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ABOUT ADMISSIBLE BOUNDARY CONDITIONS FOR EULER AND
PARABOLIZED NAVIER-STOKES EQUATIONS

Ph. Caussignac, S. Gerbi * and L. Renggli
Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

Dedicated to Gérard Wanders on the occasion of his 60th birthday

Abstract

We consider the parabolized approximation of Navier-Stokes equations for the two-
dimensional steady flow of an incompressible or isentropic fluid. First, the equations and a
perturbative method to get them are presented; then, the notion of admissible boundary
conditions in the sense of Friedrichs systems of differential equations is introduced. Finally,
various admissible conditions for the parabolized Navier-Stokes equations and, as a by-
product, for Euler equations are exhibited.

1. Preliminaries

Parabolized Navier-Stokes (PNS) equations are used to describe the high-speed
(e.g. supersonic) steady flow of a viscous compressible gas over a blunt body when there is a
preferred direction, in which the component of the displacement velocity of the fluid is positive
[1]. For numerical purposes, it is essential to have boundary conditions (BC) for these

& Partly supported by the Swiss National Foundation under grant Nr. 20.5404.87.
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equations such that the resulting problem is well-posed; to our knowledge, this issue has never
been addressed in the case of a bounded domain.

Consider the steady state Navier-Stokes equations for an incompressible fluid,
without external force :

{(u-V)u -VAu + Vp = 0, (1.1a)

divu = 0, (1.1b)
where, in cartesian coordinates x = (x,y), u = (u,v) is the displacement velocity, p the pressure
and v-1 > 0 the Reynolds number. Throughout this paper, u will be assumed to be positive. The
PNS equations are obtained from (1.1) by neglecting the diffusion in the x-direction, i.e. :

{(u-V)u-va§u+Vp:0, (1.2a)
divu = 0, (1.2b)

Remark 1.1 : Like Prandil’s boundary-layer equations, the PNS equations are simplified
Navier-Stokes equations, but they are valid in a larger region than the boundary-layer.

For a compressible fluid, we restrict ourselves to the isentropic case [2], where the
equation of state (p = ApY, p : mass density, A,Y : constants) allows to decouple the mechanical
conservation laws from the thermodynamical one. The PNS equations are obtained like above

by neglecting the second-order derivatives with respect to x and read

pu-Vu+dyxp -volu=0, (1.3a)
pu-Vv+ayp-§—va§v=0, (1.3b)
pdivu +a2u-Vp =0, (1.3¢)
p = aZp; (1.3d)

we have assumed for simplicity that the sound speed a = YPY/P is constant.
Except in the next section, we shall work in the bounded domain Q = (0,1) x (0,1)
with boundary dQ =I"_uTyUT, , where

I ={x,y)e 0Qlx=0,0<y<1}, T,={xy)edQlix=10<y<l},
Io=T1uly, IN={xy)edQly=0}, In={(kxy e dQly=1}.

This geometry corresponds to the flow over a flat plate lying on the positive x-axis;
more general situations can be handled by replacing (x,y) by curvilinear coordinates, the type of
the equations being unchanged.
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2. Parabolized Oseen's equations

We add to egs (1.2) a right hand side f which may arise from inhomogeneous BC

and set
i u 01 v 00
q:( ) Axw={0u 0), Ajw={0v 1], D=diag[1,1,0]; (2.1
P 100 010
then, we get the system
Ax(u) 05q + Ay(u) dyq - vD d2q =f. (2.2)

These equations can be linearized by replacing u in the matrices by a given velocity ¢ = (c,d),
¢ > 0; the same procedure applied to the Navier-Stokes equations (1.1) yields Oseen's
equations

P(3x,0y)q = Ax(c) 9xq + Ay(c) dyq - vD(0; +35) q =T. (2.3)

We intend to show, using the method developped in [3] for the case d = 0, that the
linearized version of System (2.2) is an approximation of (2.3) when v and s = d/c are close to

zero. For simplicity, we assume that ¢ is constant and look for a solution of (2.3), in the
domain Q.. = IR, x IR, of the type

