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ANALYTICITY AND CHIRAL
FERMIONS ON A RIEMANN SURFACE

A.K. Raina

Theoretical Physics Group
Tata Institute of Fundamental Research
Homi Bhabha Road, Bombay 400 005, India

Abstract. The role of analyticity in a conformal field theory model consisting of a conju-
gate pair of chiral fermions on a compact Riemann surface is studied. It is shown that the
physical analyticity properties coming from the operator product expansion and a principle
of mazimal analyticity determine rigorously all the correlation functions of the system.

1. Introduction

One of the areas to which Gérard Wanders has made important contributions
is the programme of obtaining the strongest possible physical implications of the basic
analyticity results of axiomatic field theory. Thus, while joining with the other contributors
to this volume in offering him my most warm felicitations on his sixtieth birthday, it is a
particular pleasure to contribute the present article in which I show how this philosophy can
be used to analyse a model which is important in the currently fashionable string theory.
In the context of string theory, it is amusing to note that in our paper on the Schwinger
model [1] we had already come across what is now called an snfinite grassmannsan [2] and
which plays an important role in string theory [3] as well as in soliton theory (see (4] for

an exposition).

The system we consider is the bc-system, consisting of a pair b, ¢ of conjugate

chiral fermions with conformal spin J, 1 — J respectively, on a compact Riemann surface
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M. The action S is

S ~ /béc (1.1)

M

where & = 8/97 in local coordinates. We study its correlation functions
C(m,n) =< b(Q1):--8(Qm)c(Py) -- - c(Pn) >, (1.2)

where Q,,..-, P, are arbitrary points on M. This system was studied over the complex
plane € in a classic paper [5] and subsequently over a higher genus surface by a wide variety
of techniques [6,3].

In this paper we shall determine C(m,n) by postulating its physical analyticity
properties following from the operator product expansion (OPE) for the bc-system over €

obtained in [5], viz.

b(z)b(w) ~ O(z — w), c(z)e(w)~ O(z— w), (1.3a)

b(z)e(w) ~ 1/(2 — w), (1.3b)

where the left-hand sides are assumed to be inside a correlation function C(m,n). We also
adopt a principle of maximal analyticity reminiscent of [7]. This extends and completes

our earlier work on the spin 1/2 case [8.,9].

2. An algebraic geometry formulation of the problem

From now on M denotes a compact Riemann surface of genus g > 1. We denote
by Pic(M) the Picard group [10] of holomorphic line bundles on M with tensor product @
as group multiplication, the trivial line bundle as identity and the dual as inverse. Pic!(M)
denotes the subset of line bundles of degree (or Chern class) d € Z and K the holomorphic
cotangent bundle of M.

To say that the field b has conformal spin J means it is an (operator-valued)
section of K’ if J is an integer, or of (VK )?’, where VK is a chosen square root bundle

of K (a ‘theta characteristic’), if J is a half integer. In either case the line bundle has
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degree 2J(g — 1). For generality we allow b to be a section of any ( € Pic?’(*")(M). The
restriction that the integrand of (1.1) be a volume form fixes ¢ to be a section of K @ (™.
Thus C(m,n), defined symbolically in (1.2), is a section of { in Q-variables and of K @ (!

in P-variables.

The zero modes of the system (1.1) are holomorphic sections of ( and K ® ( =ik,
From the Riemann-Roch theorem [10] the & field contributes N = (2J — 1)(g — 1) zero
modes while ¢ has none if J > 1, which we suppose henceforth (the case J = 1 is easily
handled separately). As is usual [6] the zero modes are eliminated by choosing an arbitrary
set of NV points wy,---,wy on M and requiring that C(m, n) have a simple zero when a Q-
variable takes w; as its value and, since ¢ is conjugate to b, a simple pole when a P-variable

takes as value one of the w,.

Taking m + n copies M; (1 < ¢ < m + n) of M, consider the product manifold
M™® = [IT*"M,. Let
pi : M™" o M
(2.1)

(zls"'7zi""9zm+n)_’zi

be the i-th projection. Then C(m,n) is a section of the line bundle

Felmn) =pi(() @+ 8 Pp(() @ Prn(K ®C) @ @ ppyn(K®CT) (22)

over M™+" where x denotes the pullback. We can now state our postulates for C(m,n),
which follow from the OPE (1.3), our procedure for elimination of zero modes and ‘maximal

analyticity’:
(P1) C(m,n) is a meromorphic section of F¢(m,n).

