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The Geometric Schwinger Model on the Torus I

By Hans Joos
Deutsches Elektronen-Synchrotron DESY, Hamburg.

1 INTRODUCTION

The Schwinger Model [1] has a long history of illustrating various phenomena ap-
pearing in quantum field theory. Breakdown of global chiral symmetry by an axial anomaly
12], charge screening [3], vacuum structure and the realization of gauge transformations [4]
are examples. In this note we a,nalyzé the Euclidean version of the geometric Schwinger
Model on the torus.

1.1 The action of the geometric Schwinger Model (gSM) on the 2-dimensional

torus 7 is
5»1f(FF)+f(ti>(d §)4®) (1)
- 2 Jr ’ 0 - y\ A% o
It leads to the Dirac-Kahler equation (DKE):
(d—6)4a® =de* Vv (0, —1ed, )P =(d—6)P —1eAVE =0 (2)

In this paper we use the well-known calculus of differential forms extended by a Clifford
product as introduced by E.Kahler [5]. The relation of the Clifford product to the wedge
product is described by: de* Vdr¥ = dz* Adz” + g*¥, ¢** is a metric tensor. We introduce

on 7 the Euclidean standard metric g*¥ = é*, and give the large and small circumference

ldedicated to my friend Gerard Wanders on the occasion of his 60 th birthday.
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the length L; and L,. ®,® are inhomogeneous complex forms:
® = ¢(z,0) + ¢(z, p)da* + ¢(x,12)dz? = Ty é(x, H)de¥, etc. These Dirac Kahler forms
(DK- forms) describe the fermions. For this reason we call the model ‘geometric’ [6].
(®, &), denotes the 2-form of the scalar product: (&, @) = (®, ®)dz'* = Ty é(z, H)p(z, H)-
dz'?. Exterior derivative and coderivative are denoted by d, §. F = dA is the 2-form of
the field strength of the 2-dimensional abelian gauge potential A = 4,(z)dz".

The geometry of gauge fields on a manifold like a torus requires certain contin-
uum conditions for the gauge fields. We consider 4 as a connection 1-form in an U(1)-
bundle with base space 7. Its topological structure might be described by the periodicity
conditions (1 = (L4,0)), etc.) :

Ale +9) = Alz) ~ A7 (@)AM(E), B(x +9) = A(2)B(2), (3)

where the transition functions A, (z) = exp(iea,(z)) satisfy the cocycle condition
Ai(z)Ay(z + 1) = Ag(z)Ar(z + 2). Tt is well-known [7], that under these requirements
the set of gauge fields is distributed into classes CH™® (‘topological sectors’ ) which are
characterized by the Chern index k = = [F, k=0,£1,%£2,....

The calculation of the quantum mechanical vacuum expectation values (VEV) of

observables (&, &, 4) is performed with help of the path integral formula
! ; -+ e o 3
(@) = 5 [ DIAID[®,FI0(A, T, 8jc AT, (4)

This expression is purely formal:

-it needs regularization,

- for the gauge field integration we have to give meaning to the ‘measure’ D[A] (‘gauge
fixing’), and describe the space of gauge field configurations (‘topological sectors’),

- the ‘fermion integration’ must take care of the appearence of ‘zero modes’ related to the

topologically non-trivial gauge field configurations. Thus we get after fermion integration

8]

(@(21)®(11) - - B(2n)B(yn)) =

15 [ DW[Ale~5rM det'[D,] x T (FD)xa(zs,) - - xalms)xalys ) - - - xalys,) } (5)
z & perm

g(k)(milﬂ y Yirer s A) fbis g(k)(mi" s Yjnd A)'
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> x denotes summation over the different topological sectors.

xi(z), xjly). 2,7 =1,....11s an orthogonal set of zero mode wave functions. We have
= 2k. (Consider the ‘Index Theorem’ for DK fermions [7]).

det’|D4}, and G*)(z.y; A) denote the determinant and the Green’s function of the DK

operator Dy = (d — é)4 with the zero modes omitted.

In the following we want to treat all these problems with appropriate exactness.

