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Abstract

A quantum electron interacts with a classical gas of hard spheres and is in
thermal equilibrium with it. The interaction is attractive and the electron
can form a bound state with the classical particles. It is rigorously shown
that in a well defined low density and low temperature limit, the ionization
probability for the electron tends to the value predicted by the Saha formula
for thermal ionization. In this regime, the electron is found to be in a
statistical mixture of a bound and a free state.
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L Introduction

It is a problem of conceptual interest and practical importance in quantum
statistical mechanics to understand how atoms and molecules can be formed. A
number of different approaches have been developed in the literature, using
many body and quantum field techniques as well as various types of cluster
expansions, see for instance [1, 2, 3] and references quoted there. As far as rigorous
results are concerned, Fefferman [4] has given a beautiful proof that in an
appropriate low temperature and low density regime, electrons and protons in
thermal equilibrium form a gas of hydrogen atoms in their ground state (see also
[14] for a recent generalization of Fefferman results by different methods).
Another situation, called ionization equilibrium, occurs when only a
(macroscopic) fraction of electron-proton pairs are bound and in equilibrium with
the remaining free charges. The ionization equilibrium interpolates between the
purely atomic phase and a pure plasma phase where no charges are bound.

In the standard thermodynamical treatment of ionization equilibrium [5],
one considers the atoms (a) the electrons (e) and the protons (p) as three different
chemical species, having chemical potentials ü jie, u and number densities

pa, pe, p If all species are assumed to behave as perfect gases (all atoms being in
their ground state), one can write the law of mass action expressing the chemical

equilibrium of the three species at inverse temperature ß r~~ (kß Boltzmann

constant)

PpPe

Pa

me n3/2

2jtßü2
e-ßEo (1.1)

In (1.1), - E0 (E0 > 0) is the ground state energy of the atom and me is the mass of
the electron (the proton is considered as static and the spin has been neglected).
Then the fraction y. of ionized electrons defined by

Yj
Pe

Pa + Pe
(1.2)

is equal to

\ 1 + Pp
WßW2
V me J

eßEo

-1
(1.3)

Using the neutrality pe pp and the law of perfect gases P (pa + Pp + Pe)kßT, one
can express y{ in terms of the pressure P
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^' eßHo (1.4)y. 1 + ßP m.

a formula called the Saha equation for thermal ionization.
The statistical mechanical formulation of the same problem is very

different. Here we have only electrons and protons in a box, and no a priori
distinction between "atomic" or "free" ones. Moreover, assuming overall
neutrality, there is only one chemical potential u (or activity Ç eßl*) conjugated to
the total particle number. Then, in a grand-canonical description, the question is

to find a regime of u and ß where ionization equilibrium is established. The
elementary thermodynamical derivation (1.1)-(1.4) shows that the ionization
equilibrium regime described by the Saha equation requires the temperature to be

very small so that all atoms are in their ground states and the system to be
sufficiently dilute to obey the law of perfect gases. We must therefore consider

limiting situations where ß -* °° and Ç eßt1 -» 0 in an appropriate way.
In fact, the following picture is expected. If \i < - E0 is a fixed chemical

potential strictly smaller than the atomic ground state energy and ß -» <*>, the

system is asymptotic to a gas of free particles. If (i. is chosen slightly above - E0

(i.e. -Eo<|i<-E0 + 5, 5 positive and small) and ß -» °°, the system behaves as a

gas of non interacting atoms*. In the first case the density is lowered so fast that
particles have no chance to bind, while in the second one, the density is
maintained at the adequate level for a complete formation of atoms. Ionization
equilibrium phases precisely occur at the borderline between these two cases,

letting u tend to - E0 as ß -» °°. The actual ionized fraction is determined by the

rate of convergence of \i to - E0. Finally if the density is increased by taking u
larger than - E0 + 8, a variety of other low temperature phases can occur, ranging
from dilute molecular gases to states of dense matter.

In this paper, we present a rigorous study of ionization equilibrium in a

simplified model which has however the essential features of the general
situation. We consider a single quantum mechanical particle ("the electron") in
thermal equilibrium with a gas of classical particles (static "protons" or
"impurities"). Each impurity is the source of an attractive short range
(i.e. integrable) potential which can bind the electron. The impurities do not
interact between themselves except for an hard core repulsion needed to insure
stability, and the grand canonical ensemble is used. In this model the Saha

coefficient y; is identified with the averaged ionization probability for the electron

at temperature ß_1 and chemical potential u. Then we show that the picture
described above for the formation of an atom is indeed correct. In particular, we
determine the appropriate low temperature and low density limit where
ionization equilibrium occurs and prove that y is given by the Saha equation (1.3)

in this limit. Moreover, the electron is found in a statistical mixture of a free state
and a bound state, in conformity with the thermodynamical view that ionization

' This is the situation considered by Fefferman in [4]
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equilibrium is a phase equilibrium between two different "species", the free and
the bound electron.

In section II, we give a precise formulation of the model, of the relevant
class of potentials, and of the ionization probability. Then we discuss the
ionization equilibrium limit and the basic mechanisms at a heuristic
mathematical level. In section II we collect useful mathematical facts and state
our two main propositions. The necessary mathematical background is essentially
provided by the theory of Schrôdinger semi-groups extensively developed in [6] by
B. Simon. The only additional information needed here is a control of some of
the estimates given in [6] uniformly with respect to the number and the location
of the impurities. The Feynman-Kac representation of the kernels is also a
convenient tool in various parts of the paper. In section HI, we write down the
low activity expansion of the ionization probability (or, more precisely, of its
Laplace transform), and establish its convergence and its thermodynamic limit.
Section IV is devoted to an analysis of these low activity series in the ionization
equilibrium limit, so proving the Saha formula. The analysis relies on a specific
form of the stability estimate (lower-bound) for the hamiltonian of the electron
interacting with n impurities. In section VI, we show that the desired lower
bound can always be satisfied for any potential in our class, with a suitable choice
of the hard core diameter of the impurities. Finally, section VII presents
additional aspects and concluding remarks.

U. The model and the Saha formula

As stated in the introduction, the model consists of a quantum
mechanical particle of mass m (the "electron") in thermal equilibrium with a
classical gas (the "impurities"). The electron interacts with each of the impurities
by means of an spherically symmetric attractive potential satisfying the conditions

(i) V(x) <0 (2.1)

(ii) Either V(x) is continuous on R3 or V(x) is continuous on R3 \{0)

with V(x) -^ - oo, | x I -> 0 and

IdxlV(x)l2<oo (2.2)

lxl"<l

(iii) There exists r\ > 3, R > 0 and M > 0 such that

IV(x)l S-j^j Ixl >R (2.3)

Note that V(x) is locally square integrable, and integrable at infinity, thus V(x)
belongs to Ü R3) n & R3).

The impurities have mass mp and a repulsive interaction between
themselves given by a spherical hard core of radius d.

If there are no impurities, the energy of-the electron is purely kinetic
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where A is the Laplacian with domain D(A) in O- R 3). For configurations of n
impurities at n,..., rn, 1 x\ - x\ I > 2d, i * j 1,..., n, and n > 1, the hamiltonian of
the electron

n

Hn(ra rn) -~-A + X V(r,- - x) H° + Vn(n rn) (2.5)
zme -=1 '

is self adjoint on D(A) and bounded below by the standard theorems on
perturbation of the Laplacian by a square integrable potential. Moreover, it has a
finite number of bound states of finite multiplicities with negative energies and

an absolutly continuous spectrum on [0, <*>]. In particular, the one-impurity
hamiltonian H (ri) is unitarily equivalent by translation invariance to

H^O) H1 - ~- A + V(x) (2.6)

which has a non degenerate ground state with energy -E0 (E0 > 0) and wave
function YoM-

For the n-impurities hamiltonians (2.5) with n ä 2, we shall assume in the
main body of the paper that the following stability estimate holds

Hn(ri,..., rn) > - K n, for I r} - rj I > 2 d, i *j 1,..., n, n > 2 (2.7)

0<K<Eo

with some constant K independent of n and the rj. The strict inequality K < E0
means that the binding energy per impurity is the largest when the electron forms
an "atom" with an single impurity. Examples of potentials and choices of d such
that (2.7) is verified are given in Section VI. In fact, (2.7) will be trivially satisfied
for large n since the Hn(ri,..., rn) will be bounded below uniformly with respect to
n and the rj.

To define the equilibrium properties of the system, we confine the
electron and the classical gas in a bounded open region A with smooth boundaries
3A. The finite volume hamiltonians H?(ri,..., rn) are defined as in (2.4) and (2.5)

with A replaced by the Laplacian A. with Dirichlet boundary conditions on 3A.
Then the grand canonical partition function is given by

HA(ß,z) Trexp[-ßH°] +

oo

Z ^r f dr1... f drn Tr exp [-ßH£ (rv -, rn)] Xd(rt rn) (2.8)
n=l 'J J
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where ß is the inverse temperature and z the activity of the classical gas related to
its chemical potential u by*

z (mp/2jcßh2)3/2eß^

In (2.8), Xd(r1,..., rn) is the hard core exclusion

(2.9)

%d(V",rn) Rx^-rj) ,%(r)

1; I r I > 2d

LO; Ir I < 2d

n>2 (2.10)

Xd(r 1 and the traces are taken on Û- (A).

If A (An(r1,...,rn), n 0,1,2,...} is an observable of the system (i.e. for each

n, An(r1,...,rn) is an observable of the electron depending on the configuration of
the impurities rj,...,rn), the finite volume grand-canonical average of A is defined

by

<A>A(M)=i^ TrAOexP[-ß^] + ^n7
A

Tr An(ri,..., rn) exp [-ßH^ g] j^,..., rn) \

dr,... dr

(2.11)

We now consider the density distribution pA(E, ß, z) of the energy of the electron

in the gas at temperature ß and activity z. This quantity is formally defined by
the average

pA(E,ß,z)= <8(E-HA)>A(ß,z)

where

5(E-HA) (SŒ-H^,...,^))}

(2.12.a)

(2.12.b)

To make this definition mathematically correct we introduce the probability
measure pA(. ; ß, z) on the real Une in the following way. Let Q be a Borei set of R

and let E^(Q, r,, rR) be the spectral projection of HA (rr...,rn) corresponding to

the set Q.. We define PA(. ; ß, z) by

PA(Q;ß,z) <EA(Q)>A(ß,z) (2.13)

z includes the thermal wave length of the impurities
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where E^(Q) { E^ (Q, rT,..., rn)}. Of course formally

PA(Q;ß,z) fdE pA(E;ß,z).

