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Quantum Monte Carlo simulations of the two

dimensional single band Hubbard model.

F.F. Assaad!

IPS, ETH, Ziirich, Switzerland
(26, III. 1990)

Abstract

We present in detail a version of the ground state algorithm proposed
by Sorella et al. and apply it to the two dimensional single band Hub-
bard Hamiltonian. Performing a Quantum Monte Carlo simulation based
on Langevin dynamics, we study the sign problem. Our findings show that
the average sign decreases exponentially with the inverse temperature. We
equally study the momentum distribution and spin structure of the ground
state. At half filling, we find evidence for an antiferromagnetic insulating
ground state. Away from half band fillings, the antiferromagnetic state is

destroyed leaving place to an incommensurate spin density wave.

! Also at : Institute fiir Theoretische Physik, ETH-Honggerberg, Ziirich.

Introduction

The study of strongly correlated fermion systems has been stimulated by the dis-
covery of high temperature superconductors. In particular, Anderson [1] has sug-
gested that the two dimensional Hubbard model was a good starting point for the
understanding of high temperature superconductivity. In this paper, we report on
Quantum Monte Carlo (Q.M.C.) simulations of the two dimensional single band
Hubbard hamiltonian. At present, no exact analytical solutions are known for the
above mentioned model or related models such as the t-J hamiltonian [2]. Ap-
proximate theories thus have to be tested against numerical simulations on finite
size clusters. There are several ways of performing such calculations. The exact
diagonalization method has been applied to the above mentioned models [3, 4] but

has the major drawback of being limited to very small clusters. Calculations on
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larger clusters may be carried out with Q.M.C. methods. Although appealing, the
Q.M.C. method generates it’s own set of problems such as, up to recently, the onset
of numerical instabilities at low temperatures and the yet unsolved sign problem.
There are two main ways to tackle a Q.M.C. simulation of the Hubbard model;
the finite temperature, and the ground state algorithm. The finite temperature
algorithm is based on the evaluation of the grand canonical partition function and
produces thermodynamic quantities [5, 6]. The ground state algorithm was in-
troduced by Sugiyama and Koonin [7] and later on improved and applied to the
Hubbard model by Sorella et al. [8]. The basic idea, is to filter out the ground state
wave function from a given trial wave function. Both algorithms are subject to the
above mentioned problems. Following ideas proposed by Sorella et al., we present
a way of circumventing the occurrence of numerical instabilities at low tempera-
tures. The unique problem which still continues to plague Q.M.C. simulations of
interacting fermion systems is the sign problem.

In the first section, we present a detailed study of the ground state algorithm.
We have carried out a continuous Hubbard-Stratonovic transformation and sampled
the probability distribution with Langevin dynamics. Another approach consists
in carrying out a discrete Hubbard-Stratonovic transformation which leads to stan-
dard Metropolis sampling techniques [9]. The major issue concerning the algorithm
is the dependence of the average sign on the temperature. Unlike Sorella et al., we
find the average sign to decrease exponentially with growing inverse temperatures.
Our algorithm differs from that of Sorella et al. in the fact that we have not modi-
fied the statistical weight under assumption that the average sign is bounded from
below in the limit of vanishing temperatures.

In the second section we discuss our numerical results. We test the validity
of the algorithm on small clusters and analyse all parameters yielding systematic
errors. We then study the dependence of the average sign on the temperature, on
site Coulomb repulsion, and band filling. Our results show that for certain band
fillings and on site Coulomb repulsions, the exponential decay of the average sign
is slow enough so as to reach high inverse temperatures without being confronted
to a major sign problem. We finally present numerical data on the spin structure
and momentum distribution of the Hubbard model for lattice sizes ranging from
8 x 8 to 10 x 10, on site Coulomb repulsions of U/t = 2,---,4 and band fillings of
p=041,---,1. We have compared our results to a mean field approximation. In
the third section, we draw some conclusions. Preliminary results of this work were
already given in ref. [10]
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1 The Method - Basic Formalism

The Hubbard model we have considered is defined by:

H=-t Z(cz’acj-,, + hec)+U En,-,Tn,-,l (1)

(':J)
g

where 1,7 denote sites on a square lattice, cla, ¢, create and annihilate electrons
with z-component of spin ¢ on site ¢, (z,j) is a sum over next neighbors, and
B == c,t’,c;,,,.. We have adopted ¢ = 1 to set the energy scale, and imposed periodic
boundary conditions.