1.2. After this short description of the scope of our investigation, we want to
add some remarks on our motivations. The discussions on the Schwinger model are so
numerous, that we can not refer to them all. Our treatment is special in two aspects: We
consider the geometric version, and we treat the gSM on a torus with Euclidean metric.
Both choices originate in the interest in a systematic analysis of the lattice approximation
of the model in the future.

There is a systematic lattice approximation for DK-forms provided geometrically
by DeRham mapping [9]. This procedure avoids additional spectrum doubling. Therefore
a comparison of the lattice approximation of geometric models with the continuum theory

1s not hindered by this lattice phenomen. DK-forms can be expressed by Dirac fields
$)(z).

(¢5(2)) = 3 ole, H)2 ™), ( )( ) ( ) (6)
H

10
a = 1,2 Dirac index, b = 1,2 isospin index : It follows from this description of DK forms
by Dirac components that the gSM contains formally an isospin doublet of fermions. Such
kind of models were treated before [10].

Most of the mathematical problems of quantum field theory mentioned above can
be treated more exactly in a compactified version of Euclidean space time. Under these cir-
cumstances the spectrum of (d—é) 4 becomes discrete. This allows e.g. a precise calculation
of the regularized determinant of (d — é) 4 appearing as a result of the fermion integration.
Furthermore, compactification leads to a precise definition of topological sectors together
with its related zero modes. A particular transparent treatment of the Schwinger model
on a compact space was given recently by C.Jayewardena: ‘Schwinger Model on S’ [11].

Our investigations were inspired by this paper.
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However, compactification on 7 is much better suited for lattice approximation
than compactification on the sphere. It is a torus which is most naturally approximated
by the finite cubical lattices on which the numerical calculations are preformed [12|. The
symmetry groups of the gSM on the torus and on the finite lattice are closely related [13].
Furthermore, there is a first study of the lattice approximation of the topological zero
modes for the Schwinger model [14].

Here we do not treat the chiral Schwinger model which recently did rise so must
interest [15].The study of a geometric version of this model along the lines of this note will
be of great interest for the important problem of the lattice approximation of chiral gauge
theories like the standard model [17] [16].

1.3. We add some short remarks on the organization of the two papers: ‘The
gMS on the Torus’ I + II. As seen from Eq. (5) the zero mode wave functions associated
with the different toplogical sectors play an important role in the calculation of VEV of
fermions. Section 2. in Part I is devoted to the calculation of these wave functions. It
turns out that for constant field strength F' these wave functions can be expressed by 8-
functions defined on 7. One may say without exaggeration that our problem is a physical
illustration of the algebraic theory of f-functions [18] [19]. In Section 3. Part II, we
determine the regularized effective action T',.,, exp ;T ~ det’' D4 by standard methods
120}, and we discuss the propagator related to it. Here the theory of #-functions appears in
the form of ‘Kronecker’s Double Series’ as discussed in the book by A.Weil [21]. Because
of limited space. we have to use without further comments the formulas on #-functions
as given in the different references. In the final Section 4. we study applications to the
standard questions like the particle spectrum, the screening of the static potential, and
the appearence of the anomaly. The treatment of the SM on the torus allows a systematic
study of finite size effects in the limit of a large torus. In this limit we only study the
Euclidean version of the geometric model. It would be particularly interesting to analyze
the relation to the geometric model in Minkowsky space, e.g. the effective action calculated

along the line of G.Wanders [22].
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2 SPECTRUM AND EIGENFUNCTIONS OF THE DK OPERATOR

The solubility of the Schwinger model follows essentially from the fact that for
gauge potentials of the form A,(z) = —€/,0,b(x), the spinor ¥(z) = exp(—evsb(z))yo(z)
is a solution of the 2-dimensional Dirac equation ¥#(8, — teA,(z))¥(z) = 0 iff 9o(z) is a
solution of the free equation. Our first task is now to find the solutions of the massless
DKE for the gauge fields in the different topological sectors which satisfy the appropriate
boundary conditions on the torus.

2.1. The U(1)-gauge fields on 7 decompose in Chern classes. We may choose

as a representative of each class a gauge potential C¥) with constant field strength:

B

o) — g(m‘dmz — z%dz"), F® = dc® = Bdz' A da?
e 2k

k:———/F(k), . B= . 7
2 e el L, &

The transition functions A, (z), Eq. (3), are in this case the gauge transformations:
Ay(z) = exp(%eBLlwz), Ay(z) = exp(—%eBLQ:cl) (8)

These describe the continuation of C*) in the non-trivial principle U(1) bundles along a
cyclein 7 .

