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MECANIQUE DANS L’ESPACE DE PHASE
L’APPROCHE DES DEFORMATIONS

B.BOULAT

DEPARTEMENT DE BIOCHIMIE
UNIVERSITE DE LAUSANNE
CH-1066 EPALINGES SUISSE

(22. II. 1990, revised 28. V. 1990)

Abstract: This paper is concerned with the mechanics of a particule. Firstly, we construct an algebraic
structure which allow us to recover all the mechanics, this structure does not depend on the classical or
quantal nature of the particule. With the help of the deformation theory of algebraic structure we link the
two cases, classical and quantal, more closely. Secondly we define a representation of the Hilbert space,
very next to the Bargmann representation, the properties of which allowing us to treat in a unique way
the reversible dynamics of an either classical or quantal particule.

Ce papier traite de la mécanique d’une particule. Premiérement on construit une structure algébrique
nous permettant de retrouver toute la mécanique, cette structure ne dépendant pas de la nature classique
ou quantique de la particule. Avec ’aide de la théorie des déformations des structures algébriques nous
relions les deux cas, classiques et quantiques, de maniére plus forte. Deuxiémement nous définissons une
représentation de ’espace de Hilbert trés proche de la représentation de Bargmann, dont les propriétés vont

nous permettre d’écrire de fagon unique la dynamique réversible d’une particule classique ou quantique.
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INTRODUCTION

Ce qui est connu sous le nom d’ ” axiomatique quantique ”[1],[2], a développé un ensemble
de concepts physiques d’ot1 ’on peut dériver une structure mathématique & méme de décrire
une particule physique. Les qualités ” quantique ” ou ” classique ” ne jouent pas de role
au niveau du développement de la théorie, mais apparaissent comme solutions possibles
de problémes posés a 'intérieur de cette théorie.

Cependant les calculs se réalisent usuellement dans des représentations particuliéres de ces
solutions, obligeant & décider de prime abord de la nature quantique ou classique de la
particule. Le but de ce travail est de développer un formalisme mathématique permettant
d’éviter ce choix primordial et de ne le faire qu’a posteriori, & la fin du calcul. Voyons dans
quelle mesure ceci a pu étre réalisé.

Physiquement une particule est caractérisée par ses propriétés. Ce qui conduit a choisir
un ensemble d’observables. L’ensembles des propriétés actuelles déterminant ’état. C’est
sur ces deux notions d’observable et d’état que 'on va s’appuyer.

L’exposé va s’organiser de la fagon suivante :

Le premier chapitre est consacré a des rappels de mécanique classique et quantique. Dans
le second chapitre on parle d’observables et de dérivations; plus précisément on y construit
une structure algébrique qui permettra de traiter indifférement le cas quantique et le cas
classique. Le troisieme chapitre exposera succintement le formalisme de déformation du
produit d’une.algebre.

A Taide des éléments introduits dans les chapitres deux et trois on va pouvoir dans le
chapitre quatre parler de mécanique et retrouver dans un formalisme mathématique unique
le cas classique et le cas quantique, bien que ce dernier ne soit a ce stade pas pleinement
justifié, car pour cela on doit se placer dans le cadre de 'espace de Hilbert. Pour ce
faire dans le chapitre cinq on va décrire une représentation particuliere de l'espace de
Hilbert. Outre la justification du cas quantique précédement introduit, les propriétés
de cette représentation vont nous permettre d’écrire dans le cas réversible une équation
d’évolution unique, au niveau des états. On va retrouver aussi de fagon transparente le
théoreme de Van Hove sur 'impossibilité d'une régle de quantification générale.

Chapitre I : Rappels

1.1 : Mécanique classique
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On représente ’état d’une particule classique par un point d’un espace a sept dimensions
Y, I'espace des états de cette particule. Ce point donne l'instant actuel du temps, ainsi que
la quantité de mouvement et la position actuelles de la particule pour cet instant. L’espace
des quantités de mouvement et des positions est appelé ’espace de phase et on le note T'.
Dans tout ce travail on identifiera I' & R*".

Une observable est la donnée a chaque instant d’une fonction sur I'. L’ensemble F(I') des
observables, muni de la structure d’espace vectoriel et du produit usuel des fonctions sur
R?" forme donc une R-algébre commutative, triviallement de Jordan.

Soit F(T') D N = C*(T;R), l’algébre des fonctions C* de I' dans R. Soit Z*°(T"), ’algébre
des champs de vecteurs C* sur I'. = peut étre identifié a ’algebre de lie des dérivations
de N.