û

Since in infinite space, quantum states for the hamiltonian (2.5) with E > 0

(resp. E < 0) represent ionized states (resp. bound states), we define the ionization
probability y^ß, z) (resp. the binding probabiUty yb(ß, z)) by

yj(ß,z) lim p((-e,oo);ß/Z) (2.14)
e > 0; e -» 0

yb(ß,z) lim p((-o,-e);ß,z) (2.15)
e > 0; e -» 0

where p(. ; ß, z) is the infinite volume limit of pA(. ; ß, z). It will be shown that

pA(. ; ß, z) is also a probability measure and therefore y4(ß, z) + yb(ß, z) 1.

In the rest of this section, we want to show on heuristic grounds that the
coefficient y^ß, z) reduces in an appropriate low density and low temperature
limit to the Saha ionisation rate that has been derived in the introduction on
purely thermodynamical grounds. In place of (2.12), it is more convenient to work
with its Laplace transform*

oo

gA(X., ß, z) f dE exp[-XE] pA(dE; ß, z) <exp[-XHA]>A (2.16)

with

exp[-XHA]= {exp[-XH£(ra rR)]} (2.17)

It follows from (2.11), (2.17) and (2.8) that gA(X., ß, z) is the ratio of two partition
functions with shifted inverse temperatures

gAa'M)= EA(ß,z)
(218)

Introducing the partition function S°(z) of the classical gas

It will be shown in the next section that the support of p. ; ß. z) is bounded below
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E°(z) 1 + JL ^T j" drt... J" drn Xd(rv rn) (2.19)

we can write

gAa,M>
fA(ß + K z)

fA(ß,Z>
(2.20)

with

c ro ^ J_ sA(ß,z)
fA(ß'Z) - IAl S°(z)

(2.21)

According to (2.8) and (2.19), the first terms of the low activity expansion of
fA(ß, z) are

Trexp[-ßH°] ir/, ~\
fA(ß,z)= jA|

A +z— dr1Tr(exp[-ßH^(r1)-exp[-ßH°]) + 0(z2) (2.22)

In the infinite volume limit, we have

1 n, me vV2

iai^oo lAi [atß»,
(2.23)

and

lim Tr (exp[-ßH* (r^] - exp[-ßH°]) Tr (exphßH1] -exp[-ßH°]) (2.24)
I Al —» oo

which is independent of r, by the unitary equivalence of H (r,) and H Thus, we
find (taking the infinite volume limit term by term in (2.22))

lim f.(ß,z) f(ß,z)
lA|->oo

me x3/2

27tßTi2

+ z T^expf-ßH1] - exp[-ßH°]) + 0(z2) (2.25)

Now, let z —> 0, ß —> o», or equivalently [i —» - E ß —> °° in such a way that
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'2rcßFV
V me j '«W =^)'/2exp[ß^ + E0)] -> w (2.26)

where w is some number, 0 < w < oo. Since for ß large

Tr (exp[-(ß + WH1] - exp[-(ß + X)Fp]) exp[(ß + X)EQ] + o (exp[(ß + X)EQ]) (2.27)

we get from (2.25) and (2.27) in the scaling limit (2.26)

'^tßffV?
lim

ß-*oc V m* J
f(ß + X, z) 1 + w exp[XEo] (2.28)

and thus from (2.20)

1 + w exp[XEQ]
Hm ga,ß/Z) —rT^ß—»oo

(2.29)

provided that the terms of order larger or equal to two in (2.25) vanish in this

limit. Since g(X, ß, z) is the Laplace transform of the energy probability density
p(E, ß, z), (2.29) implies that this density converges to

lim p(E,ß,z) -^ 8(E) + —^ 8(E + E0)
ß—»oo

and hence that the ionisation probability (2.14) tends to

(2.30)

lim Yi(ß,z) Yi y^p—> oo

(2.31)

Recalling the definition (2.26) of w and noting that as z -» 0, z becomes equal to p,
the density of the gas, we see that Yi can be identified to the Saha coefficient (1.3).

If n -> -E0 and ß -» oo in such a way that the limit (2.26) is equal to zero,

one finds yi 1 so the electron is ionized with probability one. Obviously the same

result is true if p. is any fixed chemical potential in the range - oo < jo. < - EQ. On the

other hand, if the quantity (2.26) diverges as \i —» - EQ and ß -> oo, one obtains from

(2.20) with w oo, Hm g(X, ß, z) exp(XE0) and so y; 0 : the atom is formed with
probability one. Moreover, the pure atomic phase is also obtained in the whole

range -E0 < \i < - K. Indeed, g(X, ß, z) is the ratio of the two low activity series

f(ß + X, z) £ zn fn(ß + X) and f(ß, z) £ zn fn(ß). Since fn(ß) involves linear
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combinations of Tr exp[-ßHk(r1,..., rk)], k 0, n (see section IV) the asymptotic
behaviours of the nth order terms of these series are expected to be of the form (up
to algebraic functions of ß)

zn fn(ß + X)

zn f"(ß)

mp n3"/2

27cß-n2j

exp[ß(En + |in)] exp(X. En)

27cßTi2j
E-| exp[ß(En + jin)]

(2.32)

with En - inf inf spec Hn(rt,...,rn) and E1 EQ.

ri ;...; rn I rj - rj I > 2 d

One readily verifies that the inequality (2.7) (i.e. En < Kn, 0 < K < EQ, n £ 2)

together with - EQ < u < - K implies

E1 + p. > 0 En + pn < 0 n> 2 (2.33)

Thus, all the terms of series remain bounded except for the first order which
diverges as ß -> oo. One concludes from (2.32) that the ratio g(X, ß, z) of the two
series tends to exp[X. EQ] and hence yi 0.

We conclude this section with an important remark. It is essential to have

arepulsive interaction between the impurities in order to find a value of \i such
that inequalities of the type (2.33) hold. In orther words if the gas of impurities is a
free one, it is impossible to fix the chemical potential such that the Boltzmann

weight of some finite aggregate is dominant when ß —» oo. Indeed for a free gaz of

impurities, En is a convex function of n. To show this fact we set d 0 in the
definition of En and proceed as follows. Define the function

n-1

F(X) — inf inf spec
ri ;...; rn-i

2m» A +XV(x. + Z-, V(k x)
H

(2.34)

We note that F(X) is a convex function of X and F(0) E""1 F(l) En Moreover

i-n+1 inf inf spec
r ; ri ;...; rn.-]

n-1

'2m, A + V(x) + V(x - r) + 2^ V(ri - x)

> - inf inf spec
n ; •¦¦; rn-i

n-1
"h2 Vy — A +2V(x)+ Z_ V(rj-x)

1=1

F(2) (2.35)
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By the convexity of F we have F(l) < -» F(0) + -~ F(2) thus from (2.35) we get

En < -j En" + -~ En+ wich means that En is a convex function of n when d 0.

The rest of the paper is essentially devoted to the proof of the facts
outlined in this section.

IIL Mathematical preliminaries and statement of results

To abbreviate the notation, we set Ti 1, m 1 and
n

Hn(n rn) a Hn -\ A + Vn with Vn(x) X V(rj - x).

For a given configuration i^,...,Tn, Vn has at most n square integrable singularities

satisfying the condition (2.2) at r.,...,r and Vn obeys (2.3) with R sufficiently large

(depending on r,,...,r As already noted, Vn(x) e Û- R3 and thus Hn (resp Hp is

self adjoint on D(A) (resp D(AA)) with form domain Df(A) (resp Df(AA)) where AA

is the Laplacian with Dirichlet boundary conditions [7]. Moreover, the HA verify
the same stability condition (2.7).

We shall extensively use the theory of Schrôdinger semi-groups reviewed
in [6], for which the natural class of potentials V is the class K3 defined by the
condition

lim sup Jdy-I^p 0 (3.1)
6->0 x Ix-ylsS yi

It follows immediatly from (2.2) and (2.3) that

sup Jdy |vn(y)|2 < 00 (3.2)
X lx-yl<l

and this implies by the formula (A.21) of [6] that Vn belong to K3 for each n and
each configuration of impurities r.,...,r Hence we know that the semi-group

exp[-tHn] is an integral operator with jointly continuous uniformly bounded
kernel (x I exp[-tHn] I y) (Theorem B. 7.1 of [6]). The Feynman-Kac representation
of this kernel

' ^
(xlexp(-tHn)l y) fdp. (a) exp

J x 0; y t

ds Vn (Ms))

V» J

(3.3)

holds for all x, y e R 3, where du (si) is the conditional Wiener measure for
x 0; y t

three dimensional Brownian paths ûj(s), 0 < s < t and «(O) 0, ja (0 x. It is well
known that the formula (3.3) is true for continuous bounded potentials
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[ 6, 8]. Its extension to potentials having singularities of the type (2.2) is given in
Appendix A. For the diagonal part of the kernel we write simply

/ t

(xlexp(-tHn)lx) fdHxtGa) exp - fdsVn
A

l(ffl(s)) (3.4)

dp (co) exp
f t

fdsVn
A

(x + fi}(s)) (3.5)

with dji (ra) dji (ja) the conditional Wiener measure for closed paths such
x t x 0; x t

that ffi(0) a(t) x and dp (ffl) dit (so). For the finite volume hamiltonians
t x 0; t

HAn with Dirichlet boundary conditions, one has the same formula (3.4) with
du (a) replaced by duA (fij), x in A, where duA (fij) is the conditional Wiener

xt xt xt
measure restricted to the set

r^ (ra(s) I Ms) e A, 0 < s < t) (3.6)

of paths that do not leave A (see Appendix A).
Since Vn has a finite number of square integrable singularities, the

condition (2.3) implies that for j large enough, j e Z3,

f \
I

a/2

dx IVn(x)|2

vAj J

Mp

Tl
(3.7)

where A. is the unit cube centered at j and Mq an appropriate constant. Hence, by
(2.2) Vn belongs to the Birman-Solomjak class, that is

Y (c YZj dxlVn(x)|2
j e Z3 [J Aj J

(3.8)

Therefore exp [-ßHn] - exp [-ßH°] is trace-class for all ß > 0 [6], and since the
kernels are continuous, one has

Tr(exp[-ßHn]-exp[-ßH°]) f dx ((x I exp[-ß Hn] I x) - (x I exp[-ßH°] I x) (3.9)



Vol. 63, 1990 Macris, Martin and Pule 717

Obviously, for finite volume, exp(-ß H" ] is also trace-class and

Tr exp[-ß H£ ] f dx (x I exp (-ß H£ ] I x) (3.10)

We now state the main propositions that are proven in Section IV and V.
The assumptions are that V(x) verifies (2.1) - (2.3), the impurities have an hard
core of radius d, and the stability condition (2.7) holds.