We evaluate ground state expectations values of observables through:

_ (WlO%) _ | (Ur|e=PHEOe~PHI2| W)
(O)o = m(‘pol‘l’o) = Bl_'oo (UrlePH[¥7) (2)

where |Ug) is the ground state wave function, |¥r) a trial wave function not or-
thogonal to the ground state, and 3 the inverse temperature (imaginary time).
The imaginary time propagators on each side of the observable filter out the exited
states in the trial wave function so as to yield the ground state wave function. In
practice, the right hand side of equation (2) is evaluated at a finite 8 chosen large
enough so that the thus produced errors may be included in the statistical errors.
Such a choice of # depends on the trial wave function as well as on the type of
observable one wishes to evaluate. We denote by |¥;) the eigenvectors of (1) and
by A the energy gap E; — Ey. The right hand side of equation (2) may then be
written as:

(UrlePHI20e~PHI2|G7)
(Ur|e=PH|¥r)
|ao|*(¥o|O|Wo) + eP2/2(apad (9,]0|Wo) + h.c.) + O(e~P*)
|ato|*(Wo|Wo) + O(e=P4) ’
|¥r) = Za«'|‘1’i), a; = (V;|¥7) (3)

If the observable commutes with the hamiltonian, the eigenvectors |¥;) may be
chosen so as to satisfy (¥;|O|¥,) = 0 so that the error is proportional e=?2.
Observables which do not commute with the Hamiltonian have to be evaluated at
larger inverse temperatures since the error is proportional to e=#4/2,

We will first compute the denominator of (2) and then show how observ-
ables may be evaluated. We have used a Trotter decomposition and a Hubbard-

Stratonovic transformation. The aim is to write the complex time propagator as
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a product of exponentials of one body operators which may be integrated. We

furthermore require the trial wave function to be a Slater determinant given by:
[er) =[]l 10) (4)

where c,*,', are electron creation operators. The Trotter decomposition we used
reads :

Sl i (5
[e—A*rT/2e-—ArVe—ATT/2 + O(AT3U2)]L

[e—AfTﬁe—A‘rVe—A‘rTﬁ]L % O[(ATU)z]

where 8 = ATL and T,V are the kinetic, potential terms of (1). The above Trotter
decomposition yields a systematic error of the order of (ATU)?. Precise results are
thus obtained by extrapolating to the limit A7 — 0,A7L = £.

The exponential of the two body operator V is reduced to the exponential of
a one body operator at the cost of an auxiliary field ®. Since we have opted for
Langevin dynamics we carry out a continuous Hubbard-Stratonovic transformation

which reads:
e-vUA'rﬂ.l'n.' =/ do e—¢2/2—4\(§(n1—ﬂl)—#(n1+n1) (6)
V2T

where A = V/ATU and g = ArU/2. Substituting (6) in (5) yields:
(Drle™ [ Wg) = PUNHN2 [[ggle T ol
x (Ur|U4(8,0)|97)(Ir|Us(B,0)|¥r) (7)

where 7 runs from time slice 1 to L, N'()) is the number of spin up (down) electrons
in the trial wave function, [d®] =[], , d®;,/v27 and

L
U‘%(ﬁa 0) = H G_ATTT”e_’\ E,' ‘I’i,rﬂi,te—ArTT/z

T=1

L
Ué(ﬁ,O) = H C—ATT1/26’\ E.. q)‘-fni,ie_ATT1/2‘

T=1

Since the propagator U(II,“)( B,0) is a product of exponentials of one body operators,
the quantity (\I!TIU;(U(ﬂ, 0)|¥7) may be written a determinant of an NT() x NT()
matrix G'W). Assuming for the moment that the product of the up and down spin

determinants is positive definite, we may write:

