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ANALYTICITY AND CHIRAL
FERMIONS ON A RIEMANN SURFACE

A.K. Raina

Theoretical Physics Group

Tata Institute of Fundamental Research

Homi Bhabha Road, Bombay 400 005, India

Abstract. The role of analyticity in a conformai field theory model consisting of a conjugate

pair of chiral fermions on a compact Riemann surface is studied. It is shown that the
physical analyticity properties coming from the operator product expansion and a principle
of maximal analyticity determine rigorously all the correlation functions of the system.

1. Introduction

One of the areas to which Gérard Wanders has made important contributions

is the programme of obtaining the strongest possible physical implications of the basic

analyticity results of axiomatic field theory. Thus, while joining with the other contributors

to this volume in offering him my most warm felicitations on his sixtieth birthday, it is a

particular pleasure to contribute the present article in which I show how this philosophy can

be used to analyse a model which is important in the currently fashionable string theory.

In the context of string theory, it is amusing to note that in our paper on the Schwinger

model [1] we had already come across what is now called an infinite grassmannian [2] and

which plays an important role in string theory [3] as well as in soliton theory (see [4] for

an exposition).

The system we consider is the 6c-system, consisting of a pair b, c of conjugate

chiral fermions with conformai spin J. 1 — J respectively, on a compact Riemann surface
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M. The action S is

S~ I bdc (1.1)

M

where d d/dz in local coordinates. We study its correlation functions

C(m,n)=<b(Qi)---b(Qm)c(P1)---c(P„)>, (1.2)

where Qi,---,P„ are arbitrary points on M. This system was studied over the complex

piane <T in a classic paper [5] and subsequently over a higher genus surface by a wide variety

of techniques [6,3].

In this paper we shall determine C(m,n) by postulating its physical analyticity

properties following from the operator product expansion (OPE) for the òc-system overff

obtained in [5], viz.

b(z)b(w) ~ O(z-w), c(z)c(w) ~ 0(z - w), (1.3a)

b(z)c(w)~l/(z-w), (1.3b)

where the left-hand sides are assumed to be inside a correlation function C(m,n). We also

adopt a principle of maximal analyticity reminiscent of [7]. This extends and completes

our earlier work on the spin 1/2 case [8,9].

2. An algebraic geometry formulation of the problem

From now on M denotes a compact Riemann surface of genus g > 1. We denote

by Pic{M) the Picard group [10] uf holomorphic line bundles on M with tensor product ®

as group multiplication, the trivial line bundle as identity and the dual as inverse. Picd(M)
denotes the subset of line bundles of degree (or Chern class) d £ '& and K the holomorphic

cotangent bundle of M.

To say that the field b has conformai spin J means it is an (operator-valued)

section of KJ if J is an integer, or of (vK)2J, where vK is a chosen square root bundle

of K (a Hheta characteristic'), if J is a half integer. In either case the Une bundle has
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degree 2J(g — 1). For generality we allow 6 to be a section of any G Pic2J^,'1^(M). The

restriction that the integrand of (1.1) be a volume form fixes c to be a section of K <g> (fa
Thus C(m, n), defined symbolically in (1.2), is a section of in Q-variables and of K ® (fa
in P-variables.

The zero modes of the system (1.1) are holomorphic sections of and K ® f-1.
From the Riemann-Roch theorem [10] the 6 field contributes N (2J — l)(g — 1) zero

modes while c has none if J > 1, which we suppose henceforth (the case J 1 is easily

handled separately). As is usual [6] the zero modes are eliminated by choosing an arbitrary

set of N points w\,-- •, wfi on M and requiring that C(m, n) have a simple zero when a

invariable takes w, as its value and, since c is conjugate to b, a simple pole when a P-variable

takes as value one of the w,.

Taking m + n copies M, (1 < i < m + n) of M, consider the product manifold

Mm+" nf+BM,. Let

p, : Mm+n -> M
t ^

(2-1}

be the i-th projection. Then C(m,n) is a section of the Une bundle

F<(m,n) pi[(0®---®p*m(()®PUi(K^Cl)®---®P*m+n(K®Cl) (2.2)

over Mm+n, where * denotes the pullback. We can now state our postulates for C(m,n),
which follow from the OPE (1.3), our procedure for elimination of zero modes and 'maximal

analyticity':

(VI) C(m,n) is a meromorphic section of jF^(m,n).