L’évolution de la particule est la donnée d’un champ de vecteur X' sur ¥, tel que :
X'=0,+X X € B*°(T)

Si X ne dépend pas de t, on peut se restreindre & calculer sur I'. Par définition X est
hamiltonien si 'on peut écrire :

ixQ=—dH

ol {2 est une deux-forme symplectique sur I' et H € N. La deux-forme symplectique induit
sur N une structure d’algebre de Lie donné par le crochet de Poisson :

Vf,g e N on a {f,9} =ix,ix,9

ou
Xy est tel que ix,§d =df

Ky est tel que ix,§d=dg

Soit ¥ un champ de vecteur sur £. Une courbe intégrale de Y par ¢ € ¥ est une courbe
v lisse satisfaisant :

D) =¥(x(s)  ~(0)==

Si f est une fonction sur ¥ on définit, pour s € R :
fs = ¢:f = f 0 ‘753
ou ¢sest la projection du flot définie par Y soit:

¢ :DxR-—%
(p,s) — o(p, s) = ¢s(p)

tel que :
qbs’ o Qﬁs = d)s-f-s'

d
d_3¢sls=0 b Y
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on a : p
Efs = Lyfs = Y-fs
Les intégrales premiéres sont telles que
Y.fs=1

soit avec :
Y=0,+X X e==()
asfs = _Xafs (*)

ceci définit un probléme aux limites une fois fy donné. fy = fo(a,.). On choisit s = ¢, t le
temps. Considérons X indépendant du temps. X définit alors un flot 3, sur I'. Soit :

fo(a) = fo(e(a),0) = ¥ fo(a,0)  (x*)

avec comme condition initiale fy(a,0).Les f¢ sont des fonctions sur I' qui prennent en
a la valeur que prend la solution du probléme aux limites (*) pour la condition initiale
fo = fo(th¢(a, 0) soit donc une valeur égale a fo(1¢(a,0). On a défini ainsi une courbe dans
'espace des observables, courbe satisfaisant 1’équation (*x).

Danslecasoi X ={ . ,H} on obtient :

d
(_i-t"fg = {fgaH}

Par analogie avec la mécanique quantique on appelerait cette équation d’évolution, I’équation
en forme Heisenberg.

[.2 : Mécanique gquantique

L’état d’une particule quantique est la donnée de l'intant actuel ¢ et d’un rayon dans
I’espace de Hilbert complexe, H;. A chaque observable est associé un opérateur auto-
adjoint dans H;. On postule que I’ensemble des observables forme une R-algebre de Jordan
J. On ne postule pas ceci de fagon générale, mais on montrera en se plagant dans une
représentation particuliére de ’espace de Hilbert que I’on peut considérer ce produit comme
le symétrisé du produit de Moyal. Les dérivations sont celles de J. Elles contiennent comme
sous-espace celles de I’algébre de Moyal.

L’évolution d’une particule quantique est une évolution qui préserve sa nature quantique,
soit la structure de ’espace de Hilbert et a I'intérieur de celle-ci I'interprétation des états
et des observables. Une évolution déterministe et réversible est la donnée d’un groupe a un
parametre d’opérateurs unitaires dans l’espace de Hilbert, les H, étant considérés comme
identiques entre eux. Pour une telle évolution soit P; le projecteur représentant 1’état, on
a ’équation :

d

ihEPt = HP, — P,H = [H, P]
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ou H est le générateur auto-adjoint de 1’évolution et % est la constante de Planck divisée
par 2m. H est considéré indépendant du temps. Ceci étant la version qu’on appelle
"Schrédinger” de I’évolution déterministe réversible. Dans la forme Heisenberg 1’état est
fixé et ce sont les observables qui dépendent du temps. Pour une observable A on obtient

alors :
d

ZhaAt == [At,H]

avec H toujours indépendant du temps.

Chapitre II : Observables et Dérivations

Soit une particule. On postule que les observables associées a cette particule forment une
algebre de Jordan J réélle dont on note le produit, en tant qu’application bilinéaire de

Jx Jdans J, P, :

Py:JxJ—J

(f)g) = PO(fsg)
Pg()\f+,ug,h) = A-PO(fa h) +”P0(g,h)
Vf,g,h€ J, A peR

Po(f.9) =Po(9,f) Vfigeld
PO(PO(faf)v'Pﬁ(fg)) = Po(fa-PO(PO(f?f))g) Vf1g €J

On suppose de plus J de la forme :
J=Jo+ N1
avec J1 = AJyp A une indéterminée

En tant qu’espace vectoriel J est donc Z, gradué. On verra par la suite que J est une
algebre Z,-graduée, soit AJ; = Jy, mais dans un sens différent de celui usuellement utilisé.
On considére le sous-espace vectoriel F C EndJ x EndJ des éléments de la forme :

F = (Mj,Dr)
avec My, 'opérateur de multiplication par f dans J :
Mi:J —J
9+ Mg(g) = Po(f,9)
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et Dp, une dérivation de J :

DF :.] — J
g+— Dr(g)
Dr(Py(g,h)) = Po(Dr(g), h) + Po(g, Dr(h))
Vg,h € J

La condition pour que DF soit une dérivation de J s’écrit aussi :