4
atcy) = 3 | exp Gy + M40 G003 + qotey),

with g a particular solution of the inhomogeneous system; the generalized eigenvalues Ay,
such that the matrix P(A,ipt) = AA, + ipt Ay - V(A2 + (ip)?) D is singular, determine the behavior
of q as x — e=. The first two eigenvalues are A = Iul, Ap = - Iyl and the other ones have the
asymptotic expansion

2
A3 =-ius - HT (1+s2)v + O(v2), Ag=cv!l+ius+0O(v), v - 0.

In order to get the approximation, we drop A4 (responsible for a divergent behavior when
x — o0), we keep A (the divergence of which will be killed by a regularity condition) and A,,
but we replace A3 by its asymptotic expansion up to the order v. These new eigenvalues are the
roots of the determinant of the matrix Py(A,ip) = A4 +ip Ay - v(1+s2) (in)2D, which is

associated to the system
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Py(3x.0y)q = Ax(€)dyq + Ay(€)dyq - V(1+s2) D aq = f. (2.4)

Consider the problems of solving (2.3) or (2.4) with the BCu | , _,=0; then, the
Fourier technique of [3] allows us to prove that, for sufficiently regular data f, both problems
have a solution with unique velocities u, resp. ug, which belong to H(Q..) * and one has the
estimate

2=0(?),v— 0.

13y(u) Il 26, 2+ lu-ugll 5

This result shows in what sense System (2.4) is an approximation of the Oseen equations; it
remains to establish a bound for the difference e = ug - ug of the velocities satisfying (2.4) with
s # 0 and s = 0. This can be done only in a finite domain, e.g. the unit square 2. We assume
that there exists a unique solution qs € HY(Q)? of (2.4) satisfying (for instance) the BC

u=0 onI" UTy p=0 onl, (2.5)
(this holds if f is regular enough [4]). From the first two equations (2.4), we get an equation
for e ; taking the dot product of this latter with e, integrating over €2, performing some

integrations by parts and using the eqﬁation for ps - po obtained from the last equation (2.4),
yields, with the help of the Cauchy-Schwartz inequality :

Il aye Il L2(Q)2 <s2ll ayus Il 12(Q)2 :
finally, Poincaré's inequality Il el L2(Q)2 <alloyell L2Q)2 o > 0, implies that
Il y(u; - ug) Il 122 + g - ug Il 12Q? = 0O(s?), s —0.

Consequently, the linear PNS equations (2.4) with s = 0 can be viewed, for s2 =0(1) (e.g.
s = O(V)) as an approximation of Oseen's equations (2.3).

* For an open domain Q < IR2, H1(Q) denotes the Sobolev space of functions & — IR which, together with their
first-order derivatives, are in L2(Q).
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3. Admissible boundary conditions

Admissible BC were first introduced within the theory of linear first-order

differential equations system [5], e.g. in our case :
Aq(x) = A (x)Ixq(x) + Ay(x)dyq(x) + Kx)q(x) = f(x),x € Q, (3.1)

where the unknown q and the r.h.s. f take values in IRP and the matrix-valued functions A, Ay
are assumed to be symmetric. With the help of a matrix M defined on d€2 and of the matrix

B(x) = (nAx + nyA)(x), x € 0Q, 3.2)

(n : outward unit normal to dQQ), homogeneous Dirichlet BC for (3.1) are laid down by
requiring that

q(x) € Ker (B-M)(x), x € 9Q. (3.3)

The BC are called admissible iff

{ . the matrix M + Mt is positive semi-definite (M+M! > 0) on 3Q, (3.42)
. Ker(B-M) + Ker(B+M) = IRP on 9Q. (3.4b)

Example : The matrix M = VB2 generates admissible BC.

Finally, the system (3.1) is said to be posirive iff the matrix C = K + Kt - d,A, - dyAy is
positive definite in L.

We quote hereafter, in an informal way, the basic results of [5]. A symmetric
positive system with admissible BC has at least one solution q € LYQP, ie.

th A*pdx = th edx V ¢ € C1(Q)P with e Ker(B+Mt) on 9Q,
H = fe LAQ)P,

where 4" is the formal adjoint of 4 ; moreover, if q is regular enough (e.g. in Hl(Q)p), the
solution is unique and satisfies the BC in the sense of traces. These results led us to consider
admissible BC for (linearized) PNS equations.