(V2) C(m,n) has a simple zero for Q, Qj (1 < i! < j < m), for Q, u»* (1 < » < m,
1 < k < N), and for P, P} (1 < ii < j < n).

(¦p3) C(m,n) has a simple pole for Q, Pj (1 < i < m, 1 < j < n) and for P, wk

(l<i<n,l<k<N).
(VA) C(m,n) is holomorphic apart from the poles required by (V3).
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Let prtl denote the projection

pr„ : Mm+n — M, x M;
(2.3)

zli * • ' » %t) ' ' * Zjt ' ' ' t zm+n —* \ZD 2))

and A,; the diagonal of Mi x Mj. The equations Zi z, and 2, Wk define respectively

the subvarieties D,j pr~l(A,}) and p,~ l(w*) of Mm+R. Recall that the divisor [10] of a

meromorphic section is a formal combination of the subvarieties defined by the zeros and

poles with integer coefficients whose magnitude gives the multiplicity and has a positive

sign for zeros, negative for poles (see [11] for a pedagogic account). Thus (V2), (V3) define

a divisor

m m-t-n

DJ(m,n) S'D.y + £"£>,, - £'"£>„ + £prW - £ prl(W), (2.4)
1 ro+1

where ]j£ runs over 1 < i < j < m, £]" over m + 1 < i < j < m + n, ^ over 1 < i < m,
A" Jf

m+l <j <m + n,AadW y^wk, p~l{W y^j>~l(un). The divisor DJ(m, n) defines a

i=l k=l
line bundle C>( D J{m, n)) over Mm+B with a meromorphic section 5J(m, n) (unique up to a

multiplicative constant) whose divisor is DJ(m,n). Thus our postulates can be rephrased

to say that C(m,n)/SJ(m,n) is a holomorphic section of

Mj(m.n) Tt.(m,n) ® ^(-D^m.n)). (2.5)

Thus C(m,n) is given by H°(Mm+n, M^(m,n)) and our problem is well defined only if its

dimension is 0 or 1; in the former case C(m,n) 0.

3. Reduction to the spin 1/2 case

Comparing DJ(m,n) with the divisor Dl'2(m,n) that we encountered in the

spin 1/2 case [8.9] we see that

m rn+n

DJ(m,n) D1-'2(m,n)+Y,P7\W)- £pi""1(W). (3.1)
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Then (2.5) is easily seen to become

M{(m, n) MlJ2(m, n) S fa(m, n) ® 0(-D1/2(m, rt)) (3.2a)

where

as (®0(-W)e Pic'~l(M). (3.26)

Moreover, for any generic choice of W\, • • •, u/jv we have

HQ(M,a) 0 (3.3)

and this is the condition for the absence of zero modes in the spin 1/2 case [8,9]. Thus

from (3.2), (3.3) and our earlier results [8,9] we get

dim H°(Mm+n,MJAm,n)) 0 if m * n
(3.4)

1 if m n.

Theorem 3.1. The correlation function C(m,n) of the spin J, 1 — J òc-system vanishes

for m ^ n. The 2n-point function C(n,n) is uniquely determined (up to a multiplicative

constant) by the postulates (V1)-(V4).

Remark 3.2. Note that the vanishing of C(m, n) for m ^ n is obtained in earlier

treatments [6,3] by appeal to charge conservation.

Remark 3.3. By the uniqueness of C(n,n) its normalization can be fixed inductively by

taking residues at poles and defining C(Q,0) 1.

Corollary 3.4. Wick's theorem holds for the spin J, 1 — J 6c-system.

Proof. Wick's theorem implies C(m, n) 0 for m ^ n because of the no zero modes

condition < b >= 0 =< c >. Wick's theorem also says that

< b(Q1)---b(Qn)c(Pl)---c(Pn) >= det(< b(Q,)c(P,) »|";=1 (3.5)

It is clear that the right-hand side of (3.5) also satisfies (Vl) - (V4) and the normalization

condition of Remark 3.3. By the uniqueness of C{n. n) the representation (3.5) holds.
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4. Factors of automorphy and correlation functions

In section 3 we have already obtained all significant qualitative properties of the

òc-system. We shall now show that we can also obtain an explicit expression for C(n,n).
We shall first briefly review function theory on a Riemann surface and show how to apply

it to C(n, n). We hope that this account will clarify many of the obscure features of the

literature [6,3].