[Dr, M| = M, (o

Remarque : on a donné & F la structure d’espace vectoriel canonique.
On fait de F une algebre en y définissant pour deux quelquonques de ses éléments F et G,

= (Mf,DF) et G = (Mg,DG) :

1 A
A= (MPo(f,g) - A[E(an(g) - MDG(f))]’§[DF’DG])

ou :

[Dp,Dg) =DpoDg— DgoDp

et o étant la composition usuelle des endomorphismes de J. Nous avons bien défini la une
application bilinéaire de F x F — F. Soit :

[F,G] = FG - GF
Pour F = (My,Dr) et G = (My, Dg) on obtient :

On a les propriétés :

(z) [F,G]z—[G,F]
(ii)  [F[G,H]] + [H,[F,G]] + [G,[H,F]] =0

Muni du produit [.,.], F est une algebre de Lie [10].
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Chapitre IIT : Déformations

Soit A une algebre sur un corps K et V ’espace vectoriel sous-jagent & A. Le produit P
de A est une application K-bilinéaire :

P:VxV —5YV

Soit V[[t]] le K-espace vectoriel des séries formelles dans 'indéterminée ¢, soit les éléments
de la forme :

u(t) = (ug, tuy, g, ooy t™un, " upgr,..)

Toute fonction K-bilinéaire de V' x V dans V, en particulier P peut étre étendue a une
fonction K-bilinéaire de V[[t]] x V[[t]] dans V[[t]]. Supposons qu’il existe une fonction
K-bilinéaire :

FO VI x VI — Vi)

telle que Va,b € V[[t]], on ait :

[fOa,b)], = Z Fi(ai, b;)

i+j+k=n
i,7,kEN

ol a;,bj, € A et Fy est une fonction K-bilinéaire de V x V' — V et ot Fy = P. Supposons
que P munisse A d’une structure d’algébre ”qualifiée” , c’est-a-dire (A, P) est une algebre
soit associative, soit de Lie, soit de Jordan. Supposons encore que f(*) conserve la quali-
fication originale ( celle donnée par P ) de A. On dira alors que f(!) est une déformation
de la structure d’algebre qualifiée de A.

IT1.1 :Applications

II1.1.1 : Déformations d’une structure d’algébre associative.
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Dans ce cas ’algebre de départ A est associative. On doit avoir :

FO(fO(a,b),¢) = fO(a, fO(b,¢))
Va,b,c € V|[[t]] donc

Y. Fi(F(ar,b,),¢c;) — Fi(ar, Fi(bs,c;)) =0
r+s+j+kt+i=m

Vm eN

En particulier pour a,b,¢ € A ( donc la composante d’ordre 0 de V[[t]] ) on obtient :

Y Fi(Fi(a,b),c) — Fi(a, Fi(b,c)) =0
k+il=m

Ce qui donne pour m =0 :

F, (Fg(a, b), c) — Fy(a, Fo(b, c)) =0
P(P(a,b),c) — P(a,P(b,c)) =0

ce qui est la condition d’associativité que satisfait par hypothese I’algebre originale. Pour
m=1ona:

(%) F (F()((l, b),c) + Fy (Fl(a, b),c) — F (Fl(a, b), c) - F (a,Fo(b, c)) =0

L’équation obtenue permet d’aborder les problémes de "rigidité” :

On dit qu’une algebre est rigide si toute déformation est équivalente & la déformation
triviale ( celle ou tous les F; sont nuls ). On ne précisera pas 1’équivalence ( voir [3] ).
On obtient des informations sur la rigidité de 1’algébre en étudiant sa cohomologie. Dans
le cas associatif, la cohomologie étudiée est celle de Hochschild. La relation (*) permet
d’identifier F; comme un élément de Z2?( A, A) 'espace des deux cocycles de A a coefficients
dans A de cette cohomologie. On a le résultat que si :

Z2(A,A)

HY(4, 4) = B2(4, A)

est trivial alors I’algebre est rigide. B?(A4, A) : espace des deux cobords de A.

I11.1.2 : Déformations d’une structure d’algébre de Lie.
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Dans ce cas ’algebre de départ est de Lie. On doit avoir :

@) FMa,b) = —fU(b,a)
@) FOFD(a,b),¢) + FO(fO(b,c),a) + fO(FD(c,b),a) =0
Va,b,c € V[[t]] donc
&) Y, Fe(aib;) — Fu(bj,a) =0
i+jt+k=m
@) Y F(Fuaib),c,) + Fi(Fr(bj cs)ai) + Fi(Files, ai), b;) = 0

i4itatkti=m
§,5,8,k,l,me

en particulier pour a,b,c € A :

(i“) Fk(a,b) = —Fk(b, a)
(i") Y Fi(Fi(a,b),c) + Fi(Fi(b,c),a) + Fi(Fk(c,a),b) =0
I+k=m

Pour m = 0 on récupére la condition posée par hypothése que A soit de Lie. Pour m =1
on obtient que F; doit appartenir a I’espace des deux cocycles de A a coefficients dans A

de la cohomologie de Chevalley de A. (voir[3,4]).