(P2) C(m,n) has a simple zero for @, = Q,; (1< i< j<m),for @ =w (1 <1 <m,
1<k<N),and for P, = P; (1< < j <n).

(P3) C(m,n) has a simple pole for @, = P; (1 <: <m, 1< j<n)and for P, = w,
(1<i<n,1<k<N)

(P4) C(m,n) is holomorphic apart from the poles required by (7P3).
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Let pr;; denote the projection

pri; .;Mm+n-—)M,'XM‘
! ’ (2.3)
(zh" te ittty gy 'v'zm+n) - (zi!z))

and A;; the diagonal of M; x M;. The equations z; = z; and z; = w; define respectively
the subvarieties D,; = pr;'(A;;) and p;'(wy) of M™*". Recall that the divisor [10] of a
meromorphic section is a formal combination of the subvarieties defined by the zeros and
poles with integer coefficients whose magnitude gives the multiplicity and has a positive
sign for zeros, negative for poles (see [11] for a pedagogic account). Thus (P2), (P3) define
a divisor

m+n

D'(m,n) = ©'Dy; + £"D,; - Z"D;; + Zp;‘(w Y=Y p (W), (2.4)

m+1

where ' mnsover1<¢<3<m Z overm+l<a<_]<m+n,2'"0verl<z<m,

m+l1<j<m+n,and W = Zw;,p, (W)= Zp, Y(wy). The divisor DY (m, n) defines a
k=1 k=1
line bundle ©@(D’(m, n)) over M™*" with a meromorphic section S/(m, n) (unique up to a

multiplicative constant) whose divisor is 7(m, n). Thus our postulates can be rephrased

to say that C(m.n)/57(m,n) is a holomorphic section of
M{(m.n) = Fe(m,n) @ O(-D’(m.n)). (2.5)

Thus C(m,n) is given by HO(M™+", Mg(m, n)) and our problem is well defined only if its

dimension is 0 or 1: in the former case C(m,n) = 0.

3. Reduction to the spin 1/2 case
Comparing D'(m,n) with the divisor D'?(m,n) that we encountered in the

spin 1/2 case [8,9] we see that

m+n

D’(m,n) = D"*(m, n)+2p (W) - Zp (W). (3.1)
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Then (2.5) is easily seen to become
M (m,n) = M*(m, n) = Fo(m,n) ® O(~D"*(m,n)) (3.2a)

where

a=(QO(-—W) € Pic* 1 (M). (3.2b)

Moreover, for any generic choice of w,, .-, wy we have
H'(M,a)=0 (3.3)

and this is the condition for the absence of zero modes in the spin 1/2 case [8,9]. Thus

from (3.2), (3.3) and our earlier results [8,9] we get

dim H(M™" Ml(m,n))=0il m#n (34
3.4
=1if m=n.

Theorem 3.1. The correlation function C(m.n) of the spin J, 1 — J bc-system vanishes
for m # n. The 2n-point function C(n,n) is uniquely determined (up to a multiplicative
constant) by the postulates (P1)-(P4).

Remark 3.2. Note that the vanishing of C(m,n) for m # n is obtained in earlier treat-

ments [6,3] by appeal to charge conservation.

Remark 3.3. By the uniqueness of (’(n,n) its normalization can be fixed inductively by

taking residues at poles and defining C(0,0) = 1.
Corollary 3.4. Wick’s theorem holds for the spin J, 1 — J bc-system.

Proof. Wick’s theorem implies C(m,n) = 0 for m # n because of the no zero modes

condition < b >=0 =< ¢ >. Wick’s theorem also says that
< b(Q1) - b(Qn)e(Pr) - -+ c(Py) >= det(< b(Q,)e(P;) >)IF = (3.5)

It is clear that the right-hand side of (3.5) also satisfies (P1) - (P4) and the normalization
condition of Remark 3.3. By the uniqueness of C'(n, n) the representation (3.5) holds.
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4. Factors of automorphy and correlation functions

In section 3 we have already obtained all significant qualitative properties of the
be-system. We shall now show that we can also obtain an explicit expression for C(n,n).
We shall first briefly review function theory on a Riemann surface and show how to apply
it to C(n,n). We hope that this account will clarify many of the obscure features of the
literature [6,3].