The principal idea is to do function theory on the universal cover of M, viz.

the upper half plane H since g > 1. Thus we identify M with the fundamental domain of

a discrete subgroup T of PSL(2,R) acting by fractional linear transformations of H [12]

and henceforth the arguments of C(n,n) will refer to this fundamental domain in H. The

pullback of a line bundle on M to H by the covering projection is trivial since H is simply

connected and so the puUback of a meromorphic section is a meromorphic function on H
with special transformation properties under T codified in the concept of an automorphy

factor.

Definition 4.1. A factor of automorphy <j> is a complex-valued, nowhere vanishing function

onTxff such that (i) (£(7,2) is holomorphic in z € H for each 7 G T, (ii) for 71,72 in T

and z in H,

<#7i72,*) <KlulTi(z))4>(l2^). (4.1)

A meromorphic function f(z) on H is a meromorphic section of é if

/(7(*-)) 0(7^ )/(*), 7€I\ z€H. (4.2)

A holomorphic line bundle on M is associated to each automorphy factor [12]. Two

automorphy factors <i>\,<p2 are equivalent, i.e. define the same line bundle on M, if and

only if there exists a nonvanishing holomorphic function h(z) on H such that

<t>2(i,z)h(z) *i(7,*)*(7(*)). (4-3)

Thus to the section f\(z) of 4>i corresponds the section f?(z) fi(z)h(z) of the equivalent

automorphy factor ^2. It is clearly sufficient to specify i/>(7. z) on a set of generators for T.

We shall choose the canonical generators At, Bt (1 < k < g) corresponding to a canonical
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basis of the fundamental group of M. homotopic to a given canonical basis of a-cycles and

6-cycles on M.

For any 6 G Pica(M) we can choose its automorphy factor [12] to take the value

1 on At, exp(2niòk) on Bk (for some Sk €<F). (4.4)

Since Pic°(M) acts transitively on Picd(M) the factor of automorphy of an element of

Picd(M) is the product of the automorphy factor of some chosen fixed element of Picd(M)
and one of the form (4.4).

For d 2g — 2 the natural choice of the fixed element is Ä", whose automorphy

factor K(-y,z) is easily seen to be [12] (d-y(z)/dz)~x. For d g — 1 we should choose

an element the square of whose automorphy factor is K(f,z), for consistency. Thus the

element must be a theta characteristic and the particular one we choose is the Riemann

constant k (see Clemens [10]), which is defined once the period matrix ft of M is given.

Recall that [10] once a symplectic basis a, of a-cycles and bi of 6-cycles is chosen for M,
we have a dual basis v — (v\, • - ¦, vf) of H°(M.K) such that

/ i't =à,k, J vu =il,k. (4.5)

»,

Thus ft is specified, the Riemann theta function tì(z) (z É <T') is defined and k is also fixed.

We denote the automorphy factor of k by k(-),z).

For any £ G Pic'~l(M) we have

t ((®K-l)®K, ® K"1 G Pic°(M)) (4.6)

and so its automorphy factor takes the value

K(Ak.z) on Ak, K(Bt,z)exp(2wi(k) on Bt (6 G<F). (4.7)

Remark 4.2. We can now write down the automorphy factor for G Pic2J^,l\AI) (since

C ® k~2J) ® k2J) by replacing k(i,z) in (4.7) by its 2J-th power and & by (*. Note

that for K ® (_1 we replace «(7, z) in (4.7) by its 2(1 — J)-th power and fa by — C*.
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For G Pic'~l(M) we denote by #{£](<? - P) the theta function with

characteristics k ® {-1 and argument the image under the Abel map of (Q,P) G M x M. It is

a section of a degree g line bundle on M for fixed P and has automorphy factor (variable

Q) [13,14],

Q

1 on Ak, exp[-iriSlkk - 2ni( / vt - &)] on Bt (& defined in (4.7)). (4.8)

p

The automorphy factor of the prime form E(Q,P) [15] is easily seen to be

Q

(n(Ak, z))'1 on Ak, (k(Bì, z))~1exp[—niSikk — 2rri / vt] on 5*. (4.9)

p

Consider now the Une bundle 0(D) with D Wi + • -¦ + u/,_i, where uii G Af.