A general gauge potential of a given Chern class has the form
AW =g c® =dat+t—6b+CH=(d=-8a+t+CW, (9)

Here A is single valued ‘continuous’ on 7. Thus we may apply the Hodge decomposition
theorem (7], and represent A by a ‘pure gauge: da = 9,a(z)dz", a ‘toron field: t =
t,dz*, t, constant, restricted to 0 < {, < 2m/eL,. and a coderivative of a 2-form:
b= b(z)dz' A dz?, §b= —€8,b(x)dx" .

2.2. Thereis a local solution of the DKE, Eq. (2), with this external potential:
P = Tl v By, (10)

Here € denotes the formal Clifford power series €, = 1+ + SPVY+ VYV 4.,
®, is a solution of the free DKE. The statement Eq. (10) follows immediately from the

product differentiation formula:
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(d—8)[(x(z,0) + x(z,12)dz"?) v ¥

= [(d - &)(x(=,0) + x(2,12)dz"*)] v & + |(x(z,0) — x(z,12)dz")] V (d — §)@

Of course, the Dirac components of ® are the solutions of the ordinary Dirac
equation in which we mentioned at the beginning of this Section. Further we shall see that
the expression Eq. (10) provides also a guideline for the calculation of global solutions on
the torus which describe the zero modes of the DK operator.

2.3 First we calculate the spectrum and the eigenfunctions of the DK opera-
tor with a pure toron field as representative of the trivial gauge sector. The eigenvalue

equation of the anti-Hermitean Euclidean DK operator with toron field
de* v (8, — iet,)® = E®. (11)

1s invariant under Clifford right multiplication by a constant form (‘flavour transformation’[9]).
As a special case, right multiplication by dz'? induces Hodge duality: «® = & v dz'* with
a certain phase convention: »dz* = e“dz¥, =dz'? = —1, #» = —1. The invariance of the
DKE under this duality allows a separation of the eigenfunctions into dual: »¢® = 9%
and anti-dual +*® = —19® forms. With such an ansatz it is a straightforward calculation

of the standard type to find the eigenfunctions:

d 1 = IR NS A TN — 91241 2wi(n Thany 72)
b, = ———————{\/A_(de’ —idz®)x /A (1 —idz"*)}e Ly 7L,
\/4}ﬁ._iL1L2
1 wi(ng - n2T—2
Wy = e {V/A; (da’ +ide?) £ VA(1 4+ ide??)} TR E) (1)

V4|7 |LiL,

The eigenfunctions are normalized according to [(2®), = 1. The square root must be
taken in the complex plane cut along the negative axis such that (4/a)* = v/a*). These

belong to the eigenvalues with multiplicity 2:
E,=xiy/n,n_, ny=2r(—=xi—)—e(t; xity), n,=0,£1,4£2,.... (13)

In the trivial sector the transition functions A,(x) = 1 lead to simple periodic boundary
condtions, Eq. (3). This results in the usual discretization of the momenta p; = ((27)/(L;)-

n;. It is important to remark that there are no zero eigenvalues for non-exceptional toron
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fields: ¢, # (27)/(eL,)-n),, n!, is an integer. Thus there is no necessity to avoid such states
by partly anti-periodic boundary conditions. These have the same effect on the eigenvalues
as toron fields with half integer n),.

2.4. Next we consider the solutions of the DKE, Eq. (2), with the gauge field
C"¥) 4 ¢, the representatives of the non-trivial gauge sectors. The massless DKE is
invariant under Hodge duality, and does not mix even and odd forms. Therefore we can

make an ansatz of the type Eq. (10):

22

(I) _ eietpr“e:FkT'Lle F(ZE)
- w (14)

with w = dz! — idz?, 1 — idz'?; dz' + i1dz?, 1 + idz'? denoting odd and even, dual and
anti-dual forms. Since C*¥)(z) = —%61:2, i.e. exp(tea(z))®o = exp(Frk/2)(z?/L1L;)%o,

and it follows that ® is a solution of the DKE if &, = F(z)w is a free solution. This means