(Wrle7|Wr) = VN2 [[gg]e=0r(® (8)
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where
Sers(®) = Y ®7./2 - In[det(G'(®, B)) det(G(®, B))],

GID(@,8) = (OlewiyUs (8, 0)¢),)/0).
We evaluate the above matrix elements by introducing a complete set of vectors
i) = ¢}|0) between each time slice.
Gusl®,8) = 3 eHBartot ) ©)
A
X (#|6—ATT/2IZ'1)(2-1 Ié_ATTl’l:g) . (iL—l |6—ATT|Z-L) (iLle-A'rTﬁly) )
(Note: we have omitted the spin indices.) The minus (plus) sign refers to spin up
(down) matrix elements.
Using the above formalism, observables O = O'O! may be evaluated through:

_ J[d®]e= 51 ®(OT))(9)((04) (@)
(O)U - fd[d)]e Ser1(®) (10)

where
(T |Us(8, 8/2)010UIY (5/2,0)|¥7)
(ur|USY (8,0)|9r) '

((0TW))(@) =
For observables of the form

O = Z: CIA,"jCj,

i'j

one has (we omit the spin indices):

((O))(®) = Tr{G™(2,8)0(®,8)}  where

Ousl®,8) = 3 _{ulUs(B, B/2)[i) Ais(i|Us(B/2,0)I1). (11)

Observables of the form
Z CTA(I Z Cf A(r rCJ
yield

((0))(@) = ((0")(@)((0D)) (@) ~ (12)

—Tr{G™(®, 8)0(®, )G (8, B)0D (S, )} + Tr{G™1(8, B)O(3, B)}

where

a

0uu(®,8) = 3 (u|Us(B, B/2)15) AAL. (51Us (8/2,0)|v).

e
i’]l:
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Note that for O = cl¢,cle, equation (12) reduces to Wick’s theorem:

((cheqclea)) (@) = ({chea) (@) {(cles)) (@) + ((chea) (®)({get))(®)  (18)

Observables which do not commute with the hamiltonian (1), have somewhat worse
statistics than observables which commute with the Hamiltonian since in the latter
case the quantity ((O))(®) may be evaluated on each time slice.

As mentioned above, the sampling of the probability distribution e=57(®) was
carried out with second order discretized Langevin dynamics [11, 12]. We consider
the Hubbard-Stratonovic variables ®; , to be time dependent. Their time evolution

is given by the Langevin equation:

O, . (t+6t) = B, .(t) — (14)
8t (BSeff(‘I’) 0Sess(®) ) + V28t i1 ().
2 09®; , B =%, (2) 09, , &;, r=a{") (t+61) ‘

Here, n; -(t) are Gaussian distributed random variables:

(mir(t)) =0
(i ()i () = 67,0080 06i 00

and

1) (t + 6t) = @; () — 6t 05:11(®) + V26t m; -(1)
' ’ 8‘1’,"7 ;=0 r(t) '

Note that the same Gaussian variables are used for calculating @flf) (t + 6t) and
®; ,(t + 6t). The error produced by the above discretization of the Langevin equa-
tion is of order 6t2. In the limit of very small time steps, the random noise (of
order v/8t) greatly dominates the drift term (of order 6t). The drift term in (14)

is calculated using:

0555 (@) _ o o1 0G’

-—-——aq)ir = O -—a;l Te{ (G°) —aq)iﬂ }  where (15)
oG, , i N irre

—"—aq, = £Mu|Us (8, B:-) 5} (i|Us (8-, 0)|v) , B- =7 - AT

The + (—) sign refers to down (up) spin. Observables are measured using:

E

(O)o = lim — Z 1) (®(mébt)). (16)

M—oco M

585
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In practice, a finite number of Langevin iterations are carried out. The thus pro-

duced uncertainty, o(O), may be estimated by:

5(0) = —=| = 3" ((O))2(@(mét)) — (O)3. (17)
N\ &

Here, N is the number of independent values of {({O))(®) along the Langevin walk.

More information on the estimation of the uncertainty is given in [13, 14].