Proposition 1

The low activity expansion of fA(ß, z) defined in (2.21)

fA(ß,z) -i-Trexp(-ßH°) + Z znf£(ß) (3.11)
¦Al n=l

converges for i z I small enough. Moreover, its infinite volume limit exists and is

given by the series

oo

f(ß,z) lim fA(ß,z) f-Vf 2+Z znfn(ß) (3.12)
lAl ->oo

A (2jißJ n=1

where the f n(ß) lim f "(ß), n > 1, are defined in Section IV by (4.37) and
IAI ->oo

(4.39).

Notice that (3.12) implies the existence of the limit of the Laplace
transforms (2.16)

1- n a \ « a ^
f(ß + h.z)hm gA(X, ß, z) gAa, ß, z)

lAl->oo f(ß,z)

which in turn entails the convergence of the corresponding measures pA(. ; ß, z)

top(.;ß,z)[12].
To formulate the low density and temperature limit (2.26) we set

z(ß)
w(ß)exp[-ßEo1

(3 13)
(27t ßr/2

where w(ß) is some positive function of ß.
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Proposition 2

Assume that lim w(ß) w, 0< w < oo. Then
ß-»oo

lim (2ti ß)3/2 f(ß + X, z (ß)) 1 + w exp[X E0] (3.14)
ß->oo

and the ionisation probability (2.14) tends to

y. olim y.(ß, z(ß)) -y^ (3.15)

If w(ß) —» oo as ß -» oo with w(ß) 0(expß(E0 - K)), the ionisation probability y;
vanishes.

The main tool which will be used in the proofs of these propositions is a

pointwise bound of the kernel (x I exp[-ß Hn] I y) is terms of the free kernel which
is uniform with respect to the number n and the locations r^,...,^ of the

impurities.

Lemma 1

There exists positive constants A and B independent of n and of
iy-An, n 1,2,..., I rj- r. I > 2 d, such that

(x I exp (- tHn)) I y) < A eBt (x I exp(-2tH°) I y) (3.16)

Proof
One knows that V belongs to the class K, if and only if (Prop. A. 2.6 of [6])

v(t) sup f dy Qt(x - y) I V(y) I -»0, t -> 0 (3.17)

with

r efa"l")
Q'<x,= Jds-^fa (3-,8)

o

Choosing tQ small enough such that v(t vQ < t, the result of the theorem

(B.l.l) of [6] gives that exp-t(Ho + 2V) considered as integral operator from
LH IR3) to L°° is bounded with

CexoDt
II exp (-t (H° + 2V» f IIM < - %, I f II -, (3.19)

(ntr'
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C=-—-—>1 ,D ^-lnC>01 - 4 v0 -«o
(3.20)

Moreover, repeating the proof of the proposition (B.6.7) of [6], the Schwartz
inequality applied to the Feynman-Kac formula for (exp(-tH)f)(x) with
H H° + V implies

I (e"tH f) (x) I < Ke-^^+ZV) f, )(x)]i/2 [e-tH°, f, )(x)]i /2

I (e"tHf) (x) I SC^exp^ If ^3/2(e-«0|fl)(x)
1/2

(3.21)

(3.22)

Letting f approach a 8 at y function with If II
a

1 and using the explicit form of
the free kernel

lx-y|2>/ i -tH°. n
1 / lx-yl2^(x,e '^^^(-r) (3.23)

leads to the estimate

,-tH(xle-mly) < AeBt (xle"^1 ly)Bt /„i„-2tH°i (3.24)

with A 29/4 C1/2 and B
2 D- It is clear from (3.20) that these constants depend

only on vQ and tQ. The lemma will be proven if vQ can be chosen independently of
the number and the location of the impurities, i.e. if v(t) tends to zero uniformly
with respect to rx,..., r n 1,2,....

For this, we first note that

1 1 r e"u/2 C / lxi2\
°t(x) -w*n m \^-^-^M^[—W) (3.25)

Ixl2
t

where the first equality follows from the change of variable s I x 12/u in (3.18).
Thus one has

v(t) < C (sup Vl(x,t) + sup v2(x,t)) (3.26)

with

i a (fa lv(y)'
vi(x-t)= J^t^t

lx-yl <t,/4

s f I V(y) I / lx-y|2>.
v2(x, t) J dy j^yt exp {—^-j

lx-yl >t!/4

(3.27)

(3.28)
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11

We estimate v,(x, t) and v,(x, t) when V(x) Vn(x) 2-i V(r.-x).
i=l

Let B(x, a) be the ball of radius a centered at x, and R the number occuring
in the condition (2.3). Then, we have

Vl(x,t) < v^(x,t) + v°^(x,t) (3.29)

with

ViW X ^ I dy-

lx-yl <t1/4

J«
V^-y)!
lx-yl

where the summation
(in) /

resp
(outh

(3.30)

runs on all impurities with

rj in B (x, R +11/4) (resp outside of B(x, R + t1/4)).

Since V e Kg, one gets for any e > 0

l<
IV^-y)!

dy UAÏT- SS^P Jdy
|X_y| <tl/4 |x.y| <tl/4

lx-yl
f J iv(y)l < e (3.31)

provided that t < t t small enough and independent of r. (see (3.1)). Hence, using
the hard core condition, we find

Vj (x, t) < e. (number of impurities in B(x, R + t^4))

< e
fR + tl/4N3

O
(3.32)

If ri does not belong to B(x, R + t1/4), we have obviously I y-r4 I > R and we can

apply (2.3)

out
Vj (x,t) < Jdn^V£

(out) M

lx-yl <t'/4
ly-r.1*

(3.33)

The summation (3.33) is performed on the impurities located in the successive
shells rm B (x, R + t1/4 + md) \ B (x, R + t1/4 + (m - l)d). If r; is in Tm and

lx-yl < t1/4 (t small enough) one has

ly-rJ > lx-r.l-lx-yl^R + (m-l)d (3.34)
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Using again the hard core condition to bound the number of impurities in the
shell Tm the sum in (3.33) is certainly less than

OO

v V flR + t1/4 + m d)3 - (R +11/4 + (m - l)d)3^ M ,„ orx*•-£, I JCR^On-Dd)- °»
where Kt is finite (n > 3, 0 < t < t and independent of y and tv rn< Therefore,
one gets

out /• l _
Vj (x,t) < Kfsup dy-j-j- 2tï Vt Kt (3.36)

lx-yl <t1/4

We can estimate v2(x, t) from (3.28)

_1 /4 / 1 \ r / I x - v 12

v2(x, t) < t ' ex

with

^'M Jdy lvn(y)l ^l"12^")
lx-yl >t1/4

< t"1/4 expr-^^ fdy IVn(y)l exp (-lx-yl2) t<l/8
n

< t"V4 expT—-^l 2 IV(rj-x)l (3.37)

V(x) fdy exp (-lx-yl2) IV(y)l (3.38)

Clearly I V(x) I < IIV II v and it is easily verified that the convolution (3.38) of V(x)

with a Gaussian satisfies the same condition (2.3) with some modified constants R

and M. We perform the summation in (3.37) by first taking the impurities in the

sphere B(x, R) with lV(rj - x) I < IIVIIj, and then summing on the shells

- - M
B(x, R + m d) \ B(x, R + (m - l)d) where I V(r. - x) I < ~r in the same way as

1 I x — Tj I '

in (3.34). Taking the hard core condition into account, this leads to

IV II
1 + K0 (3.39)X IV(r.-x)l <

i=l

R

vd,
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where KQ is the constant (3.35) with R and M replacing R and M and t 0. This

bound together with (3.37) shows that v2(x, t) tends to zero uniformly with respect

to x and the r. as t -» 0. By (3.32) and (3.36), the same is true for Vj(x, t), and thus for

v(t) by (3.26). This concludes the proof of the lemma.

As a corollary of the lemma, one obtains that binding energies

En=- inf inf spec Hn(r,,...,rn) > 0 (3.40)

i\ ;...; rn I r; - rj I > 2 d

have a limit as n -> <».

Corollary
The binding energies En form an increasing sequence and

lim En E»<oo (3.41)
n —»oo

Proof
Since the electron-impurity potential V is negative, one has Hn+ < Hn,

implying En+1 > En. Let llexpt-tH"] II be the norm of exp(-tHn) as an operator
from XP( IR3) to ZP( IR3). The result of the lemma shows that

II exp(-tHn) II

m> m
< sup f dy I Oc I exp(-tHn) I y) < A eBt (3.42)

Furthermore, one has (theorem B. 5.1 of [6])

exp(-t inf spec Hn) II exp(-tHn) II ^ < II exp(-tHn) II „ (3.43)

hence the sequence of binding energies is bounded,

En<B (3.44)

and thus lim En E» exists.
n-> °°

Clearly, En < E» implies that the stability condition (2.7) certainly holds for
n large enough. One has necessarily E» > E If one would know that E» < 2EQ,

E.
the inequality (2.7) would obviously hold for all n > 2 and K y It turns out that

the estimate (3.44) of the En and E, in term of B is far from being optimal (B is in
general much larger than EQ; see the remarks at the end of section VI). In section
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VI, we give an estimate of E» by another technique yielding a stability constant
K < EQ provided that the hard core radius is large enough.

Finally, we note that if one considers H° + qVn with a coupling constant

q * 1, the result of the lemma as well as (3.44) are still true, and the constants A
and B can be chosen independent of q for q in a neighborhood of 1.

