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INTERPARTICLE DISTANCE IN N BOSON SYSTEMS

André Martin

Theoretical Physics Division,

CERN, 1211 Geneva 23, Switzerland.

ABSTRACT

We find the order of magnitude of the interparticle distance in a system of N bosons

interacting via a power-like two-body attractive interaction, including in particular a

gravitational interaction. This can be generalized to monotonous attractive potentials, but our

procedure fails for potentials of positive type.

1. - INTRODUCTION

It is with great pleasure that I have accepted to write a paper to celebrate Gerard

Wanders' 60 birthday. I have always had a great admiration for Gerard, for his immense

culture, his sense of rigor, his desire to be in contact with physical reality. All these qualities

were in action when we were both working, in parallel, on the rigorous aspects of pion-



Vol. 63, 1990 Martin 617

pion scattering and where he was the first to see that rigorous inequalities would severely

restrict acceptable models for pion-pion phase shifts. This is just an example, which will be

developed by others in this volume. So I had to speak of something else, if possible rigorous.

A question by Philippe Choquard, asked during a joint colloquium between the EPFL and

the University of Lausanne gives me the opportunity to do this, even though the answer is

not as complete as one would like it to be. The problem is to estimate the mean distance

between pairs of particles in an assembly of bosons interacting by two-body forces.

Recently, J.L. Basdevant, J.M. Richard and I [1,2] have obtained rather remarkably

accurate lower bounds on ground state energies of N boson systems, interacting by two-

body attractive potentials (attractive means =jj£ > 0). The fact that they are accurate is

demonstrated by comparison with upper bounds coming from various variational approaches,

including hyperspherical expansions for the three-body case. For gravitational forces, the

upper bound differs from the lower by at most 16 %. For harmonic oscillator forces our lower

bound coincides with the exact ground state energy.

Denoting E^(M,V), a function of N and M, a functional of V, as the binding energy

of N bosons of mass M interacting by two-body potentials V(rij) the inequality we use is

In fact we have learnt recently that this inequality can be found in a paper by Hall and

Post [3] dating from 1967!

To prove this, we split the N particle hamiltonian, into two-body subhamiltonians, after

removing the centre-of-mass motion:

H - EA + E nri}) ^(Ep.)2 + E i* m2M 4-i x " 2NM"
»3 »J

with

where ir;,- is the moment conjugate to rij. The lower bound on H is just the sum of the

lower bounds of the hij's i.e., '
2~

' times the ground state energy of h^. The success of

the very simple approach in which pairs of particles are treated independently led Philippe



618 Martin H.P.A.

Choquard, during a colloquium in Lausanne, to ask the question if the interparticle distance

is effectively given by looking at the interparticle distance in the lower eigenstate of the

subhamiltonian Ay given by Eq. (3). The answer to this question for attractive powerlike

interactions, i.e., V(r,-y) e(ß)rf-, is affirmative. It is also probably affirmative for

attractive monotonous potentials, but unfortunately we cannot give any answer for the case

of potentials of positive type (i.e., with positive three-dimensional Fourier transform) for

which one has classical stability [4].

2. - THE GRAVITATIONAL CASE

Here

V(rt])=-^,
rV (4)

k GM2

G being Newton's constant. We can get an upper bound of the N body Hamiltonian by

taking a wave function

¥ 7np(n) (5)

In Ref. [1] we used

xp exp — A y /xr2 + 1 (6)

but for our needs, the wave function used previously by Lévy-Leblond [5], is good enough:

V> exp—Ar (7)

and will be used systematically later. If one uses (7), and optimizes in A, one gets [5]

e<-\{\)2N(N-\)2k2M (8)

with \ (|)2 0.0488, while with (6) one gets [1]

E < -0.0542 N(N - \)2k2M (9)

and, solving the integral equation giving the best possible tj> [6]

E < -0.05426 N(N - l)2/c2M. (10)

Now, since we are dealing with bosons, the expectation value of Ay in the true ground
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state is independent of i and j, so

Now we can use the operator inequality

1

4 > — (12)

and get the operator inequality

'"' " 2MN fa " r^•>^4--- (13)
>j •j

and hence, using (11),

'_1 1 K_

2MN ~A\~7~}
< -0.05 Nk2M, N>2 (14)

We can divide both sides by Nk2M, and, introducing

MNk rK

we get

l~ X2 -x\ =<-0.05

and using Schwarz inequality we get

i<X2)-v/(Ä^+0.05<0

and hence

X tÂt- - (15)

1 - %/Ö9 < y/(X2) < 1 + \/fl9

/l\I/2
0.05MNK < -j j < 2 MNk (16)

which means, crudely speaking, that the interparticle distance is of the order of (MNk)"
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From (16), it also follows that

((r2 ))ï/2 > - (17)U ,J,) 2MNk
K >

I i\xl2but, strictly speaking, this method does not allow us to find an upper bound on r,

3. - THE CASE OF POWER POTENTIALS

The case where

V(rtJ) « ge(ß)rl ^<?> 0,/?> -2,/?^0, £(/?) sign of/?

will be a carbon copy of the Coulomb case, except for the fact that Holder inequalities will

be used instead of Schwarz inequalities.