1.1 Numerical instabilities and sign problem

On finite precision machines, an accurate evaluation of the matrix elements

G,.(®,8) (10) becomes increasingly difficult as the inverse temperature is en-
hanced. We illustrate this by considering the special case U = 0. The eigenvalues
of Us(B,0) are then equal to e=#«*) where e(k) denotes the single particle eigen-
values of the kinetic energy. For the two dimensional Hubbard model on a square
lattice, the eigenvalues of U(B,0) range from e #4 to e’*. In a straightforward
calculation of G, ,(®,B) contributions from small eigenvalues of Ug(f3,0) will be
lost in round off errors when 8 gets big. In order to circumvent this problem, a
set of matrix decomposition methods were introduced by several authors [8, 6].
Consider the set of vectors Ug(B3,0)|v), v = 1--- N1, At large B they will all
collapse into the subspace spanned by the set of eigenvectors of Ug(S,0) with the
largest eigenvalues. In order to circumvent this, we split the imaginary time prop-
agation into n imaginary time intervals AB. After each propagation over AfJ, we
orthonormalize the set of vectors Ug(AB,0)|v). The matrix elements (10) are now

calculated using:

Guw(®,8)= 3 (18)

B1 " "BPn—m
V1 Vm

(m|Us (8,8 — AB) (D) Us(B — AB, B — 2A8) (TD):2 -
Us((m + 1)AB, mAB) (TD)2""™ Uy (mAB, (m — 1)AB) (DT)ET - --

(DT);2 Us(2A8,AB) (DT)EY, Us(AB,0)|11)

v3,v2

Here, D is a diagonal N') x NT(!) matrix and T a triangular matrix of same

dimension. T carries out a Gram-Schmidt orthogonalization, and D normalizes
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the vectors. For small values of A3 (we typically used A = 10Ar), the round
of errors in G, ,(®, ) are negligible. Furthermore, the matrix G, ,(®,3) is well
conditioned.

Clearly, the above stabilization of the algorithm makes sense only if the phys-
ical quantities and the Langevin dynamic remain invariant. We define the partial
derivative of G, ,(®, 8) with respect to ®;, where 8, (= 7 - A7) is included in the
interval [mAgB, (m — 1)AJ] by:

Lond®,B) _ 4 3 L0 0a(B, BNV (B O )R, = (19

n0G(2,8) ..
(E 3%, R )W.

Here we have defined:

£ = ((TD)™---(TD)*™)"  and

= (DT, .o(DTYRH)

Since G = L™GR™ and due to the cyclic properties of the trace, the drift term
in the Langevin equation (15) is invariant under the substitution G — G. In the
same way, one can show that the stabilization leaves the quantities ({(O))(®) (11)
invariant.

Up till now, we have assumed that the product of the determinants (8) was
positive for all values of the Hubbard-Stratonovic fields. This assumption is unfor-
tunately not always satisfied. In the latter case, the effective action S.ss(®) (8) is
replaced by:

Sess(® 2‘1’ /2= In | det(G1(@, B)) det(GY(2,5)) |, (20)

and the sampling is done with respect to the probability distribution e=Ses1(®),

Observables are then estimated using:

[[dgle=51Dsign(®)((0))(@) _ O — O~
[ldgle~31s®sign(®) L+ -7

(O)o = (21)

Here,

M
75 = 3 bursign(@(mst))

m=1

= = Zéﬂs.gn @(mst)) {(0))(@(mét))),

m=1

587
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and sign(®) denotes the sign of the product of the two determinants. When the
number of sampled positive configurations is comparable to the number of negative
ones, the uncertainty on (O)y becomes very big due to the uncertainty on Z* —
Z~. Since the uncertainty scales as the inverse square root of the computer time,
simulations become extremely expensive when the average sign (Z*—7Z7)/(Zt+Z")
is small. A reduction of the fluctuation of the average sign may be achieved by
carrying out simultaneously two correlated Langevin simulations [15].
Fortunately, in the half filled band case, particle hole symmetry protects us from

a sign problem provided we choose an appropriate trial wave function. Choosing
|¥7) to be a Fermi sea at half filling,