II1.1.3 : Déformation d’une structure d’algebre de Jordan.

Dans ce cas ’algébre de départ est de Jordan. On recquiert :

(i)f(t)(a, b) = f(t)(bv a)
(i) f O (FO(a, ), fO(a, ) = 19 (a, 1O (£9(a,0),1))

Pour a, b € A on obtient :

(¢')Fi(a,b) = Fi(b, a)
@) Y. Fi(Fj(a,a), Fe(a,b) - F; (a, F; (Fk(a,a),b)) =

t+j+k=m
i,7,k,meN

Pour m = 0 on récupére ’hypothése faite sur la nature de Jordan de ’algébre originale.
Pour m = 1, la relation obtenue ici force la définition d’une cohomologie appropriée de A,
dans laquelle F} sera vu comme un deux cocycles de A a coefficients dans A
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Chapitre IV : Mécanique

On peut maintenant aborder la mécanique d’une particule et voir dans quels cas il est
possible de ne pas décider & I’avance de la nature quantique ou classique de cette particule.
On va d’abord reécrire dans le cadre ci-dessus proposé les deux théories.

IV.1 : Le cas classique

Soit N = C*°(R*",R) I’espace des fonctions C* de R*" dans R  que ’on munit d'une
structure d’algebre pour le produit usuel. Soit :

J=Jo® 1 Ji=A Jo=N

On définit Vf,g € J :
(fogh = & Z (._1)M(p,q)f(p)_g(q)

ptg=l1
p,q,l b
ou : ; i .
_[1, sip=q=1;
M(p,q) { 0 autrement.

Les dérivations de J sont de la forme :

X=X94xx®  xO xO e ==R™)

On.5 dotie :
F={F = (M;,Dy)|f € J,Dr € DerJ
et :
VEGEF  FG=(Mp,+ %MDF Dl % [Dr, Dq))
6] = /\(MDF(Q)—DGU)’ [De ’DG])

En particulier avec F = (M_f,O) et G = (O,Xg) ona:

[F,G] = (—AMXG' f,o)
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IV.2 : Le cas quantique

Il faut consid®rer pour 'instant ce qui suit comme des définitions. Ce n’est que dans le
cadre de ’espace de Hilbert que 'on aura la justification de la qualification quantique de
ce cas. Considérons ’espace vectoriel N sur Rdes fonctions polynomiales sur R®" & valeur
dans Rainsi que des fonctions S de R*" dans R. Soit Vy|[[t]] 'espace des séries formelles
dans I'indéterminée ¢ & coefficients dans N. Sur Vn[[t]] on définit le produit :

Po(t) : Vn[[t]] x VN[[t]] — V([t]]
(u ,v) — Po(u,v)

avec :
[PO(U,U)]n = Z Py o(ui,v;)
i+j+k=n
—1)*
f%p(ui,vj)==( zk) {ui, v;}*"
et {ui,v;}° = uiv;

out dans une base p1, P2, ...Pn, 1,42, ...qn de R*® on a :

1
(2k)!
p q

on=1(0 )

IO =P exs? 5 =il

{u’ U}zk = Aalﬂl AazﬁzmAanﬂzk 3010'2---0’2k u’aﬁlﬂz’---ﬂzkv

Soit :

On étend le produit Po(t) 4 J( comme suit :

Vu,v € J® [Pﬂ(t)(u,v)} = 3 POui,v)
" itjtk=n

P{):(N®AN) x (N @ AN) — N @ AN
(1) I_1\k me (1N [, @12
[Pk,o(“i’vj)]l = A'(-1) Z (=1)™ 3 {ui 2 U5 }

p+g=l
7.9,k

ulP € ¥N\? € AN

1, sip=q=1;
M(p,q)={ P=4

0, autrement.

On a que Pét) est une déformation de la structure d’algebre de Jordan de J. Pour obtenir le
cas quantique, il va falloir donner une valeur a t, ce que ’on fait en considérant ’application
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linéaire :
U — E a™u, a€R

o1 DY ¢ VN [[t]], est donc I’ensemble des séries composées d’éléments de N, sommables
dans N pour la valeur particuliere t = a, a € R. Voyons ce qu’il en ait de la stabilité de

DY vis-a-vis du produit Py (cas a # 0, le cas a = 0 étant trivial) :

(1)Soient u,v € D(t) tels que les u, soient des polynomes et n fini. Vu la définition des

Py o on obtient alors une somme finie pour 1/)( ) (P(t)( ))

(2)Soient u,v € DY, tels que ¢(t)(u) 1/J(t)(v) € S(R®®). On peut montrer alors que
W (p ( ét)(u,v)) € S(R)?™, ceci pour la valeur a = 1.[Voir D.Arnal,[5]].

