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Abstract

We consider the parabolized approximation of Navier-Stokes equations for the two-

dimensional steady flow of an incompressible or isentropic fluid. First, the equations and a

perturbative method to get them are presented; then, the notion of admissible boundary

conditions in the sense of Friedrichs systems of differential equations is introduced. FinaUy,

various admissible conditions for the parabolized Navier-Stokes equations and, as a

byproduct, for Euler equations are exhibited.

1. Preliminaries

Parabolized Navier-Stokes (PNS) equations are used to describe the high-speed

(e.g. supersonic) steady flow of a viscous compressible gas over a blunt body when there is a

preferred direction, in which the component of the displacement velocity of the fluid is positive

[1]. For numerical purposes, it is essential to have boundary conditions (BC) for these
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equations such that the resulting problem is well-posed; to our knowledge, this issue has never

been addressed in the case of a bounded domain.

Consider the steady state Navier-Stokes equations for an incompressible fluid,
without external force :

[ u-V u - vAu + Vp 0, (1.1a)

[ div u 0, (1.1b)

where, in cartesian coordinates x (x,y), u (u,v) is the displacement velocity, p the pressure

and v1 > 0 the Reynolds number. Throughout this paper, u will be assumed to be positive. The

PNS equations are obtained from (1.1) by neglecting the diffusion in the x-direction, i.e. :

(u-V)u -v3ju + Vp 0, (1.2a)

div u 0, (1.2b)

Remark 1.1 : Like Prandtl's boundary-layer equations, the PNS equations are simplified
Navier-Stokes equations, but they are valid in a larger region than the boundary-layer.

For a compressible fluid, we restrict ourselves to the isentropic case [2], where the

equation of state (p ApY, p : mass density, A,y : constants) allows to decouple the mechanical

conservation laws from the thermodynamical one. The PNS equations are obtained like above

by neglecting the second-order derivatives with respect to x and read

p u-Vu + 3xp - v3yU 0, (1.3a)
p u Vv + 3yp -| vd)v 0, (1.3b)

p div u + a-2 u-Vp 0, (1.3c)
^ P a2p; (1.3d)

we have assumed for simplicity that the sound speed a Vpy/p is constant.

Except in the next section, we shall work in the bounded domain Q (0,1) x (0,1)

with boundary dCl F u To u T+ where

r. {(x,y)6 3Qlx 0,0<y<l}, r+={(x,y)e 3Q I x 1, 0 < y < 1},

r0 r1ur2, ri {(x,y)e 3Qly 0}, r2= {(x,y)e 3Qly=l).

This geometry corresponds to the flow over a flat plate lying on the positive x-axis;

more general situations can be handled by replacing (x,y) by curvilinear coordinates, the type of
the equations being unchanged.
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2. Parabolized Oseen's equations

We add to eqs (1.2) a right hand side f which may arise from inhomogeneous BC

and set

/ u 0 1 \ / v 0 0\
q=("), Ax(u)= 0 u 0 Ay(u)= 0 v 1 D diag [1,1,0] ; (2.1)

1 p/ V 1 0 0/ VO 1 0/
then, we get the system

Ax(u) 3xq + Ay(u) dyq - v D o^q f. (2.2)

These equations can be linearized by replacing u in the matrices by a given velocity c (c,d),

c> 0; the same procedure applied to the Navier-Stokes equations (1.1) yields Oseen's

equations

POx,9y)q Ax(c) 8xq + Ay(c) 3yq - v D(3X2 + 32) q f. (2.3)

We intend to show, using the method developped in [3] for the case d 0, that the

linearized version of System (2.2) is an approximation of (2.3) when v and s d/c are close to

zero. For simplicity, we assume that c is constant and look for a solution of (2.3), in the

domain QTC IR,, x IR, of the type

q(x,y)= S J exp (i^iy + Xk(n)x) qj(^)dn + qo(x,y),
k=l IR

with qo a particular solution of the inhomogeneous system; the generalized eigenvalues X^,

such that the matrix P(X,ijJ.) \AX + i|j. Ay - v(k2 + (i|^)2) D is singular, determine the behavior

of q as x —» t». The first two eigenvalues are X\ l|il, %2 - l|il and the other ones have the

asymptotic expansion

/V3 -i|j.s-—(l+s2)v + 0(v2), Ä.4 cv1 + ijxs + O(v), v-»0.

In order to get the approximation, we drop Ä.4 (responsible for a divergent behavior when

x —> oo)( we keep X\ (the divergence of which will be killed by a regularity condition) and X2,

but we replace /V3 by its asymptotic expansion up to the order v. These new eigenvalues are the

roots of the determinant of the matrix Ps(Ä.,i|i.) À.AX + i(J. Ay - v(l+s2) (in)2D, which is

associated to the system
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P.0x3y)q Ax(c)3xq + Ay(c)3yq - v(l+s2) D 32q f. (2.4)

Consider the problems of solving (2.3) or (2.4) with the BC u | _ 0
0 ; then, the

Fourier technique of [3] allows us to prove that, for sufficiently regular data f, both problems

have a solution with unique velocities u, resp. us, which belong to H^Q,*,) * and one has the

estimate

II 3y(U-Us) II
L2(a<))2 + II U - Us II

L2(Qoo)2 0(V2), V -> 0.