Again we try to get an upper bound on the ground-state energy of the system by using

the trial function

¥ 7rexp—Ary

In this way we get

with

<iVA2 + ^V-l)E K 2MX +
2 9 <ß)X K{ß) (19)

fe-2|x|| /l^ -2|i'| d3 d3 I

Minimizing (19) with respect to A we get

Amin [(N - \)M g K(ß)\ß\\& (21)

and

E<N(N- 1)<& M-T& ^~- [\ß\ g K(ß)}<& (22)

then from

2E
(hi,)

N(N -1)
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1

+9<ß)42MN

< [(N - 1)M]-T& (tp) [g\ß\K(ß)\& (23)

Now we distinguish

(i) -2 < /3 < 0

Then we have

and hence

(<è>'"><tì)

1£1

5^(4)-'(i)"<i¥r*^ww«>* <")

(here we use N - 1 > y for N > 2). Then defining

X 4" (MNg)& (25)
r.;

we set

ÌPQ-Wf1 <-/<:'(/?) (26)

where A"' is positive.

Inequality (26) is easy to study by looking at the function

x 151

y — tc - x 7* 2

This function for \ß\ < 2 has a single minimum, is negative for small z, positive for large

i. The equation y —K'(ß) has either zero or two positive solutions, x\ and x\. It is

necessarily the second half of the alternative which is correct. Therefore we have

xi(MNg)^ < /4-\ <x2(MNg)ifc (27)

Therefore the interparticle distance is of the order of (MNg)~?+*.
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(ii) ^ > 0

Here we use

W) >(¦*•>'

and get back again to inequality (27). However, in that case, one can also get directly a double
2 —1

inequality on (r2) if ß > 2 indeed. Then, one has (rj'¦) < (fy) and (r2) < (r~. V

4. - SOME CONSIDERATIONS ON GENERAL POTENTIALS

In general the expectation value of the two-body Hamiltonian defined by (3) in the

ground state of the full Af-body system is given by

<Al2) iv(ÄrrT)^(M'v) (28)

and therefore if one has a variational upper bound E™*

<*»> * nW^T) ET (29)

Now if we write the wave function of the /V-body system as

¥(n,r2,...rJv) $(ri -r2,ri + r2,r3...rN) (30)

we can expand $ in eigenstates of A]2:

*(0 - r2,ri.+ r2,r3 .rN) ^2rpK(r1 - r2)x/f(ri + r2,r3,... rN) (31)

then if the e'Ks are the ordered eigenvalues of A12 we have

(hn) Y,'kCk< JtüfZi) E»T (32)

where

Ck J\xk? (33)
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Assume

Then, since

eM >
N(N - 1)

En

E^ 1 (34)

from normalization, we have

2
ejv/ - N(N-l) 'N

M-\ M-1
(1 - E Ck) < E c*(

A'=l K=i N(N-l) >N eK) (35)

which means that the first M — 1 components in (31) dominate and that the spatial extension

of the pair 12 is given dominantly by the spatial extension of the two-body wave functions

fa i>2 - ¦ ¦ VM/-1

We can illustrate this by taking again the case of attractive two-body potentials —¦£-.

In that case the energy levels of A12 are given by

with a degeneracy n2. The variational upper bound gives

2EI
N(N

2— < -0.1084(/V - 1) k2M

Hence

e2 > 2gyr
N(N - 1)

and we get (taking the limit case N —? 00)

Ci
1-C, >4.64 (36)

Therefore the interparticle distance is most of the time given by the groundstate wave function

of A12.
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Similarly if one takes a two-body potential

/ V(0) ~V0 at r 0 \
V/(0) 0

V" (0) > 0 and V" continuous

V^(oo) =0 /

(37)

one can take a trial function 7r(exp—Ar2) to get an upper bound of the total energy, and

choose for large N, A ~ C\/N. Then only the short-range part of the potential is used and

V can be replaced by a harmonic oscillator

V -Vo+gr2

Then, in this approximation, it is not a surprise to find that the variational energy

-N -^v^-^fa1"'
corresponding, as expected, to A -v/^—^—, gives, when divided by —*-j—', a number

which coincides with the ground state energy of Ai2 (except for the placement of N~1'2 by

(N - \)~ll2) which means Ci 1 - O(^).

One can try to estimate the error committed by expanding V further:

V -V0 + gr2 + kri +

keeping

/g(N-l)M

one gets aa extra contribution to EvjfT which is

15 kN_

T g~M

on the other hand, the anharmonic correction to e\, the ground-state energy of Ai2, is

15 k

T gNM
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So we get

Elar \ 15'N -eiN(lf-i) l) 4 gNM

while the first excitation e2 has an energy

2 V MNMN

Therefore 1 — C\ is of the order of N~ll2, i.e., negligible for large N, and the interparticle

spacing is given by looking at the two-body subsystem.

However, a case where this method fails - and this is normal - is that of a two-body

potential of positive type (more exactly non-negative type). "Positive type" means that the

three-dimensional Fourier transform of the potential is positive. If we take a product trial

function itip(ri) to get an upper bound on Ef/, the potential energy contribution is:

N(N-l)¦JWritfVln-riMritffrifrj2

If <f(p) is the Fourier transform of |t/>(r)|2, this becomes, except for 4it factors:

N(N-l) j V(p)\((p)\2d3p

which is manifestly positive. It is therefore impossible to get a negative upper bound for

Ef/ in the Hartree approximation. However, V(p) may be positive everywhere without V(r)
being positive everywhere. For instance

16e~4r e~T
V(r) — —

is negative for r large enough but has a positive Fourier transform

vt ï
16 1

Then our approach fails completely because E™* is unavoidably positive while e\, lowest

eigenvalue of Aj2 approaches the negative minimum of V(r) for N —* oo.

This is not a surprise. It is known that potentials of positive type give rise to 'stability",

i.e., in particular that, as N increases, the total energy does not decrease faster than —N

[4]. If there is any anomaly in the particle-particle correlation, our method cannot detect it.
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