(I) (8 +i8,)F(z) = 0 for w = dz' +idz?, 1 —idz'?,

(II) (86, —18;)F(z) = 0 for w = dz' —idz?, 1+ idz™. (15)

The w of ‘type I’ are odd anti-dual and even dual, those of ‘type II’ are odd dual and even
anti-dual. The signs in Eq. (14) refer to the cases (I) and (II). These equations have the
form of the Cauchy Riemann differential equations. Therefore it is natural to introduce

complex coordinates:

L .. 8 L
:vzi(almzaz)-— 2

¥l

F(z) is an analytic function of z in case (I), and conjugate analytic in case (II).
The main problem is now to determine F(z) in such a way that & satisfies the

periodicity conditions Egs. (3), (8). A short calculation shows that this means for the two

cases:

(I) F(Z+1) - e%ﬁ-’-ﬁ;’c[—ieLth(z) F(Z +T):C—i'trkz+%k{ri——ieLaiTth(Z)

—nk2 nk

(IT) F(z+1) = e @ hhpz) F(z+ 7) = e - Fkrl-ielalrla pzy - (17)

T = ZLg/Ll
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Analytic functions which are double periodic up to an exponentional factor can

be expressed by 6-functions [18] [19]:

]
J J

+oo
0ab(z|7) = Y exp[ri(n + a)’t + 2mi(n + a)(z + b)] (18)
(a,b=0,3; in the notation of [23]: §; = ——0%% 6, = 9;_0, 63 = Ooo, 4 = 90%.)

-

These functions are analytic and satisfy the ‘periodicity conditions’

2

O.p(z + mT + n|7) = exp[—27i(mz + +bm — an)]bu(z|7) (19)
They are related by
bap(2|T) = exp[2mi(a®T/2 + a{z + b))0oo(z + b+ ar|T) (20)

2.5. We first construct by this procedure the solutions for ¥ = 1 without

torons: ¢ = 0. As a special case of Eq. (19 we have
03(z +1|7) = 8s(z|7), O3(z + 7|7) = e " =HT)gy(z|7). (21)

Then one sees that F(z) = expmz?/2|r| - 03(2) satisfies the conditions Eq. (17) for k = 1.
Thus we get the two orthonormal solutions of the DKE
f2‘r|_1/4

1

¢ = egﬁ(zz_gzmeg(z)w w=dz! +ide?, 1 — ide", (22)

/e have normalized this solution as [(®,®), = 1. In Fig.1. we show phase and absolute
value of €2(=*~12")@,(z) for L; = L, = 1 The characteristic feature is the zero together
with the singularity of the section in the associated U(1)-bundle of the phase. This feature
follows from the extended Hopf index theorem [24].

2.6. The set of ‘periodicity conditions’ Eq. (17) describes an interesting algebraic
structure which allows to find the general solutions. We put ¢t = 0, consider k > 1, and

transform Eq. (17) by F(z) = exp(nkz?/2|7|)Ti(z) into :
Te(z +1) =Ti(z), Tilz+7)=e ¥ Q41T (7). (23)
One sees immediately that if 7}.(z), Ty(2) satisfy Eq. (23), then Tk+k:(:) = Ti(2)Tw(z)is a

solution for k + k'. Since the conditions (23) are linear, one may say that these periodicity

conditions define a k-graded ring of analytic functions over C . It is a simple consequence

of Eq. (19) that
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f
/
A A

—— e e e e e T

—— e eEe e e e —Ee B —pm e e

Figure 1: Phase and absolute value of the zero mode wave function F(z).
(61(2|7)) " (Oa(2|7)) P, (Ba(2]7))* ™" (Ba(2|7))** ™3 (Ba( 2] 7))(8a(2|7)),
n=0,...,p, m=0,...,p— 2 for k=2p

and
01(z]7))*"(83(=|7)) P2, (Ga(z[7)) ™ (83 (2] 7)) P TI (B, (2|7)) (8a(2]7)),
n=0,...,p, m=0,...,p—2 for k=2p+1; (24)

satisfy Eq. (23). It is a result of the theory of #- functions [19] that these k different
monomials of §’s form a linear independent base of analytic functions satisfying condition

Eq. (23). Thus we have finally the complete set of 2k linear independent solutions of the
DKE with C®), k > 1 as backgrond field:

1rk
§ = oo (= 1) gk, 2w w=de! +idz?, 1 — ide'? (25)
where H®(z), 1 = 1,...,k form a possibly orthonormalized base of the functions spanned

by the #-monomials defined in Eq.(24).

