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INTERPARTICLE DISTANCE IN N BOSON SYSTEMS

André Martin
Theoretical Physics Division,
CERN, 1211 Geneva 23, Switzerland.

ABSTRACT

We find the order of magnitude of the interparticle distance in a system of N bosons
interacting via a power-like two-body attractive interaction, including in particular a grav-
itational interaction. This can be generalized to monotonous attractive potentials, but our

procedure fails for potentials of positive type.

1. - INTRODUCTION

It is with great pleasure that I have accepted to write a paper to celebrate Gérard
Wanders’ 60** birthday. I have always had a great admiration for Gérard, for his immense
culture, his sense of rigor, his desire to be in contact with physical reality. All these qualities

were In action when we were both working, in parallel, on the rigorous aspects of pion-
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pion scattering and where he was the first to see that rigorous inequalities would severeiy
restrict acceptable models for pion-pion phase shifts. This is just an example, which will be
developed by others in this volume. So I had to speak of something else, if possible rigorous.
A question by Philippe Choquard, asked during a joint colloquium between the EPFL and
the University of Lausanne gives me the opportunity to do this, even though the answer is
not as complete as one would like it to be. The problem is to estimate the mean distance

between pairs of particles in an assembly of bosons interacting by two-body forces.

Recently, J.L. Basdevant, J.M. Richard and I [1,2] have obtained rather remarkably
accurate lower bounds on ground state energies of N boson systems, interacting by two-
body attractive potentials (attractive means % > 0). The fact that they are accurate is
demonstrated by comparison with upper bounds coming from various variational approaches,
including hyperspherical expansions for the three-body case. For gravitational forces, the
uppér bound differs from the lower by at most 16 %. For harmonic oscillator forces our lower

bound coincides with the exact ground state energy.
Denoting Ex(M,V), a function of N and M, a functional of V, as the binding energy

of N bosons of mass M interacting by two-body potentials V(r;;) the inequality we use is

N(N-1) . NM
2 Ex (=5

En(M,V) 2 V). (1)

In fact we have learnt recently that this inequality can be found in a paper by Hall and

Post [3] dating from 1967!

To prove this, we split the N particle hamiltonian, into two-body subhamiltonians, after

removing the centre-of-mass motion:

2
_\" P oy 1 32 3
H= Z ot Z V(rij) = W(EP-) + Z hi; (2)
1 1>) 127
with '
47r.-2-
hij = m + V(rij) (3)

where 7;; is the moment conjugate to r;j. The lower bound on H is just the sum of the
lower bounds of the A;;’s , i.e., M@ times the ground state energy of k2. The success of
the very simple approach in which pairs of particles are treated independently led Philippe
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Choquard, during a colloquium in Lausanne, to ask the question if the interparticle distance
is effectively given by looking at the interparticle distance in the lower eigenstate of the

subhamiltonian k;; given by Eq. (3). The answer to this question for attractive power-
£
13?
attractive monotonous potentials, but unfortunately we cannot give any answer for the case

like interactions, i.e., V(r;;) = €(B)r’;, is affirmative. It is also probably affirmative for

of potentials of positive type (i.e., with positive three-dimensional Fourier transform) for

which one has classical stability [4].
2. - THE GRAVITATIONAL CASE

Here
K
V(rij) = ——,
Y (4)
k=G M*

G being Newton’s constant. We can get an upper bound of the N body Hamiltonian by

taking a wave function
U = wip(r;) (5)

In Ref. [1] we used
Y =exp—Aypur? +1 (6)

but for our needs, the wave function used previously by Lévy-Leblond [5], is good enough:
P =exp—Ar (7)
and will be used systematically later. If one uses (7), and optimizes in A, one gets [5]
1 9., 2,2

E<_§(§) N(N - 1)*s*M (8)
with § (3)2 = 0.0488, while with (6) one gets [1]

E < —0.0542 N(N — 1)’s*M (9)
and, solving the integral equation giving the best possible 3 [6]

E < —0.05426 N(N —1)*x*M. (10)

Now, since we are dealing with bosons, the expectation value of A;; in the true ground
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state is independent of 7 and j, so

0.0542 N(N - 1)%*M

= —0.1084(N — 1)x*M
NV 1)) 0.1084( )&

(hij) < —

Now we can use the operator inequality

and get the operator inequality

and hence, using (11),

1 1 K
LI T .E -0.05 Nx*M N>2
<2MN 7’,2,' rij> < -0.05 Nx*M, >

We can divide both sides by Nx2M, and, introducing

1 1

B N T

we get

1
<5 X* = X) =< —0.05

and using Schwarz inequality we get

%(XQ)—\/(}'T)M.OMO
and hence

1—s/(E<\/’(X_2)<1+\/(E
or

1/2
0.05SMNk < <—12—> <2 MNk

T'J

619

(11)

(13)

(15)

(16)

which means, crudely speaking, that the interparticle distance is of the order of (M Nx)™1.
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From (16), it also follows that

1
(("?j))llz > M Nx (17)

1/2
but, strictly speaking, this method does not allow us to find an upper bound on <r'-2j> :
3. - THE CASE OF POWER POTENTIALS

The case where
V(ri;) = ge(B)r)
9>0,8>-2,8+0,¢(B) = sign of B

(18)

will be a carbon copy of the Coulomb case, except for the fact that Holder inequalities will

be used instead of Schwarz inequalities.