IV. The low activity expansion

rv.l. Formal low activity series

We first calculate the coefficients fA(ß,z) of the low activity expansion
(3.12). Introducing the functional integral representation (3.4) for finite volume A
and using (3.10) and (2.21), we can write

1 C C HA(ß;z;o>)
fA(ß-Z) TaT J ^j dH* ß

<*>^zT (41)

A
where

oo n

S(ß, z ; ra) 1 + X "fr f drr.. f drR x^,..., rn) II exp[-V(r., ffl)] (4.2)

A A

is the classical partition function in the external (ß-dependent) potential

ß

V(r;ra) J ds V(r - œ (s)) (4-3)

o

To expand the integrand of (4.1), one introduces the abbreviated notation

V"« f n

S(ß, z ; ra) 1 + 2 ~-, J dl... dn%.{!,..., n) Il f (4.4)
n=l n • A a pl i

oo

S (z) 1 + Z Vï J dl... dn xd(L -, n) (4.5)
n=l ll • A

with xd(l, -, n) xd(rj,..., rn) (xd(l) 1) and

{¦= exp(-V(rj,ffl)) (4.6)

Then the ratio of the partition functions (4.4) and (4.5) has the expansion (see
Appendix B)
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oo

SA(ß z; ra) Y zn

n k

an =1 + 2-
k

!(nn'k) f dl... dn X^l-vk I k+11... I n) fl (f.-l) (4.8)
K— 1 J >

A

In (4.8), xd(l,-/k I k+11... In) is the hard core exclusion (2.10) truncated with respect
to the subsets

qk {1... k), qk+1 {k+1},..., qn {n}

and Xdd n) xd(l n), %T(l) 1.

One can write (2.10) in the form
n

*d(i n) -*& k) JLvm-ns2 (49)

with

Zq]qm n II X(rrr) (4.10)

Therefore, according to the Mayer connected graphs formula, one has

X5(l,...,k I k+11... I n) Xd(l,-,k) S(l,...,k I k+11... I n) (4.11)

S(l,...,k I k+11... I n) X û (Xfl a - D (4.12)
G (l,m)CG qlqm

where the sum runs over all connected graphs G with vertices
k, k+1,..., n, (S(l,...,n) 1). Thus taking (4.8), (4.6) and (4.11) into account, we find
that the coefficients fA(ß, z) of the low activity expansion (3.12) have the form

with

fA<ß> § W^k)! ft-»*1 (413)

& =1Xi J*1* h"Ak(x) (414)
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tfkW-J<fcr..drn dtfpfo).

XA(tv..., rk) S (rj,..., rk I rk+11... I rn) II (exp(-ßV(rj - ffl)) -l) (4.15)

In deriving (4.13), we have freely exchanged sums and integrals. This will be
justified by the bounds obtained in the next subsection.

IV.2. Uniform bounds

We give bounds on the coefficients IAk (4.14) that are uniform with

respect to the volume A. We estimate separately in (4.14) the hard-core term (4.12)
(lemma 2) and the part involving the interaction potential between the electron
and the impurities (lemma 3).

Lemma 2
For n > 2 and 1 < k <n - 1 one has

drk+1... drn IS (r, rk I rk+11... I rn) I < ^—J (n - k -1)! k en
4jtd3>| n-k

(4.16)

Proof
The sum over connected graphs (4.12) is bounded by a sum on all trees T

with vertices k, k+1,..., n [9]

is<ri ^k+i1-1^ % ,n (%qiq -d
T (1, m) e T 4lHm

(4.17)

For each tree T the product runs on the n-k bonds of T. Thus one has according to
(4.10) (qk {rv...,rk}, qk+1 {rk+1},..., qn {rn})

Jd,, n
"

(1, m) € T n'nrn
k+1-drn 11 JXq^-D

dr,k+l û X(rrr)-1
dk(T) r>

-in-k-dk(T)
I X(r) -11 (4.18)

To obtain (4.18), one integrates over all bonds of the tree T having root qk with
coordination number dk(T). Using the identity
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K " K

II a.-l L> (a,-l) II a.
j=l ' 1=1 ' j=l+l '

(4.19)

one gets

dr Ilxdj-r)-!
j=l

<X fdrlx(r,-r)-ll =kfydj (4.20)

Thus (4.17), (4.18) and (4.20) lead to

Jdrk+1...drnIS(r1,..,rklrk+1 I... lrR)l ^(fd^X kd^> (4.21)

One knows [10] that the number of trees T such that dk(T) m (m integer, 1 < m <

(n-k-1)!
n - k) is (m-1)! (n-k-m)!

n-k

(n - k)n"k-m. Therefore

n-k

X kdk(T) X X km= (n-k-1)! X 7.

T m=l T:dk(T) m m=l v

(n-k)n-k-m

< (n - k - 1)

:dk(T) m-1)! (n-k-m)!

(n-k-l)!ken (4.22)

Inserting (4.22) into (4.21) gives the result of the lemma.

The application of the lemma 2 to (4.15) leads to the bound

I ¦>* I *
431

dfa (n-k-1) k en
J drr.. drk j^G., rk) Jk(rrx,...,rk-x)

with
f d3J n! en J" dra drk xd(ri rfc) J(ri,...,rk)

Jk(ri rk> J ciUpCm) n j^expf-V^ffl)]-^

(4.23)

(4.24)

To obtain (4.23) we have removed the finite volume constraints in the path
integral and in the integrals over the impurities (the x dependence drops because

Xd(r1,...,rk) is translation invariant). Moreover, we have used (n - k - 1)! k < n! so
the inequality holds for 1 < k < n, n > 2.
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Lemma 3

eßBePu / \dri - drk xd(ri rk> Jk<ri rk> * A TZ^h (P A "v ' i)
(47rß)3/2

(4.25)

where A and B are the constants of lemma 1.

Proof
With (4.3) and e_a - 1 < I a I e_a, a < 0, one has

p ß k / k p

Jk(ra rk) < J" dnp(ffl) j dtr.. j dtk .II I V(i. - ffiCtj» I exp -X J" dt V(r} - aty)
0 o

ß t, tk.j

V

X Jdtjdt,... jdkk fdiipCfldniVCr^-flK^I
n n n J '0 0

.exp

Jl ß ^
rltVfr. „„.j - r

-X fdtV(r;-ffl(t))
3=1 oJ

(4.26)

J

In the second line of (4.26) times are ordered and the sum runs on all
permutations of 1, 2, k. The path integral can be performed and expressed in
terms of the kernel (3.3). Thus, the bound (4.26) becomes

ß ti tk-i

Jtt, rk) <X jdtj Jdtj... Jdtk fdy1...dyk(olexp[-(ß-t1)^]ly1)IV(ro(1)-y1)l
° 0 0 0 ^

.(ya I expKtj -12) Kg] I y2)... I V(ro(k)- yk) I (yk I exp[-tk h£] I o) (4.27)

where H^k) H(k)(rc(1),...,r0(k)) is the k-impurities hamiltonian (2.5) with
permuted arguments. Thus, using the lemma 1 for I r. - r. I > 2d, one finds

ß 'i tk.,

Krv...,rk) <Ak+1eßBX jdt, J"dt2... jdtk f dyx... dyk(o I expt-^ß-tj) H°] I y.)

0 o o
¦)

•
' ^aW-y^ ' (yi ' exp[-2(trt2)H°] I y2)... I V(rCT(k)-yk) I (yk I exp[-2tk H°] I o) (4.28)

Finally, integrating on the positions of the impurities,
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dr1...drkxd(r1 rk) JCr, rk) <

ß t, tk.,

J

Ak+leßB ||vBkX fdtj fdt2... fdtk(olexp(-2ßH°lo)
° 0 0 0

Ad^(ßAIIVI|i)k (4-29)

IV.3. Proof of proposition 1

We can now prove the first part of the proposition 1. Combining (4.14),
(4.23) and (4.29) gives for n > 2

pPB fin ,Y-k
1 & ' -A «tf*n! en [t d J (ßA "v " i} (430)

and from (4.13)

lf?(ß)l ^ ufa'.n.l I" l^^f^Hx^ + ßAIVlJI (4.31)

n

wi=§ id^iCk,^(^Kfd3+pAiivaiF
Thus the series (3.11) converge for I z I < z (ß)

1 (Ak V1
z0(ß) =- Td3 + ßAIIVII1 (4.32)

The existence of the thermodynamic limit (3.12) is also an immediate
consequence of the lemma 2 and 3. Since the bound (4.31) is uniform with respect
to A, it is sufficient by dominated convergence to compute the limit term by term.
By the results of the lemma 2 and 3, the integrand in (4.15) is jointly integrable
over the product measures dr....dr d(i.xß(fii), and therefore, by dominated

convergence

i }\m \ k(x) s ^kIAI -»oo n k
k

drl - drn Xd(rV •' rk> S(rl'-' rk ' rk+l ' - ' rn} d^ß(Co) v[ Cexp[-V(rj, ra)] -1

1 < k < n n > 1 (4.33)

Hence, writing
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lAk T7T fdxfhA(x)-hA(o)i+hA(o)
nk IAI J ^ nk nk J nk

one obtains

lim I h
IAI ->«o nk nk

(4.34)

(4.35)

provided that the first term in the l.h.s of (4.34) tends to zero as IA I —> oo.

Introducing the characteristic function %. (r) of A, this term is majorized by

77 fdx(V(x)- hA(o)i <
Al J V nk nk

A

r k k

{^•••^^ Jdxiix^+^-nx^j) Xd^l rk>S(rl rklrk+l'-lrn)

f dnß(ra)IIfexpf-V^,ffl)] -lì (4.36)

The bracket in (4.36) is less than 1 and tends to zero as IAI -> oo for each fixed

configuration of the impurities. Thus (4.36) vanishes as IA I -» oo, and we
conclude that

n
(4.37)|AlfcJn(ß)=nß) X_J_hnk

with hnk given by (4.33). This completes the proof of proposition 1.

Let us also give the expression of hnk in terms of the original
n-impurities hamiltonians (2.5). With the help of the identity

k k k
H (f.-l) S X (-Dk-] fi: f: -1
j=l ' 1=1 h h

(4.38)

and noting that the integrand of (4.33) is symmetric with respect to the
permutations of iy..., rk, one obtains

hnk dr, drn xd(rr -, rk) S(r, rk I rk+11... I rn)

•X (-d k-1 k!
1=1 l!(k-l)! dn„(ra)

1

exp[-ßX V(r ra)]-l (4.39)
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In view of the Feynman-Kac representation of the kernels this is also equal to

hnk =| drl •• drn Xd<rl rk> S<rl rk ' rk+l ' - ' rn>

k

• X (-Dk"' mll){ [(oIexpt-ßHkrj,...,r,)]-exp[-ßH°] Io)] (4.40)

V. The ionisation equilibriiun limit

In this section we prove the proposition 2, considering first the case

lim w(ß) w < oo. As a consequence of proposition 1, one can write
ß->oo

(27tß)3/2 f(ß + X, z(ß)) 1 + w(ß) exp[-ßE0] Tr(e-(ß + wH1 - e~(ß + X)H°)

oo

+ (27tß)3/2X (z(ß))nfn(ß+X) (5.1)
n=2

As already explained in (2.25)-(2.28), the term of order one in (5.1) tends to
wexp(XE (the formula (2.27) is justified in appendix D). Thus one gets the result

(3.14) if the sum of the terms with n > 2 vanishes as ß -> oo. To establish this fact,
let us show first that the sum of the terms with large enough
n (say n > N) goes to zero as ß -» oo. Indeed, one notes from (3.13) and (4.32) that
for any fixed X and ß large

z(ß)/zo(ß + X) =0(w(ß)e-ßE°) (5.2)

and since f n (ß + X) satisfies the bound (4.31) (with ß replaced by ß + X), one has

n=N \2($ + X)) |z(ß + A.)l I zo(ß + X.)