Le cas quantique correspond justement au cas & = 1. Au cas a = 0 correspond la restriction
du cas classique au N défini dans ce paragraphe. Dans le cas ou 'on a donné une valeur
a t, selon le schéma introduit ci-dessus on a :

t n t
{Pa( )(u,v)] = Za Z P,E,g(u,-,vj)
n t+j+k=n
Dans le cas quantique on a donc :

feN@AN }

Dy une dérivation pour ce produit

= {(Mf=DF)

IV.3 : Le cas canonique

Supposons que Jy en plus d'une algebre de Jordan, soit une algébre de Poisson c’est a dire
que Jy est muni d’un produit P, tel que (Jy, P;) soit une algébre de Lie et Vf € Jy, Pi(f,.)
est une dérivation de Jy relativement au produit Py soit :

Pl (f;PO(gah)) = Pl (Pﬂ(fag)a)'l—Pl (gaPO(gah))
On étend P, a J = Jy & A\Jy de la facon suivante :

Z APta(—1)m(r.9) p, (f(p) (q))

P,q=0,1
P.qZh

_J1, sip=q=1;
m(p,q) = {0, autrement.
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On a alors que Vf € J, Pi(f,.) est une dérivation de (J, Py). Considérons le sous-espace
vectoriel C de F formé des éléments :

F = (Mg, Dr)
avec Dr = Py(u,.) ueJ

Pour F' = (My, Pi(u,.)) et G = (M,, Pi(v,.)) on a:

A ' A _
FG=|M 5 2 [Pi(x, ), Pi(v,.
= ( Po(f,9) T QM(Pl(u,g)—Pl(v,f))’ 2 [ l(ua )1 l(Ua )])

A A
— (M M 2P, (Pi(u,v),.
( Po(i) T 2 (Pl(u,g)—Pl(v,f))’2 1 (Pa(u,v) ))

Par conséquent C est une sous-algébre de F. En particulier considérons dans la définition
de F et G, u= f,v=g. On obtient :

A A
FG: M __M ’—P P : ..
( Po(f,9) T 2 (Pl(f,g)—Pl(g,f)) 2 1( l(f g) ))

\
| M 2P (Pi(f.9),.
( (Po(f,g)+AP1(f,y)) o 1 (Pi(f.9).)

On voit qu’ainsi on a définit sur J un nouveau produit :

P=PFPy+ AP

IV.3.1 : Le cas canonique classique

On prend J comme dans le cas classique. On définit Py(f,¢) comme :

Pl(f,g)=% > arta(—pymieg) {fu),g(n}
p,q=0,1
{f(i),g(j)}

est le crochet de Poisson de f et g, lui-méme défini de la maniére suivante. Soit £ la
deux-forme symplectique sur R*". On définit :

{f(l)’gm} = iy, Y, {

ou :
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ol Y i) et Y, i) sont tels que :
; — Jf(®)
zyf(..)ﬂ = df*
— (1)
1Y, Q=dg

Dans les coordonnées canoniques py, P2, ..., Pn, 1,92, ---, dn de R®™ on écrit :
2n
1
=1
N 1 . .
d’ott { £ gm} =z A8 8, fDPgq

avec (A"ﬂ) = (IO _OI")

IV.3.2 : Le cas canonique quantique

On fait la méme remarque que dans le cas quantique. Considérons Vi |[[t]] comme dans le
: i 5 i) by
cas quantique. On définit P;” comme suit :

PO, g)]n = Y PO (59,49
i+j+k=n
ot P (N®AN)x (N®AN) — N @ AN
) 1'% 2o 2k+1
et [P,Sfl)( fi, gj)] = Y arte-med (5) { 52,49
p+et+1=l
; 0 (07 _ B

w-(2 )

On a que P(t) est une déformation de la structure d’algébre de Lie de J. Le cas quantique
canonique correspond au cas t = 1, dans ’esprit de ce que 'on a fait précédemment pour
le cas quantique.

Soit :

Aa1ﬂ1 Aazﬂz . 'A012k+1;82k+1 601 as...02k41 fi(p)aﬁlﬂz ﬂ2k+1g§q)

P® = p{Y 4 Ap¥
Considérons ’application bilinéaire :
P = {6 pO) = {8 o PO 4 Ay o P
_ P 4
on PP =ypPop®  PY=ypPop?
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Le produit :
PO = pV 4 ap?

est un produit de type Moyal ( c’est, a l'identification de A et v/—1 = ¢ pres, le produit de
Moyal ). On peut montrer que c’est seulement pour cette valeur t = 1 que le produit est
associatif.