The index theorem for the DKE states [25] that the number of solutions with w

of type I minus the number of solutions with w of type II is equal to 2k. There are no
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solutions of type II. The 2k solutions of type I we have explicitly constructed above. It
can be seen easily that one gets the solutions for k < —1 by complex conjugation. This
transforms solutions of type I into such of type II.

For the solutions with arbitrary 4 € CH™ it remains to include the toron field

and the periodic part (d — §)a, Eq. (9) of the gauge potential. A direct calculation shows

that we can include the toron field by a translation z’ = z+ e;’;l:i(tz —1t1). The modification

required by the periodic part follows from the local solution, Eq. (10). Thus we get as the
main result of this Section the solutions of the DKE on the torus with general potential,
Eq. (9), for £ > 1:

& = eelelblele Fust T TN U (L), w = da? +ida?, 1 ide®?, (26)

The solutions for k < 1 follow essentially from complex conjugation.
2.7. We shall complete our consideration of the DK-operator with the gauge

potential C*} 1 t by the calculation of its spectrum. Like in paragraph 2.3 we make the

ansatz

® = Fy(z)(dz" F idz?) + Fp(x)(1 T ide™®) (27)
for the solution of the equation

D¥ =[(d - §) — ie(C¥) + t)V]® = E® (28).

A short calculation shows that with help of the differential operators

+ i'f,i,_a__i;' ‘_-*_.}ig_l_"z_’
Eq. (28) gets the form
+D* Fy(z)(de’ + idz®) F DY Fy(2)(1 + idz"?) =
Il ,
E 4;“;' {Fi(z)(dz' + ide?) + Fy(z)(1 £ idz'*)} (30)

For the solution of this equation it is essential that the operators D* satisfy the the

commutation relations:
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k
D~,Dt]= —

(31)
As differential operators they are adjoint operators: (D1)! = D~. Thus we may consider
for k > 1, (k < 1) D%, (D7) as creation (annihilation) operator, and D=, (D%) as
annihilation (creation) operator. The functions H(*(z) = eﬁﬁ(g’tf’zlﬂ(""')(z') of the 2k
zero modes Eq. (26) describe the corresponding ‘vacuum states’.

Now we solve first the eigenvalue problem for the ‘iterated’ DKE: DCDZ:,@ =
|E|*®. It follows from Eq. (28) that DCDE; has the form

\ 4rlk| .
De¢DLF(z)w = = -D"D” F(z)w for w of type I
L,L,
1 477'“(’1‘ _ +
DeD-F(z)w = HD D" F(z)w forw of type IT (32)
1L

Therefore the spectrum of D¢ D} follows from the standard calculations with creation and

annihilation operators:

47 |k|

En2: )
|E.,| Llen n

=0,1,..., with multiplicity 2|k|for n = 0, 4]k| forn > 0,. (33)

with eigendifferentials for £ > 0 of the form

1 i ¢
j(D+)”H{k’l)w, w of type I, n > 0,

1 .
J_\?(D+ TUHE) G w of type IT, n > 1.(34)
In the case k < 0, the types of the w’s according to Eq. (15) have to be exchanged, and
D" must be substituted by D~.

Since we have DL = — D¢, the eigen differentials of D¢ can be easily constructed

from those of DCD}, Eq. (34). The non-zero eigenvalues of D are

[k
ztzv Llen,

n = 1,2,...with multiplicity 2|k|. (35)

with the dual eigendifferentials for & > 0:

1

d
@:}\7

(DY)"H*)(z)(d2? — ide?) + iv/n{(D*)" T HE) (2)(1 - ide??)}. (36)

The anti-dual solution has the form *® =9 & v dz'. For k < 1 one has to make similar

substitutions as discussed above.
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