O ((w(ß))Nexp[-ß(NEo-B)]) (5.3)

This tends to zero for N > B/Eo
It remains to show that each of the terms with 2 < n < B/EQ also vanishes

as ß —» oo. In the following, C will always denote a generic constant independent of
ß (ß > 1) and of the location of the impurities. According to (4.37), we estimate the
quantities hnk defined by (4.33). At this point, one needs to bound the h in terms

of the groundstate energies of the n-impurities hamiltonian Hn (n > 2) and to use
the stability condition (2.7). For this we make the following decomposition. For a

fixed configuration of impurities r,,...,rk, let B(r., a) denote the ball of radius a



Vol. 63, 1990 Maoris, Martin and Pule 731

centerd at r.. To each partition P {F, P") of {l,...,k} in two subsets P', P" one

associates the set ©p consisting of Browninan paths intersecting only the balls

B(r., a), j e P*, i.e.

*DP j(ffl (t) I inf I ©(t) - r. I < a, j e P', and inf I ©(t) -1.1 > a, j e P")l (5.4)

Clearly, the space of all Brownian paths is the disjoint union of the 2)p where P

runs over all such partitions. It is therefore sufficient to study h^ given by the

same expression than (4.33) with the functional integral restricted to 2?p. Using
the lemma 2, one has

lhnk^C dr,... drk xd(r,,..., rk) f dnp(ffl) fj (exp[- VOy sui -1) (5.5)

©P

Choosing a > R (R is the constant occuring in the condition (2.3)), we remark that
for j e P"

¦J«
M

V(rr m) | dt V(Fj - ra(t)) > - — (5.6)

and
-M

exp[- V(rr (Q)] -1 < I V(rr fij) I expfß^i (5.7)

Hence

lhP|<Cexp((k-l)ßgj.

dr,... drk ijxv..., rk) fd^dd) YI I Vdy fld I Ü (exP[- V(rj- «H "l) (5"8)

J J j€P" jeP'

In (5.8), by a relabelling of the r., the partition P is of the form P'= (1,2,...,1),

P" 0 + 1, -, k) with some 1, 0 < 1 < k. If 1 0 (resp. k), F (resp. P") is empty. The
r.h.s. of (5.8) increases if one relaxes the hard core condition for the impurities r.,

j 1 + 1,..., k and the exclusion of the paths from the balls B(r-, a), j 1 + 1,..., k in
k

(5.4). One can then integrate .11 |V(rj,Q)| and get
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h^l<c(ßllVl1)k"1exp^(k-l)ß^

dr, dr, xd(r,,..., r,) d^ß(ra) xa(ra; r,,..., r,)fj (exp[- V(r co)]-l), 1 > 1

'hnPkl 1 0

(5.9.a)

(5.9.b)w* (p"vi^) eKkß^)

The application of the identity (4.38) to (5.9.a) gives

r> / \k-l / M\ 1'
I h^ I < C (ß IIV II,) exp (k -1) ß- X (- l)'"m

(1 - m)! m! u.m (5-10)
v / m=l

with 1 < 1 < k
c

dr, dr, xd (r,,..., r,) dtip(ra) xa (©J tv -, rP

.(exp[-Vm(r,,...,rm,ra)]-l) (5.11)

m
Vm(r,,...,rm,iû) X V(rr fij)

j=1
In (5.9.a) and (5.11) Xa(ö; r,,..., r.) is the characteric function of the set

©r,,..., r, I ffi(t) | ffi(0) 0 and inf I ffi(t) - r. I < a j 1,..., 1 j (5.12)

Thus the estimation of h p. for 1 > 1 is reduced to that of the u, For this, onenk 1m
needs the following lemmas. The lemma 4 estimates the probability of the set
(5.12) for 1 > 2.

Lemma 4

Let a be a fixed positive number, then for 1 > 2

1

Xa (ffl; r,,..., r,) < JJ Xa (W rfr,)
)=2

with x, (M r) the characteristic function of the set

a(s) I ro(0) 0 and sup I co(s) > r I r I - a

(5.13)

(5.14)

Furthermore there exists constants C and D independent of ß (ß > 1) such that
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d^IIxa(iû;rrr,)<Canexp -D-L-i-
j=2 j=2 I P

\zq\*\
,1S2 (5.15)

The lemma 5 gives us the suitable connection with the groundstate energy
of the n-impurities hamiltonian Hn H° + Vn.

Lemma 5

Let e be a fixed positive number, 0 < e < ß. There exists a constant C£

(independent of ß and r,,..., rn, I r,-r. I > 2d) such that

Tr I Vn I exp[- ß Hn] < Ce IIV II, exp[- (ß-e) Inf spec (H° + Vn)] (5.16)

The lemmas are proven in the appendices C and D. We now come back to
the estimation of u,m. We use again the inequality e"y - 1 < I y I e"y (y < 0) and

then, for fixed r,, change the integration variables r2,..., r, to r2 + r,,..., r, + r, :

ulm^ dr2...dr1xd(o,r2,...,r,) dr, dHp(ra)
| Vn(r,, r2 + r,,..., rm + r,, ra)|

Xa (a; r,, r2 + r,,..., r, + r,) exp(- Vm(r,, r2 + r,,..., r, + r,, ffl)) (5.17)

The application of the Holder inequality to the product measures dr,dUn((a)

including the weight factor | Vn(r,, r2 + r,,..., rm + r,, ra) | gives

ulmS dr2...dr,xd(o,r2,.../r1).

j dr, dHp(ffl) |vm(r,,r2 + r,,...,rm + r,,fi>)| xa(öJ *1# r2 + rl, ' rl + TJ J

[ dr, dHß(ffl) | Vm(r,, r2 + r,,..., rm + r,, a) |

/ \l1/q
exp^-q Vm(r,, r2 + r,,..., rm + r,, ffl)jj

with - + - 1. One remarks that the second bracket is equal to

ßTr |Vm(o, r2,..., rj| exp[- ß(H° + q Vm(o, r2,..., rm))]

and thus, by the lemma 5, it is bounded by

1/P

(5.18)

(5.19)
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with

Cß HVll,exp[(ß-e)Em(q)]

Em(q)=- inf infspect(H° + qVm(o,r2,...,rm))

(5.20)

(5.21)

Thus (5.18) - (5.21) lead to

ulm < (c ß IIV II ,)1/q exp[(ß- e) \e% dr2... dr,xd(o,r2, ...,r,).

c c

[ dr, dnß(ffl) |vm(r,,r2 + r,,...,rm + r,,ra)| xa(^ ri, r2 + ri, ' rl + rl> J

1/P

(5.22)
When 1 > 2, thanks to (5.13), the integrand in the bracket has a bound independent
of r, except for the potential part, whose r,-integral is bounded by

dr, | Vm(r,, r2 + r,,..., rm + r,, fij) | < m ß IIV II, (5.23)

Droping the hard core constraint and taking (5.13), (5.15) and (5.23) into account

together with dr exp| -—- ] C ß3/2 gives the result

-lm^a,e,q(ß.lV.1)(ß3/2)MexI{ßiEm(q)] (5.24)

When 1 1, one can use xa (fii; r,) ^ 1 instead of (5.13) and it follows that (5.24)

holds also in this case. Each term of the sum (5.10) has a bound of'the form

Cßk + «-»/2exp((k-l)ßg)exp[ßi lAq)], (5.25)

Since the binding energies are convex functions of the coupling parameter, E (q)
(a supremum of convex functions) is still convex. Moreover, we know that for q
in a neighbourhood of 1, it is bounded above (see the remark at the end of Section

III). Thus, the function E (q) is continuous at q 1. Hence, for any 8 > 0, one can
find q sufficiently close to one (q > 1) such that for all m, 1 < m < n

^Em(q) <Em(l)+ 8 (5.26)

and by the stability bound (2.7)
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1 m-E (q)< mK + 5 m > 2

(5.27)

-E'(q) < mo + 8 m l

M
Moreover, choosing a such that — < K < K, one has

a
M

(k -1) — < (k -1) K' < (n - m) K' (5.28)
a"l

With (5.27) and (5.28), we conclude that for all m, 1, k with
l<m<l<k<n(n>2) and all ß > 1, the quantity (5.25) is majorized by

C (ß3/2)" exp [ß (nK + 8)] m > 2

(5.29)

C (ß3/2)" exp [ß ((n - 1) K' + E0 + ô)! m 1

p
Comparing with (5.9b), one notes that (5.29) is also an upper bound of h^ for
1 0. Since f n(ß) has been decomposed into a finite number of terms (the sums
(4.37), (5.10) and the sum over partitions), f n(ß) satisfies the estimate

f n(ß) < C, (ß3/2)n exp [ß(n K + 8)] + C2 (ß372)" exp Tß ((n - 1) K' + EQ + s)j (5.30)

where C, and C2 are appropriate constants depending on n, a, e, q but not on

ß (ß > 1). Thus one gets

(2jcß)3/2 (z(ß))n fn(ß + X) Ofß3/2 (w(ß))n exp[-ß(n(E0-K)-8)J^

+ O fß3/2 (w(ß)n) expT-ß(((n - 1) (E0 - K") - 8))~h n > 2 (5.31)

Since K' < K < E0 and lim w(ß) w < oo, (5.31) vanishes as ß -» oo provided that 8

ß-»o°
is small enough. This conclude the proof of (3.14). Since the convergence of the
Laplace transforms implies the convergence of the corresponding measures [10],

1 w
P(. ; ß, z(ß)) tends to "J^SoO + ï^&-E00, and thus (3.15) follows.

