôdinger, on écrit quelles que soient la nature des variables
considérées, l'équation de mouvement :

iK—j^- \h,Pc]P(t)

PG est de la forme PGa (g> PGt; on obtient alors les équations:

ih~Jj~ pV-PggW)

*R-jrr' [hr,PGr]p(<)

On peut alors résoudre ces équations sans donner encore une valeur à t. Après cela on peut
se ramener au choix fait précédemment sur la nature classique ou quantique des particules
fictives en présence et par conséquent choisir comme condition initiale pour PGa un GG

égal à un eP]î, et faire t 0 et comme condition initiale pour PGr un Gr égal à l'un
quelquonque des vecteurs de G et faire t 1.
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CONCLUSION

Dans ce travail nous n'avons pas cherché à déduire la mécanique quantique de la mécanique
classique ou inversement. Cependant certains objets et structures communs nous ont
permis de construire dans le chapitre II un formalisme mathématique entièrement nouveau
et suceptible de développements ultérieurs. Au niveau des observables nous avons considéré
la structure d'algèbre de Jordan comme étant la structure physiquement importante, ce

qui nous a conduit à déformer cette structure en premier lieu. Nous avons pu par la suite
faire le lien avec le formalisme de déformations de structures d'algèbre associative et de lie
déjà introduites dans [7]. On notera à ce propos qu'ici nous nous sommes limités au cas
plat ou local mais que de nombreux résultats concernants le problème de déformations
de C°°(W), W une variété symplectique ou de Poisson, existent [12,13,14].
Enfin la représentation "pseudo-Bargmann" introduite dans le chapîte V s'appaente n
la technique d'états cohérents bien connue [15], mais le fait d'utiliser le formalisme de

déformation "en Schrôdinger est original et permettra peut-être dans le futur de voir sous
quelle conditions une particule peut perdre des propriétés classique tout en gagnant des

propriétés quantiques ou inversement.
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