Vol. 63, 1990 Caussignac, Gerbi and Renggli 611
4. The incompressible case
It is quite usual to infer BC for nonlinear equations from those of their linear version

(see [6] for instance). Hence, we consider the linearized PNS system (2.4) with s = 0 in the
domain €; introducing the unknowns q = ayu andr = ayv, it takes the standard form (3.1) with

_ v 0
u _ y 0 -v
|{p _451g) 3 00
4={q |- A=\olol By = N ;
. -
0-voO0 0
K = diag [0,0,0,v,V], 4.1)

where /_\x and Ky are the matrices for the corresponding Euler system (v=0), defined by (2.1)
with ¢(x) in place of u. It is easy to check that equations (3.1) and (4.1) yield a symmetric
positive system if div ¢ < 0; unfortunately, this is unphysical since ¢ must mimic u. However,
it is shown in [4] that most admissible BC in the present case lead to the same results we would
obtain if the system were positive.

It is worthwhile noticing that, since the matrix B (3.2) is given by

o-(519)- 3

0O
6) on[" I,

we obtain, from admissible BC for the Euler system generated with the matrix M, admissible
BC for the PNS system with the help of

M= (—|%) onl UT,; 4.2)
of course, written down in function of u,v,p these BC coincide.

In order to describe the physical situation of the flow over a flat plate, we make the
following hypotheses on the given velocity ¢ :

ce CI(Q)2, dive=0inQ, (4.3a)
ecn=0onTy cn>0onT,, en<Oonl_. (4.3b)

First, we want to show that the standard BC (2.5) are admissible. On I'7, one has
B = A, and the matrix
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000-voO
0010 -v
M={0-1000 (4.4)
v00O0O
Ovo0oOO

generates the admissible BC u = 0; on I'y, since B = - A,, we get the same BC by replacing M
by -M. By setting

_ [c 0-1
M={0c O
100

in (4.2), we get the admissible BCu =0onI"_and also p=0on I, . We remark that the
condition u = 0 on I'y does not depend from the hypothesis ¢:n = 0 there.
Other simple admissible conditions for the PNS system are for instance :

cu+p=0,v=0o0onTlT_, (4.52)
u=0onT, , ' (4.5b)

with

_[c 01
M=|0c 0] ineq.(42);
-100

u=0, -p+vodyv=0onTy, (4.6)

with the matrix M (4.4) on I'y and - M on I';. This latter BC is a zero-strain condition,
frequently used for the Navier-Stokes equations.

It is also interesting to look at the BC given by the choice M = ﬁg_z; an easy
computation of the eigenvalues and eigenvectors of B yields :

u+%(Vc2+4—C)p=0,v=00n r_, (4.7a)
u - % (c +Vc2+4) p=0on T, . (4.7b)

5. The isentropic case

This section deals with the linearized version of System (1.3) obtained by adding a
r.h.s. due to inhomogeneous BC, setting p = 1 and replacing u-Vby ¢-V, where
¢ = (c,d) satisfies (4.3); the underlying physics is the isentropic flow of a weakly
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compressible fluid, the density of which (p =1 + pj, p1 << 1) is almost constant. The
resulting system can be put into the standard form (3.1), with the new unknowns q = dyu,
r =dyv, by setting

_ -v 0
u . Ay 0 -4/3v
q = p , AX = (.& Q_) , A)’ — O O ,
q 010
- -V 0 0 0
0 -4/3v 0
K = diag [0,0,0,v, 4/3 V], (5.1)
where the matrices
c 0 1 d 0 0
A=l 0 ¢ o], A=lo0 d 1
1 0 ca? 0 1 da?

are those of the corresponding Euler problem. Here again, admissible BC for the Euler system
onI"_UT,, defined with the help of a matrix M, are also admissible for the PNS system and
given by the matrix M (4.2).

Remark 5.1 : As far as BC are concerned, the assumption of weak compressibility does not
play any role.