This result shows in what sense System (2.4) is an approximation of the Oseen equations; it
remains to establish a bound for the difference e us - un of the velocities satisfying (2.4) with

s^O and s 0. This can be done only in a finite domain, e.g. the unit square Ci. We assume

that there exists a unique solution qs e H^Q)3 of (2.4) satisfying (for instance) the BC

u 0 onr.uTo, p 0 onT+ (2.5)

(this holds if f is regular enough [4]). From the first two equations (2.4), we get an equation

for e ; taking the dot product of this latter with e, integrating over Q, performing some

integrations by parts and using the equation for ps - po obtained from the last equation (2.4),

yields, with the help of the Cauchy-Schwartz inequality :

11V " l2(Q)2 -s2 " 3y"s " l2(Q)2 ;

finally,Poincaré'sinequality II e II,2(cy\2 ^ oc II 3yeII, 2,ry\2 oc>0, implies that

II 3y(us - U0) II
L2(Q)2 + II Us - Uo II

L2(n)2 0(S2), S -» 0.

Consequently, the linear PNS equations (2.4) with s 0 can be viewed, for s2 o(l) (e.g.

s 0(v)) as an approximation of Oseen's equations (2.3).

For an open domain Q e IR2, H^Q) denotes the Sobolev space of functions Q —» IR which, together with their

first-order derivatives, are in L2(Q).
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3. Admissible boundary conditions

Admissible BC were first introduced within the theory of linear first-order

differential equations system [5], e.g. in our case :

*q(x) Ax(x)3xq(x) + Ay(x)3yq(x) + K(x)q(x) f(x), x e Q, (3.1)

where the unknown q and the r.h.s. f take values in IRP and the matrix-valued functions Ax, Ay

are assumed to be symmetric. With the help of a matrix M defined on 3Q and of the matrix

B(x) (nxAx + nyAy)(x), x € 3Q, (3.2)

(n : outward unit normal to 3Q), homogeneous Dirichlet BC for (3.1) are laid down by

requiring that

q(x) e Ker (B-M)(x), x e 3Q. (3.3)

The BC are called admissible iff

the matrix M + Ml is positive semi-definite (M+Ml > 0) on 3Q, (3.4a)

Ker(B-M) + Ker(B+M) IRP on 3Q. (3.4b)

Example : The matrix M ï B2 generates admissible BC.

Finally, the system (3.1) is said to be positive iff the matrix C K + Kl - 3xAx - 3yAy is

positive definite in Q.

We quote hereafter, in an informal way, the basic results of [5]. A symmetric

positive system with admissible BC has at least one solution q e L2(Q)P, i.e.

jV-iTcpdx Jftcpdx V cp e CU^P with (pe Ker(B+M') on 3Q,
Q n f e L2(Q)P,

where A* is the formal adjoint of A ; moreover, if q is regular enough (e.g. in H1(Q)P), the

solution is unique and satisfies the BC in the sense of traces. These results led us to consider

admissible BC for (linearized) PNS equations.
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4. The incompressible case

It is quite usual to infer BC for nonlinear equations from those of their linear version

(see [6] for instance). Hence, we consider the linearized PNS system (2.4) with s 0 in the

domain Q; introducing the unknowns q 3yu and r 3yv, it takes the standard form (3.1) with

q
p

q
\ r /

K diag[0,0,0,v,v],

02,10]
010''

Av

Ay
-v 0 0
0 -v 0

-v 0
0 -v
0 0

O

\

(4.1)

where Ax and Ay are the matrices for the corresponding Euler system (v=0), defined by (2.1)

with c(x) in place of u. It is easy to check that equations (3.1) and (4.1) yield a symmetric

positive system if div c < 0; unfortunately, this is unphysical since c must mimic u. However,

it is shown in [4] that most admissible BC in the present case lead to the same results we would

obtain if the system were positive.

It is worthwhile noticing that, since the matrix B (3.2) is given by

B (B|0)lolo/ s$*|g) onr ur+,

we obtain, from admissible BC for the Euler system generated with the matrix M, admissible

BC for the PNS system with the help of

/M|0\ r,Mfaölö/ onr.ur+; (4.2)

of course, written down in function of u,v,p these BC coincide.

In order to describe the physical situation of the flow over a flat plate, we make the

following hypotheses on the given velocity c :

e e CJ(ß)2, div c 0 in Q,

en 0 on To, en > 0 on T+ en < 0 on I\
(4.3a)

(4.3b)

First, we want to show that the standard BC (2.5) are admissible. On T2, one has

B Ay and the matrix
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M

/ 0 0 0 -V 0 \
0 0 1 0 -v
0-1000
V 0 0 0 0

VO V 0 0 0/

(4.4)

generates the admissible BC u 0; on T\, since B - Ay, we get the same BC by replacing M

by -M. By setting

c 0 -1

M :| 0 c 0
1 0 0

in (4.2), we get the admissible BC u 0 on V and also p 0 on T+ We remark that the

condition u 0 on To does not depend from the hypothesis en 0 there.