IV.4 : Discussion des résultats

On a vu dans un premier temps quelles structures algébriques on pouvait construire, qui
puissent contenir au niveau de ’algeébre des observables et des dérivations de cette algebre
le cas classique et le cas quantique comme cas particulier. Ce cadre est unique que la
particule soit classique ou quantique. Dans le cas classique on sait que les dérivations de
l'algeébre des observables ( C° ) sont les champs de vecteur ( C*° ). On les a dans notre
formalisme et 'on peut donc considérer des évolutions qui ne sont pas hamiltoniennes.
Dans le cas quantique ’algébre de Jordan des observables est spéciale ( soit A une algebre
associative, d’espace vectoriel sous jacent V, et dont le produit est noté P, 'algebre de
Jordan spéciale J associée a A, est ’algebre de méme espace vectoriel sous jacent V', mais
dont le produit est le symétrisé du produit P ). On sait montrer dans le cas algébrique (
dimension finie ) que I’ensemble des dérivations d’une algebre de Jordan spéciale coincide
avec celle de l'algebre associative associée (voir Jacobson[9]). Nous ne sommes pas dans
le cas algébrique et nous pouvons seulement montrer que toute dérivation de ’algebre
associative associée & notre algebre de Jordan, est une dérivation de cette algebre de
Jordan.

Dans le cas canonique on écrit I'unique équation d’évolution pour une particule :

Soit H = (0,[ . ,—h]pe)) une dérivation de J® avec h € Vy/[[t]] et soit F, = (Mf ,D)
on écrit :
A (nips) — [F,, H]
ds

Pour t = 0 on obtient :

d
o= (M, 1,0)
qui est bien I’équation d’évolution déterministe réversible classique ” en Heisenberg” . Pour

t = 1 on obtient : P
A= F, = (Mig. 10,,-0)

On peut d’ores et déja annoncer que cette équation est ’équation d’évolution déterministe
réversible en ”"Heisenberg” d’une particule quantique. Il faudra cependant attendre les
résultats du chapitre suivant pour avoir une justification totale de ce fait.
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V : Mécanique dans ’espace de Hilbert

V.1 : Une représentation particuliére de 1’espace de Hilbert

On décrit sommairement cette représentation. Pour plus de détails, on consultera [10].

Soit : L
_ (Y Pty
Go(p,q) = (W) exp (— 5

entr)=[(2) 4] (o i Gulpo

et soit G ’espace vectoriel complexe des combinaisons linéaires des G,,, m € N, tel que
I'application :

(., ) GxgG—C
(G,G') — (G, G)

(G,G") = //[R, (G.G") (p9) (%dpdq)

soit définie. (.,.) définit sur G un produit scalaire, soit une forme hermitienne définie
positive. On a :

<Gm1 Gm’) = ‘5mm’
D’oli pour G =3  amnGn o, €C,Vm.

(6,6) = Y law”

La condition pour que G =} . a,,G,, appartienne a G est donc que :
3™ faml? < o0
m

La convergence forte dans G implique la convergence en chaque point. L’espace de Hilbert
G est donc un espace de Hilbert de fonctions. De plus :

[po:QO] G —C
G — G(Pm‘lo)

L’application [po, go] est ¥ (po, g0) € R? une fonctionnelle linéaire bornée d’oti par le théo-
reme de Riez :

G (po, QO) = (ePo,qo ) G)
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pour un e,, o, uniquement déterminé et VG € G. On déduit :

G (Po, 90))| = [{€po,301 G} < ll€po,goll |G

L’inégalité étant 1'inégalité de Schwartz. Les vecteurs e, , seront appelés les vecteurs
principaux. On a :

(@) = [[ (Gren) lepsn ) dpda)

Les {ep,q, (p,q) € [Rz} forment un ensemble complet.

On montre que L*(R,dz) et G sont unitairement équivalents.
Soit A cet isomorphisme unitaire. A établit un isomorphisme entre les opérateurs linéaires
sur L?(R, dz) et ceux sur G, notamment :

M=A"LA

o L est un opérateur dans G et M un opérateur dans L%(R, dz). Les domaines respectifs
sont reliés par :

D(M)=A"'D(L)
Soit dans L*(R,dz) les opérateurs :

Bl = \/ii (X —~ Ed;) D(a') c L*(R, dz)

b = % (X + %) D(a) c L*(R,dz)

Définissons dans G les opérateurs a' et a comme suit :
1 , th :
(@) 0.0) = 7 (0= D60 + 5 (@ —i0,) 6o, )|

(@6) (10) = 5 [~ D60+ 5 @, - 10,) 6(p.9)

Dans les deux cas la définition est valable si le membre de droite est un élément de G, ceci
définissant dans G les domaines D (a') et D(a) de a' et a respectivement. a' et @ étant
des opérateurs fermés on a que AatA~! etAGdA~! sont fermés et on vérifie :

AatA™! =4
Aad™' =a
D’ou ’on tire pour :
1 o
- 2@ +3)