If w(ß) diverges as ß —» oo, the first order term in (5.1) also diverges like

w(ß). Moreover, if w(ß) Ofexp( ß(EQ-K) Y\, it is the most diverging term of the

series. Indeed, for n > 2, one finds in this case from (5.31)
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(2jtß)3/2(z(ß))nfn(ß+X.) / x.— =0 (ß3/2exp(-ß(Eo-K- 8)))

+ O fß3/2 exp(-ß((n - 1) (K - K') - S))ì (5.32)

which tends to zero when 8 is sufficiently small. One sees on (5.3) that the same is
true for the sum of the terms n > N, N large enough. This means that

(2rtß)3/2 f (ß + X z(ß)) w(ß) e^o + o (w(ß)) (5.33)

and
f(ß+a.,z(ß)) ,plim P H; e^ (5.34)

P^oo f(ß,z(ß))

and so y, 0.

VI. Spectral properties

In this section we show for any potential satisfying (2.1)-(2.3) that the
stability condition (2.7) can be fullfilled with a suitable choice of the hard core
radius. More precisely, one has the following proposition

Proposition 3
For any potential V satisfying (2.1)-(2.3) and impurity with hard core

diameter d, there exists a constant E(V, d) independent of n and r,,..., rn n > 2,

such that

inf spec Hn(r,,..., rn) > - E(V, d), n > 2

Moreover

lim E(V,d) Eo (6.1)
d -»oo

As a consequence of (6.1), one can choose d d large enough so that

E(V, d0) < 2 E0 (6.2)

E(V,d0)
Hence (2.7) holds with K ~ • We discuss at the end of the section the order

of magnitude of d for some special potentials (square well, Yukawa).
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Proof of proposition 3

The quadratic form associated to Hn (r,,..., r has the same domain as that

of H° - 2 A i.e. the Sobolev spaces 9fl R3) where

9{x (\|Kx) I \|/e Z,2(IR3)andV\|/(x)e £2(R3)}

and one has

(6.3)

with

inf spect Hn inf Qn(v|/)

Çfty) =\ f dx IV\|/(x) |2+ f dxVn(x) l\|Kx) l:

(6.4)

(6.5)

Let B. B(r., d) be the ball of center r. and radius d, with characteristic function x=(x)

(Xj(x) is the characteristic function of R3 \B.). For Ir, - r. I > 2d, the balls do not
overlap, and dropping part of the kinetic energy, one has

n

Qn(Y) > X \ f dx Xj(x) IV \|/(x) 12 + f dx Xj(x) V(x - r.) I V(x) I:

+ f dx £ ijW V(x - r}) I X)/(x) 12 (6.6)

We first give a lower bound for the last term of (6.6). Recalling
M

V(x) > - -j—t^ for I x I > R (see (2.3)), we get for any fixed x

Ìxj(x)V(x-rj)=|x_^R xj(x)V(x-rj)+ |x_X>R xj(x)V(x-rj)

Rn3
> - sup lV(x)l (ä) -Ko

lvl>H VV
(6.7)

lxl>d

In (6.7), sup I V(x) I is finite since V(x) is bounded except possibly at the origin
lxl>d

(condition (2.2)). The summation on the r. with I x - r. I >R has been estimated as

in (3.33)-(3.34) and KQ is the constant (3.35) with t 0. Hence

dx £ Xj(x)V(x-rj)lV(x) l2>
j

/Rn3
sup IV(x)l fa-) +Ko
lxl>d v J

dx lv|/(x) (6.8)
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To estimate the first term in the r.h.s. of the inequality (6.6), it is useful to
introduce the forms

QA,m(V> "ta dxlV(x) I2 + fdxl\|/(x) I2 (6.9)

where Ac R 3 m > 0 and y e 2/fa Let 8 (x) beaCfl function with support in
B B(o, d) such that 0 < 0£(x) < 1, 9£(x) 1 for I x I < d (1 - e) and I V6e(x) I < Ved,
0 < e < 1. We note that

QB,m(0eV)=^ dx IS(6e(xMx:x))l2 + fdx V(x)ie.(x)v(Kx)l: (6.10)

The r.h.s. of (6.10) is the quadratic form associated with the one-impurity

hamiltonian j— HQ + V with ground state energy - EQ(m) (EQ(m) > 0). Since

8£\|r e Hx, QB m (0£\|O is bounded below by

13

(6.11)

One obtains a majoration of QB m(9£V(f) in terms of QB ,(v(/) in the following way.

Using the Schwartz inequality and the properties of 9£(x), one has

fdx IY(e£(x)v)f(x))l2 < fdx9£(x)IV\|/(x)l2 + fdx IV9£(x)l2 l\|/(x)l2

+ 2 fdxe£(x)l\^x)l IV9£(x)l I Vx|^x) I

< fdx9£(x)IV\|Kx)l2 + fdx IV\|/(x)l2 l\jKx)l2

+ 2 dx9£(x)l\|/(x)l2| (fdx IV9»I2 IY\|Kx)'2

dx IV\)/(x)l2+-—- dxlv|r(x)l2+

B

< m j dx I Vv(x) I

B

(ed)2 JC

B

*+^(

e

2

a/2

m
(ed)2 \asr\

(ed)2

dx l\)Kx)l:

dxl\|/(x)l2 dxlV\|/(x)l

B j Ib

Ai/2

(6.12)

where the last inequality holds for any m > 1. Furthermore, noting that

V(x)(9 £(x) - 1) > 0, we have
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fdx V(x)(8£(x)-1) ly(x)l2< Vd fdx l\|Kx)llu i yw
B B

Vd - ,SUP IV(x)l (6.13)d lxl>d(l-e)
implying

fdxV(x)9£(x)l\Kx)l2< fdx V(x)lY(x)l2 + Vd fdx l\|/(x)l2 (6.14)

B B

The combination of (6.12) and (6.14) leads to

QB,m(eey)^QB;l W +2(£d)21(m_1) + Vdj Jdx l¥(x)l2 ,m>l (6.15)

B

Finally, taking (6.11) into account

Qb,iW * -fEo(m) +^aa:^t—;. + v. |2dxl\(r(x)lz (6.16)
1 - K+ Vj2(ed)2(m-l) dJ

b"

One notes that the brackets in the sum (6.6) are equal to QB ,(Vj) where

Yj(x) ytx - r.). Therefore, a lower bound for Qn(\|/) is provided by (6.16) and (6.8) :

<™ * -(Eo(m)+2(ed)2(m-l) + "Vd (ê)3*1)^)/* IV(X)|2 (617)

0<e<l, m>l.
For a fixed e, the lower bound E(V, d) of proposition 3 can be chosen as the

constant of (6.17) evaluated at m 1 + Vd. Clearly Vd and KQ are O(VdTl) (as can

be checked from (3.35)), and EQ(1 + Vd) tends to Eo(l) EQ as d -> o». This
establishes (6.1) and concludes the proof of proposition 3.

We discuss possible choices of the hard core radius dQ in order to fulfil the

condition (6.2).

(i) Square well

For a bounded potential ('with V - inf V(x) > oY we can first let m -» oo

and then e -> o in (6.17). In this limit, E (m) tends to V„ and V. sup I V(x) I, so° lxl>d
the constant in (6.17) is explicitly expressed in term of the potential. Furthermore,
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if V(x) has compact support with radius a, it is clear that the constant reduces to
V and the condition (6.2) to

V < 2 E
o o

(6.18)

provided that dQ > a. For example, a square well potential of depth - VQ and
1 9radius a satisfies (6.18) when 2 a V > 1.

(ii) Yukawa potential

We consider the screened Coulomb potential between two charges (e, - e),

V(x) - e2 - exp (- r/a), r I x I, with screening length a (obviously V(x) satisfies

the hypothesis (2.1)-(2.3)). Measuring all lengths in units of
aB Ve2 (aB is the Bohr radius of an hydrogen atom of mass one), and energies

-2in units of aß, the one impurity hamiltonian with mass m reads

H l exp(- Va)
toA- r

(6.19)

We make the choices e V2 and R d in (6.17). Setting a d/a, the last
two terms of the constant in (6.17) give the contribution

oo

F(cc) 2 sup IV(x)l + K0= 2v(f) + X ((k + 1)3 -k3) V(kd)
|x|>d/2 W k=l

)_

a

J_
aa

p-a/2

a

à/2
oo

+ X (3k2 + 3 k + 1)
k=i

_ka

2e~a/2 + 6
1-e"

ka

ln(l-e-a) I (6.20)

In the expression (3.35) of K we have used the value of the potential itself
instead of the weak bound (2.3). Then, the inequality (6.2) becomes

E°(m) +
(aa)2 (m-1)

+ F(o) < 2E0 2E0 (1) (6.21)

The numerical values of the ground state energies EQ(m) of the
hamiltonian (6.19) can be found for several values of m in the table I of ref. [11].
When a > 3, we have checked that it is possible to satisfy the inequality (6.21)with
a 2 (with suitable values of m > 1). If a is large enough (a > 30), one can even
take a 1. Thus, in this case, (6.2) can certainly be satisfied with the choice dQ 2a.
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In these two examples, at least, one sees that the stability condition (2.7)
will hold when the hard core radius has about the same size as the range of the
attractive potential (i.e. d a).

To conclude this section, we estimate the order of magnitude of the
constant B in (3.16) for the one impurity hamiltonian (6.19) with m 1. For this,
one notes that

1 exp| X2sy I exPlm
lylJdyQt(x-y)IV(y)l =|dsjdy ^J,

0

t

^ J ds Jdke-^ e""2*'2 j^ k Ikl (6.22)

0

takes its maximum at x o. Hence, one finds from (3.17).

l

v(o-«y| J*^Jdyy«p(-£-î) ,y-iyi
0 0

4
t1/2 + 4 + O (t3'2) (6.23)

aJ

From the proof of the lemma 1 (see (3.20) and (3.24)), one has

3 ï - kln d^ -v(o} <1/4 (6-24)

o

For a > 3, the smallest value of B obtained from (6.23) and (6.24) is roughly
B 25 with t0 0,012. On the other hand, the ground state energy EQ of (6.19) (with
m 1) ranges from 0,23 to 0,5 when a > 3. So in general B is much larger than EQ,

and this will also be the case for the n-impurities hamiltonians.

VIL Comments and conclusions

Information can also be obtained on the momentum and positional
distribution of the electron in the ionization equilibrium limit. The techniques
are the same as in the preceding sections and we only sketch the arguments.