The principal idea is to do function theory on the universal cover of M, viz.
the upper half plane H since g > 1. Thus we identify A with the fundamental domain of
a discrete subgroup I' of PSL(2, R) acting by fractional linear transformations of H [12]
and henceforth the arguments of C(n,n) will refer to this fundamental domain in H. The
pullback of a line bundle on M to H by the covering projection is trivial since H is simply
connected and so the pullback of a meromorphic section is a meromorphic function on H
with special transformation properties under I' codified in the concept of an automorphy

factor.

Definition 4.1. A factor of automorphy ¢ is a complex-valued, nowhere vanishing function
on I' x H such that (i) &(~, z) is holomorphic in 2 € H for each v € I, (ii) for 1,y in I’

and z in H,
M2, 2) = K, 72(2))é(72, 2)- (4.1)

A meromorphic function f(z) on H is a meromorphic section of ¢ if

T () = el 2)f(2), vel. zeH, (4.2)

A holomorphic line bundle on M is associated to each automorphy factor [12]. Two
automorphy factors ¢,, ¢, are equivalent, i.e. define the same line bundle on M, if and

only if there exists a nonvanishing holomorphic function ~(z) on H such that
B2(7, 2)h(2) = (7, 2)h(x(2)). (43)

Thus to the section fi(z) of ¢, corresponds the section f;(2) = f1(z)h(2) of the equivalent
automorphy factor ¢. It is clearly sufficient to specify ¢(~v.z) on a set of generators for [

We shall chouse the canonical generators Ay, By (1 < k < g) corresponding to a canonical
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basis of the fundamental group of M, homotopic to a given canonical basis of a-cycles and

b-cycles on M.

For any § € Pic®(M) we can choose its automorphy factor [12] to take the value
1 on A, exp(27iéy) on By (for some §; € T). (4.4)

Since Pic’(M) acts transitively on Pic?(M) the factor of automorphy of an element of
Pict(M) is the product of the automorphy factor of some chosen fixed element of Pic?(M)
and one of the form (4.4).

For d = 2g — 2 the natural choice of the fixed element is K, whose automorphy
factor K(~v,z) is easily seen to be [12] (dvy(z)/dz)~'. For d = g — 1 we should choose
an element the square of whose automorphy factor is K (v, z), for consistency. Thus the
element must be a theta characteristic and the particular one we choose is the Riemann
constant k (see Clemens [10]), which is defined once the period matrix £ of M is given.
Recall that [10] once a symplectic basis a; of a-cycles and b; of b-cycles is chosen for M,

we have a dual basis 7 = (vy,---,v,) of H'(M,K) such that

/‘Ug = 5Jh /vk = ﬂ}k. (4.5)

a; b;

Thus Q is specified, the Riemann theta function 8(7) (7 € @) is defined and « is also fixed.
We denote the automorphy factor of « by (7, z).

For any £ € Pic?~'(M) we have
(=(®r)8K ((@K € Pic’(M)) (4.6)
and so its automorphy factor takes the value

k(A z) on Ay,  K(By,z)exp(2miéy) on By (& €T). (4.7)

Remark 4.2. We can now write down the automorphy factor for ¢ € Pic*/(9"D(M) (since
¢ = (¢ ® K %) ® k) by replacing x(7, z) in (4.7) by its 2J-th power and ¢; by (i. Note
that for K ® (! we replace x(v, ) in (4.7) by its 2(1 — J)-th power and {; by —(:.
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For £ € Pic!"'(M) we denote by 9[¢](Q — P) the theta function with charac-
teristics £ ® {~! and argument the image under the Abel map of (@,P) € M x M. It is

a section of a degree g line bundle on M for fixed P and has automorphy factor (variable

Q) [13,14],
Q
1 on A;, exp[—7iQy; — 2?ri(/vg — &) on By (& dcfined in (4.7)). (4.8)
P