V2

ih
(AXAT'G) (p.q) = 4G(p, 9) + 5 8, G(p, 9)
hd 1
ha 1 st
ide  iv/2 (a—a')
hd | _, ih
(A-z-— =4 G) (p,q) = pG(p,¢) — 59, G(p,9)

et pour
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On peut maintenant revenir a la justification du cas quantique défini au paragraphe IV.3.2
Pour ce faire identifions A & i = /—1 dans le produit P(*). On a :

R
PW (q,G)(p,q) = ¢G(p,q) + %BI’G(?’Q)

th
P® (p,G) (p,9) = pG(p,9) = 5 04G(p, )
Convenons d’écrire P(1), P et définissons I, et l; comme :

l4(G)=P(g,G)
lp (G)=P(p,G)

On a alors identifié dans notre représentation les opérateurs de position et de quantité de
mouvement comme étant respectivement [, et [,. On vérifie :

[, 1] =14ol, = 1,01, =1h

Ainsi se trouve justifié 3 posteriori la dénomination quantique apparaissant dans le chapitre

IV.

Soit [ P I’opérateur qui agit dans G de la maniére suivante :
Gn

lPG,, ()=P (-&1-2-13 (Gn,Gh) ,G)

l p, €st VG, un projecteur. Si G € G, le projecteur sur G s’écrira :
G

L

1 1 -
lp, = 3P(G,6)= 5G*C

V.4 : Applications

Soit T = R?" et S = {s € Aut ()

S*Q:Q}

Aut(T') : 'ensemble des automorphismes de T.
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2 : La deux-forme symplectique.
S est un groupe. Pour S € § définissons :
Us:G—G
Gv+— UsG tel que :

(Usg) (a) = as(a)G (S7(a)) ael.

as:S§ —C, |as(a)=1 VaeT
Us a les propriétés :
oUs est linéaire.

o (UsG,UsH) = (G,H) VG,H € G. En effet la forme volume sur I est 3Q" et I'on a :
Y = % ( P =0AQAAR )k

.US_I = Us—l
De pluson a :
(UsG)(a) = (€4, UsG) = (Ug-1€,4,G)
(Us6G) (@) = as(@)G (57 (@) = (@5(a)s 6
dotr :
Usea = ag(a)eg(a)

Inversément supposons que :
Use, = as(a)eg(q)

On a alors :
(UsG)(a) = (eq, UsG)
= <@(a)6s~1(a)’c>
= as(a)G (S7(a))
D’ou :

(UsG) (a) = as(a)G (S (a)) VG eg
Soit {V,,~ € R} un groupe a un parameétre continu, unitaire dans ’espace de Hilbert. Via
le théoréme de Stone on a :

= By

d
i~ U3
d,-), ! ¥=0

B auto-adjoint.

Ayant identifié B comme un I, b une fonction sur R*" on a dans notre représentation,
pour [p; le projecteur de rang 1 associé 4 G € G :

. d -
[z&;lepG U 1} = [ls,lpc] = lp, Ps),

v=0
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On a fait d’autre part I’hypothése que U, soit tel que 'on puisse définir [b, Pg]p. Dans les
coordonnées p;, ¢;,t = 1,2, ...n, s1 b est tel qu’il soit au plus quadratique en les p;,¢; on a :
[b, Pg] = [b, Pc]po)

Via I'isomorphisme qui & une 1-forme associe un champ de vecteur, donné par :
ixQe— X

on associe a db le champ de vecteur Xy :
1x,§2 =db

X définit alors un groupe & un parameétre S., d’automorphismes de I tel que :

(%) S: =0
(i) Si Vs, est le groupe & un parameétre unitaire, continu dans G associé a S, :
(Vs,G) (a) = G (57 'a)
On a alors :
= Ip,Pa,

Pour P (G) 'espace projectif associé & G, U, et Vs définissent la méme transformation :

Uy=8(1)Vs, [B(¥)=1

Donc on retrouve le fait bien connu de 'impossibilité d’une "régle de quantification ”au
dela des polynémes quadratique en p,q. Ceci provient du fait que la dérivation [b,.]|p
coincide avec [b,.] po) seulement si b est au plus quadratique en p et g.

On a cependant le fait intéréssant suivant :

Moyennant 'identification d’un état classique (po,qo) € R* avec le rayon de ’espace de
hilbert e, 5, € G, on peut écrire une équation d’évolution unique, en Schrodinger, pour
le cas quantique et classique. Ceci n’est du reste pas limité a 1’équation d’évolution,
mais s’applique aussi aux équations que 'on obtient en considérant les représentations
des groupes a un parametre de symmétrie du systéme dont le générateur peut s’exprimer
comme une fonction en p et ¢ compatible avec le produit P.