We consider first the Fourier transform

<eiA-P> f e&-k p(dk;z,ß) (7.1)

of the probability measure giving momentum distribution of the electron. In the
finite volume system, <e'i • P>A is given by (2.11) with A {e& • P, n 0 1, 2,...},
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where p is the momentum operator of the electron. In order to have p - i Y as a
well defined self adjoint operator on IR3, we confine the electron by a smooth wall
represented by a regular potential Ua(x), Ua(x) 0 if x in A and U\(x) -» oo fast

enough as I x I —» oo. in this setting, the term with n impurities in <e'^ • P>.
involves the following trace

Tr exp[-ß((H^(r1,..., rn) + UA))1 exp[i I. p]

f dx (x I exp[-ß((H^(r, rn) + UA))] I x + à)

n

where dji x „ (a) is the conditional Wiener measure multiplied by the" ß
>|

weight factor exp - ds U. (fii(s)) of the wall.J*».
v» j

Proceeding as in section n and IV, one can write <e& • P>A as a ratio

fA(p,z,i)
<e4.p>A -f (7.3)

fA(P,z,o)A

with f A(ß, z, 2d given by the analogue of (4.1)

fA(ß,Z/M=~J dx J dn\0; x+^(a) ^f (7.4)

The functions S(p,z,ûi) and S0(z) are the same as (4.2) and (2.19). The only
difference with (4.1) is that the paths are no more closed, but start at x and end at

x + Ì. The low activity expansion of (7.3) and the convergence proofs are then
carried exactly in the same way as in section IV. In the thermodynamic limit the
low activity series are similar to (5.1),

(27iß)3/2f(ß,z,M e-'i|2/2P + w(ß)e-ßEo Tre^P (e-ß«1 - e-ßH°)
OO

+ (27tß)3/2£ (z(ß))n fn(ß,X) (7.5)
n=2

where the f n(ß, i) are given by the same expresssions as (4.33) and (4.37) with
dnp(ra) replaced by djix 0. x +. „ (co). In the ionization equilibrium limit defined by
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(3.13) with w(ß) -+ w, ß -> oo, the sum of all the terms of the series (7.5) with n > 2
vanish. The proof is the same as that of section V where one uses the lemma 4

and 5 for a general 2^ (see appendices C and D). Since
expG-ßH1) I vo> <\|/01 exp (ßEQ) + o (exp(ßEQ)), one obtains

lim (27tß)3/2 f (ß, z, i) 1 + w Tr e->Ä • P I y0> <Y0 '

ß-»~

l + w fdke-'A-k ly0(k)l2 (7.6)

where \|/Q (k) is the Fourier transform of the ground state wave function. Finally,
taking (7.3), (7.6) and (3.14) into account leads to the final result for the
momentum distribution in the ionization equilibrium limit

limp (dk, ß, z(ß)) y, 8o(dk) + (1 - y,)
I
vo (k) I 2 dk (7.7)

ß_»oo

One sees that the electron is in a statistical mixture of a free state and a bound
state. With probability y{ (the Saha coefficient) the electron is at rest* (i.e. in a

plane wave with zero momentum), while with probability 1-y,, its momentum
distribution is that of the atomic ground state. This confirms that ionization
equilibrium can be thought as a thermodynamical phase equilibrium of two
different "species", the ionized electrons and the atoms.

It is also interesting to consider the spatial correlation of the electron at x
with an impurity at r

1 °° zn+1 r ipA(x,r)=——£ —-j- dr,...ckn(xlexp[-ßHn(r/ri,...,rn)]lx) (7.8)
ûA^P'ZJn=0 ' J

A
Since the electron is uniformly distributed in A, the conditional probability of
finding an impurity at r when the electron is at x has density

g(x,r) lim lAlpA(x,r).
IAI -»oo

In the ionization equilibrium limit (3.13), only the lowest order term of the series
(7.8) will contribute. Introducing the definition (2.21), using the result (3.14) and
the fact that

lim e-ßE0 (x I exp [-ßH](r)] I x) Iyo(r - x) 12 (7.9)
ß-»~

one finds

It is at rest in the strict zero temperature limit. At a small non zero temperature, it would
have a Maxwellian momentum distribution as shown by the first term in the r.h.s. of (7.5)
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lim g(x, r) lim
p ->°o p~*o°

z(ß)

f(ß,z(ß))
(x I exp [-ßH^r)] I x)

ÎT^lVo(r-x)|2 YblVo(r-x)|2 (7.10)

The interpretation of (7.10) is clear : the probability of finding an impurity at
distance I x - r I of the electron is the probability of forming the atom times the
configurational distribution in the ground state wave function.

This model of a single quantum mechanical particle interacting with a

many body classical medium is used to discuss the properties of dilute electrons in
molten salts or dense gases [13]. Here one studies by quantum molecular dynamics
the adiabatic motion of the electronic wave function at zero temperature but
finite density. The electron is found most of the time in a localized ground state.
One observes occasional short time delocalization of the wave function
corresponding to the jump of the electron to a neighboring place.

As far as the full quantum binding and ionisation equilibrium problem is
concerned, one needs of course to introduce a many electron system with
quantum mechanical protons and the Coulomb force. Then the lower bound (2.7)
will be replaced by the stability of matter estimate expressed in an optimal form.
The treatment of this general case necessitate the powerful technique developed
by Fefferman in [4]. However, apart from the use of these highly non trivial tools,
the results are the same as in the simple model studied in this paper. Ionisation
equilibrium of real electrons and protons occurs in the same low density low
temperature limit as that considered here. This is the subject of a forthcoming
publication [15].

Appendix A. Proof of (3.3)

For each N e IN let VN be the spherically symmetric attractive potential
defined by

VN(x) =•

V (x) if V (x) > - N

- N if V (x) < - N
(A.1)

VN(x) is continuous and bounded. Let V^ be the corresponding n-impurity
potential, that is

V£(rl7..., ra; x) £ VN (rj - x)
j 1

IV"-V£IIk3 suup f lx-yl-1 I V"(y) - V£(y) I dy

lx-yl <1
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SnS^p[ h^7Tlv<y>-VNGr>l dy =nsupf [(max(lxl, lyl))]"11 V(y) - VN(y)l dy

lV(y)-VN(y)l"J lyl dy< ¦ I IV(y)l
"i7Tdy (A.2)

V(y) < -N

In the third line of (A.2), we have used the fact that I V(y) - VN(y) I is spherically

n IIV
> oo

iv(y)l

symmetric. Therefore, lim II Vn - V", II k3 0 by the dominated convergence
N —» oo

theorem since by (2.2) I lyl dy < oo. By theorem B.10.1, of [6] this implies

that II e-t% - e-1"" I

1,~ -» 0 as N -» oo and thus

(x I exp(-t H£) I y) -> (x I exp (-tHn) I y) (A.3)

uniformly on compacts as N -» ~. Now by Theorem 6.6 of [8], (x I exp(-tH^)Iy) is

jointly continuous in x and y for all x and y in IR and

(x I exp(-tH£) Iy) f d^ „.y. t (fii) exp - f ds V£(afe))

U J

(AA)

Since the integrand of (A.4) is an increasing sequence, the monotone convergence
t

theorem with respect to the measure du n. f da) implies that -

x, o, y, t
ds V£(ra(s)) has

a limit for almost every ra as N —» oo. The sequence -V^(ra(s)) is also increasing,
thus monotone convergence implies again

lim
N —¥ oo

dsV«(ffl(s))= fds Vn(ffl(s)) (A.5)

as well as

(x I exp(-t H£) I y) -» f d^x 0; y, t ^ exP

asN-)oo which proves (3.3).

f t
c

\
ds Vn (ra(s))

Vo

(A.6)

J
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Finite region case

Let

Hna=-ÊAa+ VN<rl rn). (A.7)

By using Theorem 21.1 in [8] and the Trotter product formula as in Theorem 6.1 of
[6] it follows that for almost all (x, y) in A x A

(x I exp(-t H£) I y) f d^x 0; y>
t(ffl) exp - f ds V£ (m(s))

lo J
lrt (a) (A.8)

where lpt is the characteristic function of the set (3.6). The right hand of (A.8)
A

can be written as

(27tt)3/2

E^

exp(-lx-yl2/2f)
A

exp- dsV£f(l--)x+-y + Vt~aÇ)J lpt f1-- x + - y + Vta (pJ

lo J

(A.9)

where & is the Browninan bridge. Almost every & is continuous and if & is
S S i— s

continuous, (x, y) e A x A and (1 - r)x + - y + V ta (r) e A for 0 < s < t then

d({(l-r) x + -y + -Jta (r) : 0 < s < t}), 3A} > 0 so that

lim lpt f(l - h x' + f y' + Vtffi é)) 1.
(x',y-) -+(x,y) lA\ * * W

This combined with the continuity of V^ and the dominated convergence

theorem implies as in Theorem 6.6 of [8] that xlexp(-tH^)lyi is jointly
continuous in x and y for (x, y) € A x A.

It is easy to see that Theorem B 10.1 of [6] holds for HNnA and H" The rest
of the proof follows as above.

Appendix B. Proof of the formulas (4.7) and (4.8)

First we prove the following identity for any function F(l,...,k)
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X r!(n-'k-r)! f dl - ** H1-*)^ « k ' k+1 ' - ' n"r> Xd(n-r+l,-,n)
r 0 J

fdl...dnF(l k) xd (1 n) (B.l)

Let !P(A) denote the set of partitions of a set A, and let Jk J'k denote the two sets

(qk, qk+l,-,qn), (qk+l,-,qn) where qk {l,...,k}, qk+i {k+1},..., qn {n}. One has

Xd(l,...,n)= £ n Xd (Q) (B.2)
Pe2>(Jk) QeP

where %d (Q) is the hard core exclusion truncated with respect to the subsets qi
which constitute Q. Any P e !P(Jk) is of the form (qk U Q) U F (here (qk U Q) is to
be viewed as one set of the partition), with Q 0 or Q C J'k and
P' e T 0'k\Q). Thus we can write

n-k
%da--vn)= X 2 Äug) X n Xd"(Q')

r 0 IQI=n-k-r Fe2>(J'k\Q) Q' e P'

QCTk

Inserting this formula in the right hand side of (B.l) we get

f dl...dnF(l k)xd(l,..,n)

X 2 f dl...dnF(l,...,k) xï(qkUQ) £ n %l (Q)
r 0 IQI=n-k-r J P'e!P(T'iAO) Q'e F

(B.3)

QCJ'k
(B.4)

In each integral of (B.4) we can relabel the integration variables ranging from
k+1 to n so that the set Q consists of the elements {k+l,...,n-r} and
J'k\Q {n - r + 1, n}. Moreover, the number of sets satisfying the constraints

(n - k)!
Q C {k + 1, n) and IQI =n-k-ris given by _ ^ _ fa r, These remarks

imply

f dl - dn F« k> Xd" n> "i („-k - r)!
J r 0

dl dn F(l,..., k)
IS! — î\. —' X / I L „

r 0

Xd" k I k + 11 I n - r) £ n Xd <Q") <B-5)

P'erP{{n-r+l,...,n)) Q' e p'
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which is exactly (B.l), since the sum over partitions T ({n-r+1, ...,n}) equals

Xd(n-r+l,..., n).