Other simple admissible conditions for the PNS system are for instance :

with

c u + p 0, v 0 on T

u 0 on T

(4.5a)

(4.5b)

c 0 1

M | 0 c 0

-10 0
in eq. (4.2) ;

u 0, -p + v 3y v 0 on Tq, (4.6)

with the matrix M (4.4) on Ti and - M on T2. This latter BC is a zero-strain condition,

frequently used for the Navier-Stokes equations.

It is also interesting to look at the BC given by the choice M VB an easy

computation of the eigenvalues and eigenvectors of B yields :

J u + 1 (Vc2+4 - c) p 0, v 0 on r_
j u - l(c + Yc2+4) p 0 on r+

(4.7a)

(4.7b)

5. The isentropic case

This section deals with the linearized version of System (1.3) obtained by adding a

r.h.s. due to inhomogeneous BC, setting p 1 and replacing u-V by c-V, where

c (c,d) satisfies (4.3); the underlying physics is the isentropic flow of a weakly
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compressible fluid, the density of which (p 1 + pi, pi « 1) is almost constant. The

resulting system can be put into the standard form (3.1), with the new unknowns q 3yu,

r 3yv, by setting

P

q
\r /

-(Alio
faolo

-v 0 \

Ay 0 - 4/3 v
0 0

-V 0 0 o
0 -4/3v 0 1

K diag [0,0,0,v, 4/3 v], (5.1)

where the matrices

Ax

c 0 1

0 c 0

I 1 Oca-2/

d 0 0 \

0 d 1

\ 0 1 da2/

are those of the corresponding Euler problem. Here again, admissible BC for the Euler system

on r u r+, defined with the help of a matrix M, are also admissible for the PNS system and

given by the matrix M (4.2).

Remark 5.1 : Asfar as BC are concerned, the assumption of weak compressibility does not

play any role.

Compared to the incompressible case, the compressible problem has a new feature :

there are two regions in the flow; with regard to the PNS equations, one must distinguish
between the "supersonic" zone in which c > a and the "subsonic" zone where c < a. With the

change of variables q q exp (ax), we get from (3.1) the equivalent system

Ax 3X q + Ay 3y q + (K+ccAx) q exp (-ax) f. (5.3)

The following conditions are sufficient to insure that the symmetric system (5.3), (5.1) and

(5.2) is positive :

(i) For c > a : a>0if div c 0 ; a max ,dlv.c ifdivc^O.
min (c-a)
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(ii) For c < a : max y}w.ç^ <a< min ç
2 (c+a) 2 (c-a)

if div c < 0.

In the case c < a, div c 0, admissible BC yield again the same existence and uniqueness

results as for a positive system [4].

We have also to distinguish between two parts of the boundary, namely :

rs { x e 3Q I c(x) > a }, V, { x e 3Q I c(x) < a }.

Standard BC for the PNS system are given by

c u + p 0, v 0 on T n T;

u 0, p 0 on r n rs
u 0 on r0

^ p 0 on r+ n Tj ;

(5.4a)

(5.4b)

(5.4c)
(5.4d)

thus, we see that on the supersonic inflow T n rs, every unknown has to be prescribed,

whereas on the supersonic outflow T+ n Ts no condition is required. The BC (5.4) are

admissible, given by the following matrices :

M

/

/

c

0

1

M

0 -1

-1

0

2/c-c/a2 /

in (4.2), on (f u T+) n r;,

0 c 0

\ 1 0 c/a2 /

in (4.2), on T_ n rs,

/

M

\

0
0
0

v
0

0

0
-1

0
4/3 v

-V

0
0

0
0

0 \

¦4/3v
0

0

0

(5.5)

on T2 and- M on T\.
On the horizontal boundaries, the matrices M (5.5) on Ti and - M on T2 define the

admissible zero-strain condition
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3yu 0, -p+-v3yv 0on To. (5.6)

Finally, the matrix M ÏB2 generates the conditions

(C+X.+) u + p 0, v 0 on r_ n Tj, (5.7a)

(and of course u 0, p 0 on V n Vs),

u + (k_ - c) p 0 on r+ n Th (5.7b)

with X+ Ì(c(l+a-2) ± Vc2(l+a-2)2-4(c2a-2-l).

Remark 5.2 : The BC on (r_ u T+) n T; look like those for the incompressible PNS system;

in this latter case a is infinite and Ts 0. For instance, the BC (5.4a), (5.4d) become (4.5)

and (5.4c) is also admissible when a tends to infinity. However, it is very important to notice

that the condition u 0 on T is not admissible. The matrix M defining this condition would

be such that (0,0,1,0,0)' e Ker (B-M) and consequently its third diagonal element should be

equal to - c a-2, thus preventing M be positive semi-definite.

Remark 5.3 : Some of the boundary conditions proposed in this paper coincide with results

of [6], where time dependent compressible Euler equations are studied.
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