As a product of line bundles of the form O(P) it has as factor of automorphy the product

of (4.9) for P w\, •••,tu,_i and canonical section ïï.'l{E(Q, Wì). However, as a line

bundle of degree g — 1 it should have an automorphy factor like (4.7). To determine the

new equivalent automorphy factor, choose an odd theta characteristic r\ with automorphy

factor (4.7) (t)k in place of £t), with unique holomorphic section hn vanishing linearly on

ui,•••,«,_!• Thus the h(Q) of (4.3) is

h(Q) hv(Q)/ll',:i(E(Q,u,)). (4.10)

The new automorphy factor for O(D) is then

K(Ak,Q) on Ak, K(Bk,Q)exp[2Ki(r)k + Y1 V*M on Bt' (4A1)
1 i

The canonical section of O(D) w.r.t. the new automorphy factor is

U{-l(E(Q,w,)(E(Q,u,))h,(Q). (4.12)

It is easy to check that

h(Q)/h(P) aiQ)fa(P) (4.13)

where the function a is defined in [13,15] and appears somewhat mysteriously in the Ut-

erature [6,3]. It is now a simple exercise to write down the automorphy factor for 0(W)
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and its canonical section.

The line bundle a defined in (3.2b) has an automorphy factor of the form (4.7)

with at instead of ft. Eqn. (3.2b) and the preceding discussion gives the following relation

between at, (j and rjt:

27-2,-1 "••+'(•-»

at d - (2j - i)r)k - y, E / **• ,4-14)
r=0 ,=1 I

One difficulty we have apparently overlooked is that C{n, n) is a section of

a line bundle over M2n. The notion of automorphy factor indeed extends to compact

complex manifolds [16], but is simplified in our case by the fact that M2n H2n/T2".

Moreover F^(n, n) is simply the cross product of line bundles on 2n copies of M. Hence

its automorphy factor corresponds to that of in each Q-variable and of K ® (fa in each

P-variable as given in Remark 4.2.

5. The 'in-point function and Fay's identity

We saw in section 3 that C(n,n) is the product of the unique meromorphic

section SJ(n, n) of 0(DJ(n. n)) with divisor DJ(n, n) and the unique holomorphic section

of Mç(n,n), which by (3.2) can be identified with the result of our earlier calculations
n n

[8,9], viz. 6*[a](V]Q, — V]^*.). From (3.1) we see that SJ(n,n) can be obtained from the
i i

canonical section of 0(Dl'2{n, n)) written earlier [8,9] and that of O(W), which follows

from the analysis of section 4. We thus get:

Theorem 5.1. The unique normalised 2n-point function of the spin J, 1 — J 6e-system

(J > 1) is given by

<b(Ql)-.-b(Qn)c(Pl)---c(Pn)>=
^[«KSiQ.-E"fi)n,<J£(Q.,QJ)£(PJ,P,) N E(Q„w,) (h(Q,)\

0[a](0) n,,,E(Q„P,) fel' i^EiPhwrt'XhiPt))
(5.1)

where 0[a] / 0 if and only if if°(A/,o) 0. ensured by (3.3).

2/-l
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Proof. It is sufficient to check the factor of automorphy of the two sides of (5.1) foUowing

the discussion of section 4.

Recalling eqn. (3.5) of Corollary 3.4 we see that C(n,n) is also a determinant

of the 2-point function

<6(Q)c(P)>- %](o) E(QyPf,=iE{PìWì){h(p)) ¦ (5-2)

Substituting (5.1), (5.2) in (3.5) we obtain, after cancelling common factors:

Theorem 5.2 (Fay's identity).

%!(£?<?¦ - lTlp,)n,<JE(Qi,Q))E(Pj,p,)
%](0) UijEWuPi)

det 0[a](Q,-P})
0[a](Q) E(Q„P,)

(5.3)

i,i=i

The identity (5.3), first obtained by Fay [13], is of fundamental importance in algebraic

geometry in the case n 2, known as the trisecant identity [14]. The identities for n > 2

are consequences of this one [13], in perfect agreement with the physical intuition that if the

4-point function of a quantum field theory is free, then so are the higher point functions.

6. Conclusions and outlook

We have thus shown that the physical singularity structure of the correlation

functions of the 6c-system rigorously determine them. This illustrates the power of

analyticity. Our methods can be extended to situations involving branch point singularities,

as occur in the presence of spin fields or for orbifolds [17]. Further extensions are under

investigation.
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