The automorphy factor of the prime form E(Q, P) [15] is easily seen to be

Q
(k(Aky 2))" ' on Ay, (k(By,2)) ‘ezp[—mifuy — 2mi /vk] on B;. (4.9)
P

Consider now the line bundle O(D) with D = w, + --- + w,_1, where w; € M.
As a product of line bundles of the form O(P) it has as factor of automorphy the product
of (4.9) for P = wy,-+-,w,_1 and canonical section II!_.E(Q,w;). However, as a line
bundle of degree g — 1 it should have an automorphy factor like (4.7). To determine the
new equivalent automorphy factor, choose an odd theta characteristic n with automorphy

factor (4.7) (m: in place of £;), with unique holomorphic section A, vanishing linearly on
Uy, -+, ug_1. Thus the A(Q) of (4.3) is

rQ) = hy(Q)IIZ(E(Q, u))). (4.10)

The new automorphy factor for O(D) is then

g-1 %
k(Ag, @) on Ay, K(By, Q)exp[2mi(m + Z /Ug)] on B;. (4.11)
1

L

The canonical section of O(D) w.r.t. the new automorphy factor is

I (E(Q,wi)[E(Q, %:))hy(Q)- (4.12)
It is easy 1o check that
@)/ h(P) = o(Q)/co(P) (4.13)

where the function o is defined in [13,15] and appears somewhat mysteriously in the lit-

erature [6,3]. It is now a simple exercise to write down the automorphy factor for O(W)
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and its canonical section.

The line bundle « defined in (3.2b) has an automorphy factor of the form (4.7)
with a; instead of {;. Eqn. (3.2b) and the preceding discussion gives the following relation

between a;, (i and n;:

2J-2 g1 Wilr(g-1)

ap = — (20 = )y — z > [ Vi (4.14)

r=0 =1 i

One difficulty we have apparently overlooked is that C'(n,n) is a section of
a line bundle over M?". The notion of automorphy factor indeed extends to compact
complex manifolds [16], but is simplified in our case by the fact that M = H? [,
Moreover F¢(n,n) is simply the cross product of line bundles on 2n copies of M. Hence
its automorphy factor corresponds to that of ¢ in each Q-variable and of K @ (! in each

P-variable as given in Remark 4.2.

5. The 2n-point function and Fay’s identity

We saw in section 3 that C(n,n) is the product of the unique meromorphic
section S7(n, n) of O(D’(n,n)) with divisor D/(n,n) and the unique holomorphic section
of Mg(n,n), which by (3.2) can be identified with the result of our earlier calculations

(8,9], viz. H[a](z Q — Z P,). From (3.1) we see that $/(n,n) can be obtained from the
1 1

canonical section of @(D'?(n,n)) written earlier [8,9] and that of O(W), which follows

from the analysis of section 4. We thus get:

Theorem 5.1. The unique normalised 2n-point function of the spin J, 1 — J bc-system
(J > 1) is given by

<b(Q1) - b(Qu)e(Pr) - c(Pp) >=

lod(35, @ = 30 Pi)H'<jE(Qi’Q’)E(P”R)]IY‘ a E(_Q,,wj)‘ (h(Q.-))'z""l
6la](0) IL,E(Q, F;) =RELR (P, wy)  \ R(P)

(5.1)
where 0[a] # 0 if and only if H%(M,a) = 0. ensured by (3.3).
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Proof. 1t is sufficient to check the factor of automorphy of the two sides of (5.1) following

the discussion of section 4.

Recalling eqn. (3.5) of Corollary 3.4 we see that C(n,n) is also a determinant

of the 2-point function

, _bl)(Q-P) 1 EQ,w;) (M@
<HQer)>= S e (k) 62

Substituting (5.1), (5.2) in (3.5) we obtain, after cancelling common factors:
Theorem 5.2 (Fay’s identity).
0la)(30) Qi — X P)IL E(@i, @)E(P;, Pi) _
8]a](0) 1L, ;E(Q;, P;)

flaJ(0) E(Qi,F)

n (5.3)

ij=1

The identity (5.3), first obtained by Fay [13], is of fundamental importance in algebraic
geometry in the case n = 2, known as the trisecant identity [14]. The identities for n > 2
are consequences of this one [13], in perfect agreement with the physical intuition that if the

4-point function of a quantum field theory is free, then so are the higher point functions.

6. Conclusions and outlook

We have thus shown that the physical singularity structure of the correlation
functions of the bc-system rigorously determine them. This illustrates the power of ana-
lyticity. Our methods can be extended to situations involving branch point singularities,
as occur in the presence of spin fields or for orbifolds [17]. Further extensions are under

investigation.
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