To derive the expansion (4.7) we note that it is equivalent to

SA(ß,z,ia) E°(z)
+~ zn -\

1+ £ ^ran (B.6)
n l "

J

with HA(ß, z; ja) and H° (z) given by the series (4.4) and (4.5). Identifying the terms
of order zn in the two members of (B.6), we get an equation for the coefficients an

n
f dl... dn xd(l, -, n) û fj £ r,frlr)! an.r f dl... dr ^(1, -, r) (B.7)

Thus it is sufficient to check that the coefficients an given by (4.8) satisfy the
equation (B.7). Inserting (4.8) in the r.h.s. of (B.7), one has

n n' Ç

X r'(n-r)' an-r dl... dn x^l, -, r)
r 0 J

£ Ti^b)! I Mfa-V-mf*1-*» n^-D
r 0 k 0 J '

X^l, -, k I k + 11 I n-r) Xd(n-r+l, -, n)

n n -k (n - k)!
L fa

k

X^(l, -, k I k + 11 I n-r) xd(n-r+l, -, n) (B.8)

k 0 r 0 J '

In the first equality we have relabeled (1 r) to (n-r+1 n). To get the second

one, we have permuted the summations on 0 < r < n and 0 < k < n-r. Now we
k

apply the identity (B.l) with Rl... k) II (fj -1)

n n' rX r'(n-r)' &™ dl " dr *d(1' "'r)
r 0 J

n k

I kifaUl f dl -dn fì (fi -W %d" ") <B-9>

k o J '-'
and with the help of the formula
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n fj x x n (h. - d (B.io)
j l ' k 0 j^.jk i=l »

it is easy to see that the r.h.s. of (B.9) reduces to the Lh.s. of (B.7).

Appendix C. Proof of Lemma 4

To prove (5.13) we note that any {a e ©r, I{ satisfies

sup lffl(s)l >lr.l-a (CI)
0<s<p J

for all j 1,..., 1. It follows that for j 2,..., 1

sup |fij(s)l >ölrjl + ölril -a
0<s<p l ' z

> flrj-rjl -a (C.2)

Thus the set 2?r, r, is included in the intersection of the sets {fit I £i(0) 0 and

sup I jq(s) I >r Ir - r I - a], j 2... 1, so that (5.13) is valid,
s I

Now we prove a slightly more general version of (5.15) where dn„(io) is

replaced by du. „ „(ffl). Let Ax {fii I ffl(0) 0 and sup lja(s)l >x]for x > 0. The
o,o,Ap 0<s<ß

expectation of the set Ax in the conditional Wiener measure duo - ß can be

expressed in terms of the usual expectation £ of Brownian motion b(s) by the
formula [6].

I2.I2

J d^,o;iß^ ^T E*« 0|^, "»* + Vß (b(s)-sb(l))l >x)

I2J2

£(bl2Vß sup lb(s)l >x-12,1) (C.3)
~(27cß)3/2 W >P0<sll

The inequality (C.3) follows from

sup lsl+ Vß(b(s)-Sb(l))l £ \l\ +2"Vß sup lb(s)l
0<s< 1 •

v ' 0<s< 1

By standard properties of the brownian motion (cf [6, p. 268]), we know that there
exists positive constants C, and C2 such that for any x > 0

Ubi sup lb(s)l >x) < C,exp(-C,x2) (C.4)
0<s< 1

1 l
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If j > I 2. I then x - 12,1 > 2 > 0, one obtains from (C.3), (C.4) for ß > 1

C2
J^o;lß<^Clexp(-^x2} (C.5)

x / IÀI2>\ / x2\
If t < I i I, one has exp < exp) - — and we obtain again (C.5) with2 \ 2ß \ 4ßJ *
C, C2 1, since the expectation in the right hand side of (C.3) does not exceed

one. Thus, setting K max (1, C,) and K min (1, C2) we have for any x > 0 the

inequality

J d*Vo;iß<a> * K «P
_K

4ß
(C.6)

Noting thatf d\io> Q. ^ p0a) Xa(fii; r. - r,) < 1 if 2
I ij - r, I < a and ß > 1, an

application of (C.6) gives for all j 2,..., 1

J d^o,o;iß^ Xa^ij-r,) < Ca exp
4ß̂(l11)-1!1-^ (C.7)

where C is an appropriate constant depending on a but independent of ß > 1 and

j. Moreover, using the inequality fr I r. - r, I - a ] >
g

I r. - r, I - a we deduce

| dK,o;Xft®> Xatolj-r,) < Ca exp
K lr:-rj'32ß "J ^' J

(C.8)

with another constant C For any j 2,..., 1, we have

1

n^fao;^^ ^(öJrj-r,) <Jd^oo;iß(ffl) Xa^Tj-r,) (C.9)

Performing a product over j on the two sides of (C.9) and using (C.8), we conclude

i i

J^co^p^n, Xatotj-v ^ca n exp
K

• I r. - r. I

3 2ßl a
(CIO)
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which is (5.15) with D jy\ ¦

Appendix D. Proof of Lemma 5

We prove a slightly more general form of the lemma 5 estimating
Tr I Vn I exp[-ß Hn] exp (i 2«. p) with exp(i & • p) the unitary operator of space
translations (p is the momentum operator). Using the semi-group property of
exp[- ß Hn] and applying the lemma 1, we note that for 0 < e < ß

(x, lexp[-ßHn] Ixj)

f dy, f dy2(x, lexp[-|Hn] I y,) (y, I exp[-(ß - ÖH"] ly^lexp^lH") Ix^

< A2 eBe f dyt f dy2 (x, I exp[- e H°] I y,) (y, I exp[- (ß - e)Hn] I y2)

(y21 exp[- e H°] I xp A2 e®6 (x, I exp[- e H°] exp[- (ß - e)Hn] exp[- e H°] I Xj) (D.l)

Hence one finds

TrlVnl exp[-ßHn]exp(i2I.p)= f dx IVn11/2(x) (xI exp[-ßHn] I x-à)IVnl1/2(x)

< A2 e86 Tr {I Vn 11/2 exp[- e H°] exp[- (ß - e)Hn] exp[- e H°] exp (i 2,. p) I Vn 11/2}

< A2 eBe I I Vn 11/2 exp[- e H°] exp[-\ (ß - e)Hn] Il
2

II IVnl1/2exp[-eH°]exp(i2<. p)exp[-|(ß-e)Hn] Il
2

< A2eBeexp[-(ß-e) Inf specHn] I IV11!172 exp[-eH°] I2 (D.2)

To obtain (D.2), we have successively used (D.l), iTr CD* I < IC 121D II2,1.12
being the Hilbert-Schmidt norm, and ICD 12 < IC l2 ID II. An explicit calculation
of the Hilbert-Schmidt norm gives

II IVnl1/2 exp[-eH°] I2 j-~ f dx f dy lVnl (x)exp
lx-yl2-

e

II Vn IL < — IIV I
1 (47te)3/2 ~ (4ti e)3/2 »

leading to

Tr I Vn I exp[-ß Hn] exp (i 2,. p) < C£ IIV II, exp [- (ß - e) inf spec Hn]
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nA Rwith C —— e The result of the lemma corresponds to the special case
e (4 7te)3/2

2, =o.
Now we prove that

lim e"PEo Tr exp (i &. p) (exp[-ß H1] - exp[-ß H°]) f dk e
* & • k I wfk) 12

P -> +O0 J °
(D.3)

where y is the Fourier transform of the ground state wave function of the one

impurity hamiltonian H1. This formula justifies (2.27) taking X. 0 in (D.3), and it
is actually used in the section VII for a general 2l- Since we know (section UI) that

exp[-ß H1] - exp[-ß H°] is trace class we can write

e-ßEo Tr exp (i 2_. p) (exp[-ß H1] - exp[-ß H°]) f dk e* & • k I yo(k) 12

- e-ßEo f dk e> * •k exp[-ß ^] I Vo(k) 12

+ e-ßEo Tr exp(i 2. • p) Q0 (exp[-ß H1] - exp[-ß H0]) (D.4)

where Q0 is the projector on the orthogonal complement of the ground state.

When ß -» + oo the second term on the right hand side of (D.4) vanishes so it
remains to estimate the last term :

II exp (i I. p) Qo (exp[-ß H1] - exp[-ß H0]) II

P/2 P

< fds llQ0e-sHlVe-<ß-s>HO II + fds II Q0 e"sHl V e-^s)H° II,

0 ß/2
P/2

< fds II
Q0 e""sHl II II V exp(-| H°) II +

ß

f ds II q, exp[-(s -| H1)] II II Qo exp(-| H1) V II

ß/2

< | exp(-| (- Eo + 5)) II V exp(-| H°) II

+ exp(-| (- Eo + 6)) II
Q0 exp(-| H1) V II, (D.5)

To obtain (D.5) we have first used the integral equation for the semi group and
the bound IC D I, < ICl ID I, together with the semi group property. For the

0

ß

+
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last estimate we recall that the eigenvalue -E is isolated hence it is possible to

find 5 > 0 such that IQQ exp(- tH1) I ^ exp (-t (-E + 5)Y Moreover, for ß > 1 we

have

II V exp(-| H°) II II V exp(-| H°) expl (- (Ç)H°) II < II V exp(-\ H°) II

(D.6)
and

II Q, exp(-| H1) V I, < II Qoe.xp[(- £jV>] I II exp(-| H1) V II

< expl - (^) (- E0 + 5)
I II exp(-| H1) V II, (D.7)

Finally, (D.5), (D.6), (D.7) lead to

e-P Eo Tr exp (i I. p) QQ (exp[-ß H1] - exp[-ß H°])

< f exp(-| (- Eo + S)) II V exp(-\u°) II

+ | e~ß5 exp(| (- E0 + 8)) II exp(- \ H1) V II (D.8)

so that the last term of (D.4) vanishes when ß —> oo.
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