W)= I <o), (22)

ko
e(k)<erermi

and applying the transformation [16]
Al = (1),  hi=(=1)! (23)

)

on GH(®, B) yields
det(GH(®, B)) = e Lir ¥ det(G1(®, B)) (24)

so that no sign problem occurs. Other trial wave functions such as the antiferro-
magnetic state
I‘I'T) = H CI,T H c}:lIO) (25)
(-15*‘:1 (—1):=—1
equally yield no sign problem. In the non half filled band case there seems to be
no symmetry which protects us from the sign problem.

In the half filled band case, the sign of the individual determinants may change
simultaneously thus producing infinite barriers in the effective action (20). Since
the Langevin walk is capable of jumping over those barriers, ergodicity is satisfied
(see later and [17]). However, when it lands in the proximity of a barrier, the drift
term in the Langevin equation (14) may become extremely large and destabilize the
simulation. When such a situation occurs, we go back to the previous configuration
of Hubbard-Stratonovic fields and carry out the integration with a smaller time
step but with the same set of random numbers. The variation of the time step is
taken into account when computing averages. In the non half filled band case the
same method is applied to stabilize the Langevin walk. The problem of infinite
barriers in the effective action may also be circumvented by performing a complex

Hubbard-Stratonovic transformation which makes them finite [18].
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2 Numerical results.

We present numerical results for lattice sizes ranging from 4 x 4 to 10 x 10 and
at different band fillings. In the first section, we analyse all parameters yielding
systematic errors; in the second the sign problem and in the third, the spin structure
and momentum distribution of the two dimensional Hubbard model. Unless stated

otherwise, the simulations were carried out the paramagnetic trial wave function

(22).

2.1 Sources of systematic errors.

The above described method contains three parameters which produce systematic
errors: the inverse temperature 3, the imaginary time step At and the Langevin

time step 6t. We have analysed their effect on the ground state energy per site:

t
N,

U
Eo = — > (clocio + hoc)o+ N > (ninito. (26)
sites

ites (" J)
L

We have chosen a paramagnetic trial wave function (22) and U = 4. Figure 1
plots the expectation value of the ground state energy as a function of the inverse
temperature 3. Values of 8 greater than 10 are required to stabilize it. The same
qualitative results were obtained with an antiferromagnetic trial wave function (25).
The kinetic and potential energy were found to converge for values of 3 greater than
15.

As expected, the error produced by the second order discretized Langevin equa-
tion scales as 6¢? (figure 2). We have fitted our data to the form

Eo(6t, 8 = 13.75, A = 0.125) = Eg(ét = 0,4 = 13.75, A7 = 0.125) + bs6t* (27)

The coefficient bs; for a 4 x 4 lattice was found to be comparable to that of a 6 x 6
lattice. (4 x4 :bs =3.2+£0.5, 6 x6 :bs =2.8+0.4). The number of hoppings
over the infinite barriers in the effective action per Langevin time unit is shown in
figure 3. Following an argument proposed by White and Wilkins [17], this quantity
should scale as V/6t. Unfortunately, our error bars are too big to justify such a fit.

Finally, the A7 dependency of the ground state energy is shown in figure 4.
The simulations were carried out with values of B and At respectively large and
small enough so as to neglect the systematic errors they produce. We fitted our
data to the form

Eo(A7, B =13.75,6t = 0.01) = Eo(Ar = 0,8 = 13.75,6t = 0.01) + ba, A% (28)
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We obtained for the 4 x4 lattice Eo(Ar =0, 3 = 13.75, 6t = 0.01) = —0.849+0.002,
and for the 6 x 6 lattice Eo(Ar = 0,8 = 13.75,6t = 0.01) = —0.852+0.002. Again,
the coefficient b5, was found to be comparable for the 4 x 4 (bp, = —2.1 £ 0.2)
and 6 x 6 (ba- = —1.9 £ 0.2) lattices. Exact diagonalization yields a ground state
energy per site of Fy = —0.851 for the 4 x 4 lattice at U = 4.