Again we try to get an upper bound on the ground-state energy of the system by using

the trial function

¥ = Tmexp —Ar;

In this way we get
N

N(N -1) -
A T A S . 4 B
E<opgA' +——5 9B K(B) | (19)
with
[e 2|z — 2B e~ 22| Bz ds!
K(B) = 20
(P) (f e-2l=lg3z)2 (20)
Minimizing (19) with respect to A we get
Amin = (N = 1)M g K(8)|8I]7 (21)
and
2 8 f+2 2
E < N(N —1)55 M™5% 55 [18] g K(B)]?+ (22)
then from
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<2M]1V 3 +9€(ﬁ)f.,>

2 2
< (v =M (222 sk (87
Now we distinguish
(i) -2<pB<0
Then we have
il
18] 1
<(TIJ) > < <T,'2j>

and hence
1el
2

—2-—\}5,—<-12,—>—g<-17> <2 sk )
i

2]

(here we use N — 1 > % for N > 2). Then defining

1
X=— (MNg)#
i

we get
50 - (0% < —K'(8)

where K’ is positive.

Inequality (26) is easy to study by looking at the function

JLI|

y=5-—172

o8

621

(23)

(24)

(25)

(26)

This function for |#| < 2 has a single minimum, is negative for small z, positive for large

z. The equation y = —K'(B) has either zero or two positive solutions, x% and z3. It is

necessarily the second half of the alternative which is correct. Therefore we have

1/2
21 (MNg)™ < <—12—> < zo(MNg)m

T

Therefore the interparticle distance is of the order of (M N g)"ﬁl—f.

(27)



622 Martin H.P.A.

(1) >0
Here we use
B 2 7
(r5) > (r5°)
and get back again to inequality (27). However, in that case, one can also get directly a double

inequality on (r-2> if 8 > 2 indeed. Then, one has (r2 >§ < (r‘8> and (r2 >_1 < <r;2>

ij ij ij ij
4. - SOME CONSIDERATIONS ON GENERAL POTENTIALS

In general the expectation value of the two-body Hamiltonian defined by (3) in the

ground state of the full N-body system is given by

(h12) = Frz5r=y EN(M.Y) (28)

and therefore if one has a variational upper bound E}”

2

(h12) < NN =1

ENT (29)

Now if we write the wave function of the N-body system as
U(r1,r2,...78)=P(r1 — 12,71 +72,73...7x) (30)
we can expand @ in eigenstates of hys:
O(ry —ry,ri+royr3...TN) = Z Yr(ry —re)xx(r1 +r2,73,...TN) (31)

then if the e'Ks are the ordered eigenvalues of hj2 we have

(h12) = Z eK C]( < fV(Tz—lj Efvﬂr (32)

where

Ck = /lXK|2 (33)
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Assume
2 var
M > NN—1) N
Then, since
D> Cx= (34)
from normalization, we have
M-1 M-1
2 2
oM~ gy BW| (1= 2 Co< Y. Ol BV —ex)  (39)
v~ wry B7] 0= X 00 < 3 Ontr;

which means that the first M —1 components in (31) dominate and that the spatial extension

of the pair 12 is given dominantly by the spatial extension of the two-body wave functions
Y1 ¥2... M

We can illustrate this by taking again the case of attractive two-body potentials -;'-‘-J-

In that case the energy levels of hj2 are given by

2
en=—""NML

with a degeneracy n?. The variational upper bound gives

2ERT 2
m < —0.1084(N - 1) ‘M
Hence
2E3T
2> NN-1)
and we get (taking the limit case N — o0)
Ch
J 36
—c, > 4.64 (36)

Therefore the interparticle distance is most of the time given by the groundstate wave func-

tion of hjs.
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Similarly if one takes a two-body potential

V(0) =—-Vyatr=0
V(0 =0
(0) | (37)
V7(0) >0 and V” continuous
V(o0) =0

one can take a trial function w(exp—Ar,-z) to get an upper bound of the total energy, and
choose for large N, A~ C v/N. Then only the short-range part of the potential is used and

V can be replaced by a harmonic oscillator

V=-Vo+gr’

Then, in this approximation, it is not a surprise to find that the variational energy

var __ — g __N(N'“l)
EYT =3N VN IMQM 5 Vo

corresponding, as expected, to A = 4/ ﬂN—;llﬂ, gives, when divided by w, a number
which coincides with the ground state energy of ki, (except for the placement of N=1/2 by

(N —1)~Y/2) which means C; = 1 — O(ﬁ)

One can try to estimate the error committed by expanding V further:
V=—Vo+gr2+kr4+...

keeping
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So we get

oy o 15k
ﬁ%’_—ﬂ_e‘ 4 gNM

while the first excitation e; has an energy

2 YMN

Therefore 1 — C) is of the order of N~1/2  j.e., negligible for large N, and the interparticle

spacing is given by looking at the two-body subsystem.

However, a case where this method fails - and this is normal - is that of a two-body
potential of positive type (more exactly non-negative type). ”Positive type” means that the
three-dimensional Fourier transform of the potential is positive. If we take a product trial

function w1(r;) to get an upper bound on Ey, the potential energy contribution is:
N(N -1
ML 14l Virs = rp)lbtrp)P s i

If £(p) is the Fourier transform of |1(r)|?, this becomes, except for 4 factors:

N(N -1 ~

e M

which is manifestly positive. It is therefore impossible to get a negative upper bound for
Ey in the Hartree approximation. However, V(p) may be positive everywhere without V(r)

being positive everywhere. For instance

16e~4 T
V(r)= e

-
is negative for r large enough but has a positive Fourier transform

16 1
16+p2 14p°

Then our approach fails completely because E}f" is unavoidably positive while e;, lowest

V(p) =

eigenvalue of hj2 approaches the negative minimum of V(r) for N — oo.

This is not a surprise. It is known that potentials of positive type give rise to ’stability”,
i.e., in particular that, as N increases, the total energy does not decrease faster than —N

[4). If there is any anomaly in the particle-particle correlation, our method cannot detect it.
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