Supposons qu’une particule soit soumise & un potentiel V(g) ot V(g) est un polynéme ou
encore une fonction § en ¢. 'hamiltonien H s’écrit :

2

H=—+V(q)

2m
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Sans connaitre la nature quantique ou classique de la particule, on montre que 'on peut
écrire ’équation d’évolution :

L d

ou Pg est défini comme précédemment. Traiter le cas quantique revient a faire ¢ = 1 dans
P Le cas classique consiste lui & choisir pour G un €p.qs P4 € R? et & faire t = 0 dans

p),

Deux oscillateurs couplés

Nous allons traiter le cas de deux oscillateurs couplés. Comme dans la méthode usuelle on
va considérer un changement de variables amenant a considérer deux particules fictives,
I’'une au centre de masse et l'autre appelée relative. La nouveauté introduite par un des
auteurs dans un probléme similaire, toutefois traité 14 dans le formalisme habituel [11]
consiste a considérer la particule lié au centre de masse comme une particule classique.
Soit donc deux oscillateurs de méme masse, couplés par un ressort. L’hamiltonien de ce
systéme s’écrit :

P% P% 1 2 2 1 2 2 2 2
h=%+2_r;+§mw (@1 —a) T gy (g2 + a)* + dmw*(q1 — q2)

Effectuons le changement de variables :

1
q¢ = -2-(q-1 +q2) Gr=q —¢

1
PG = p1+ p2 P = 5(?1"?2)

On postule donc que les variables du centre de masse sont des variables classiques, ce qui
revient a dire que ’algébre de Jordan générée par les pg et gg est selon le schéma introduit
au paragraphe IV une algebre de Jordan classique. Les variables de la particule relative
seront elles considérées comme quantiques, donc ’algebre de Jordan qu’elles générent sera
une algebre quantique (voir IV). La connaissance de 1’algébre générée par les pg et gg et
de celle générée par les p, et ¢, nous permet de connaitre quelle type d’algébre engendrent
les p1,q1 et ps, ga.

Il n’en demeure pas moins que dans notre formalisme nous ne sommes pas obligés a ce
stade de choisir la nature classique ou quantique des particules fictives en présence. Voyons
le déja dans le formalisme du paragraphe II :

Soit a une observable relative a la particule liée au centre de masse. a est donc de la forme

a=a; ®I
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Dans le formalisme du paragraphe III on lui associe A = (M,,0). La forme d’une observ-
able b liée a la particule relative est :

b=1® b,

Dans le formalisme du paragraphe III on lui associe B = (Mj;,0). L’hamiltonien du
probleme s’ écrit :

2 2 2 2
s, 1 2 2 Pr wy _2a
4
2 2
I®@ mwa 14
ZHG+H1'

oll : w, = w et w, = w(1+4A)7 A Hg et H, sont associés :
Hg=(0,[ . ,—Hglpw)etH, =(0,[ . ,—Hilpw)

Soit A, (resp. & By) la courbe dans ’espace des observables associées & A (resp. a B), on
a |’ équation du mouvement :

A (hd%As) — [A,, Ho] (resp.)\ (ha‘isB_,) = [Bs,Hr])

Si l'on préfere se placer en Schrodinger, on écrit quelles que soient la nature des variables
considérées, I’équation de mouvement :

., dPg
Zh“&;’* = [h, Pc]pe)

Pg est de la forme P, ® Pg,; on obtient alors les équations:

. dPg
th dtG = [hyaPGc]P(t)
.. dPg,
iH 2 = [hr, Po o

On peut alors résoudre ces équations sans donner encore une valeur a t. Aprés cela on peut
se ramener au choix fait précédemment sur la nature classique ou quantique des particules
fictives en présence et par conséquent choisir comme condition initiale pour Pg, un Gg
égal & un e, 4, et faire t = 0 et comme condition initiale pour Pg, un G, égal a 'un
quelquonque des vecteurs de G et faire t = 1.
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CONCLUSION

Dans ce travail nous n’avons pas cherché a déduire la mécanique quantique de la mécanique
classique ou inversément. Cependant certains objets et structures communs nous ont
permis de construire dans le chapitre II un formalisme mathématique entiérement nouveau
et suceptible de développements ultérieurs. Au niveau des observables nous avons considéré
la structure d’algébre de Jordan comme étant la structure physiquement importante, ce
qui nous a conduit & déformer cette structure en premier lieu. Nous avons pu par la suite
faire le lien avec le formalisme de déformations de structures d’algebre associative et de lie
déja introduites dans [7]. On notera a ce propos qu’ici nous nous sommes limités au cas
plat ( ou local ) mais que de nombreux résultats concernants le probléeme de déformations
de C>°(W), W une variété symplectique ou de Poisson, existent [12,13,14].

Enfin la représentation ”psetido-Bargmann” introduite dans le chapite V s’appaente II
la technique d’états cohérents bien connue [15], mais le fait d’utiliser le formalisme de
déformation "en Schrédinger est original et permettra peut-étre dans le futur de voir sous
quelle conditions une particule peut perdre des propriétés classique tout en gagnant des
propriétés quantiques ou inversément.
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