2.2 Sign problem.

As mentioned previously, the quantity det(G1(®, 8))det(G!(®, 3)) is not positive
for all values of the Hubbard-Stratonovic configurations at of half band fillings. A
study of some aspects of the average sign has already been performed by Loh et
al. [19]. In order to get some insight into the sign of det(G'W(®, B)), we write the
determinant as:

det(GMV(®,8)) = 3= (Ur|W,)(Wa|Tr) (1 [U41(8,0)[%5). (29)
¥;,¥,

Here, the sum runs over a complete set of vectors of the N1) particle vector space.
We furthermore require the the states |¥; ) to be eigenvectors of the local particle
number operator n; = c/¢;. The quantity (IP1|U;,(1)(,8,0)[\112) is then nothing less
than the sum over all world line configurations [16] propagating from the state
|¥,;) to the state |¥,). It is known, that a world line configuration has a negative
weight whenever world lines wind around each other an odd number of times [21].
The magnitude of the weight of a world line configuration depends on the values
of the Hubbrard-Stratonovic variables. After a sufficiently large imaginary time
propagation, a world line configuration looses memory of it’s initial state. The
probability of having an odd number of windings per imaginary time interval thus
approaches a constant P. We denote by P(f) the probability of having a world
line configuration with an odd number of windings at imaginary time . From the
above follows:

_NeB)=N_(B) 1 opys
=M@ (a1 (30)

Here N4(f) denotes the number of world line configurations with positive (nega-

S(B)=1-2P(B)

tive) weights at imaginary time 8. The quantity S(3) decays exponentially with
the inverse temperature so that in the limit of large imaginary times the number
of world line configurations with positive weights is comparable to the number of
world line configurations with negative weights. The sign of (¥, |U£(i)(ﬂ, 0)|¥2) de-
pends on whether or not the Hubbard-Stratonovic variables render the total weight

591
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p=0.625,U=4,U=6,and U = 8.

Fig.6 Average sign as a function of the inverse temperature for a 4 x 4 lattice at
p=0.625 and U = 4.

Fig.7 Average sign as a function of the filling for a 4 x 4 lattice at U = 4 and
B = 10.

Fig.8 Upreshotd as a function of the band filling at g = 25.
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of the positive world line configurations, W, (®), greater than that of the negative
world line configurations, W_(®). Since the Hubbard-Sratonovic fields undergo
large fluctuations, we expect the probability that W_(®) dominates W,(®) to be

proportional to N_(8)/(N+(8) + N_(B)). The average sign of det(G')(®,3)) is.

thus expected to decay exponentially with the inverse temperature. If there is no
symmetry which guarantees that det(G'(®, 3)) has the same sign as det(G*(®, 8))
for all Hubbard-Stratonovic configurations, we equally expect the average sign of
det(G'(®, B)) det(G}(®, B)) to decrease exponentially with the inverse tempera-
ture. In the same way, one may argue that the average sign decreases exponentially
with the lattice size.

When the on site Coulomb repulsion U is set to zero, the weight of a world
line configuration is independent of the Hubbard-Stratonovic variables. As U is in-
creased, the inhomogeneities in the Hubbard-Stratonovic variables are emphasized
so that the sign of det(G'(®, 3)) det(G*(®,3)) becomes increasingly sensitive to
fluctuations of the Hubbard-Stratonovic variables. Figures 5 and 6 plot the aver-
age sign as a function of the inverse temperature for different values of the on site
Coulomb repulsion, a 4 x 4 lattice and a filling of p = 0.625. Our error bars are
consistent with an exponential decay of the average sign. Furthermore, the average
sign decreases as the on site Coulomb repulsion U is enhanced. The here presented
results are consistent with those of Loh et al. [19].