Compared to the incompressible case, the compressible problem has a new feature :
there are two regions in the flow; with regard to the PNS equations, one must distinguish
between the "supersonic” zone in which ¢ > a and the "subsonic" zone where ¢ < a. With the
change of variables q = § exp (0x), we get from (3.1) the equivalent system

Ay dx § + Ay dy § + (K+atAy) G = exp (-ax) f. (5.3)

The following conditions are sufficient to insure that the symmetric system (5.3), (5.1) and
(5.2) is positive :

() Forc>a: o>0ifdive=0; o=0%dve jryc050,
Tt min (c-a)
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(i) Forc < a: maxM—<a<min—di—Vc— if div ¢ < 0.
B — 2 (c+a) 2 (c-a)

In the case ¢ < a, div ¢ = 0, admissible BC yield again the same existence and uniqueness
results as for a positive system [4].
We have also to distinguish between two parts of the boundary, namely :

I={xedQlcx)>a)}, I={xedQlcx)<a}l.

Standard BC for the PNS system are given by

cu+p=0,v=0o0onl_ nTy, (5.4a)
u=0,p=0onl"_ nNnTy, (5.4b)
u=0onTly, (5.4¢)
p=0onl nT;; (5.44d)

thus, we see that on the supersonic inflow I'_ N I'y, every unknown has to be prescribed,
whereas on the supersonic outflow I'y N I'y no condition is required. The BC (5.4) are

admissible, given by the following matrices :

c 0 -1
M= 0 c 0 in (4.2),on(IC_uUT,) NT;,
1 0 2/c - c/a?
c 0 -1
M=| 0 C 0 in(4.2),onI"_ NI,
1 0 c/a?
0 0 0 -V 0
0 0 1 0 -4/3v
M= 0 -1 0 0 0 5 (5.5)
\V 0 0 0 0
0 43y 0 0 0

onIlzand- Mon 7.
On the horizontal boundaries, the matrices M (5.5) on I'; and - M on I'; define the
admissible zero-strain condition
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du=0, -p+3vd,y=00nTy. (5.6)
Finally, the matrix M = @ generates the conditions
(ctA)u+p=0, v=0onT NT;, (5.7a)
(and of courseu=0,p=0onI" N TY),

u+(@A_-c)p=0onI, NT; (5.7b)

with Ay = %(C(1+a‘2) ++/c2(1+a2)2 - 4 (c2a2-1).

Remark 5.2 : The BC on (I'_ U ') NT; look like those for the incompressible PNS system,
in this latter case ais infinite and Ts = @. For instance, the BC (5.4a), (5.4d) become (4.5)
and (5.4c) is also admissible when a tends to infinity. However, it is very important to notice
that the condition w =0 on I'_is not admissible. The matrix M defining this condition would
be such that (0,0,1,0,0)t € Ker (B-M) and consequently its third diagonal element should be
equal to - c a2, thus preventing M be positive semi-definite.

Remark 5.3 : Some of the boundary conditions proposed in this paper coincide with results
of (6], where time dependent compressible Euler equations are studied.

References

[1] Anderson, D.A., Tannehill, J.C. and Pletcher, R.H. : Computational Mechanics and Heat
Transfer. New York : Mc Graw-Hill, 1984.

[2] Anderson, J. : Modern Compressible Flow. New York : Mc Graw-Hill, 1982.

[3] Nataf, F. : Paraxialisation des équations de Navier-Stokes. Paris : Rapport N° 173,
CMAP Ecole Polytechnique (1988).

[4] Caussignac, Ph., Gerbi, S., Leyland, P. and Renggli, L. : Parabolized 2D Navier-Stokes
Equations : Some Results for Linearized Problems, Numerical Simulation in the Incom-
pressible Case. Lausanne : Rapport du Département de Mathématiques EPFL (1990).

[5] Friedrichs, K.O. : Symmetric positive linear differential equations. Comm. Pure Appl.
Math. 11, 333-418 (1958).

[6] Oliger, J. and Sundstrom, A. : Theoretical and Practical Aspects of Some Initial Boundary
Value Problems in Fluid Dynamics. STAM J. Appl. Math. 35, 419-446 (1978).



	About admissible boundary conditions for Euler and parabolized Navier-Stokes equations