The average sign is equally strongly dependent on the band filling. Figure 7
shows the average sign as a function of the filling for a 4 x 4 lattice, U = 4 and
B = 10. The fillings where the average sign is approximately 1, correspond to
band fillings where the ground state of the kinetic energy is non degenerate (that
is p = 10/16 and p = 2/16 for the 4 x 4 lattice). At such fillings, for small to
moderate values of the on site Coulomb repulsion and for inverse temperatures up
to B = 50, the signs of the individual determinants are nearly exclusively positive
for all sampled values of the Hubbard-Stratonovic variables. In order to get some
insight into this situation, we formulate det(G'(®,8)) as the sum over all world
lines if k (fourier) space. (i.e. the imaginary time propagation is done in k space.)
The sign of a world line configuration now depends on the Hubbard-Stratonovic
variables. At U = 0, only one world line configuration, Cy is allowed, namely that
where all world lines move along the imaginary time axis. For small to moderate
values of U, the dominant world line configurations consists of small perturbations
around Cp. When the filling is chosen such that |¥r) is non degenerate with respect
to the kinetic energy, all perturbations around the world line configuration Cj
involve the occupation of exited single particle eigenstates of the kinetic energy.

This isn’t the case when |¥r) is degenerate. Since world line configurations with
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Fig.11 Spin-spin correlation function and structure factor for a 8 x 8 lattice at

a) p=250/64,8=25and U=2 ( Eo=—1.325+0.002, (sign)=0.94+0.03)
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negative weights are included in the set of perturbations of Cy, we expect the ratio
of total positive weights to total negative weights of a world line configuration to
be greater when |¥r) is not degenerate than to that when |¥7) is degenerate. This
qualitatively explains the behavior of the average sign with respect to the filling.
As mentioned previously, simulations get extremely expensive when the average
sign is small. For 8 = 25, figure 8 plots the maximal value of U, Ujpreshold, a$
function of the filling below which one may omit the sign problem (i.e. average
sign greater than 0.7). Note that the considered fillings correspond to fillings where
the trial wave function is non degenerate with respect to the kinetic energy. The
results we now present were all carried out at values of U and p at which the sign

problem was negligible.

2.3 Spin structure and momentum distribution

Confirming results from other authors, [5, 6, 8, 9, 20] we find the ground state
to exhibit long range antiferromagnetic order at half filling and for all considered
values of the on site Coulomb repulsion. Antiferromagnetic order may be detected

through spin-spin correlation functions:

1
N, Z((nf,T - nil)(nﬁﬁﬂ - "i’+13,1)>0- (31)

4(S.(0)S.(P)) =

Figures 9 and 10 plot the above spin-spin correlations for U = 2, U = 4 and lattice
sizes of 8 x 8, 10 x 10. The magnitude of the spin-spin correlations are comparable
for both lattice sizes. In order to determine whether the ground state truly exhibits
long range antiferromagnetic order simulations at larger lattice sizes are required
along with a finite size scaling analysis [23]. The squared magnetization per site,
my = 4(5,(0)S,(0)), is related to the double occupancy of sites through:

2
meq = 1- N N Z(n;’rnal)o. (32)

Since the double occupancy of sites involves an energy gap set by U it is expected
to decrease as U is enhanced and ultimately vanish as /U — 0 where the Hubbard
model reduces to the Heisenberg model. This may be seen by comparing the values
of mg for U =2 and U = 4.

In contrast, the long range antiferromagnetic order disappears when one leaves
half filling. Figures 11a to 11c show spin-spin correlations as well as the magnetic
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structure factor,

8(8) = —— e TN (ng, —nz )(m3, — 3 o (33)

Nsites =+
L3%)

for an 8 x 8 lattice, p = 50/64, U = 2; p = 42/64, U = 3 and p = 26/64, U = 3.
Although reduced in comparison to the half filled band, antiferromagnetic spin-spin
correlations are still present between next neighbors. Long range correlations may
still be seen especially at p = 50/64, U = 2 where there is a distinct antiferromag-
netic correlation between the two furthest points on the lattice. The magnitude of
this correlation is comparable to the half filled band case but is opposed in sign.
At half filling, the magnetic structure factor shows a peak at ¢ = (7, %) which
should diverge with increasing lattice sizes thus reflecting long range antiferromag-
netic order. As the system is doped, the peak at ¢ = (m, ) splits into four peaks
located at wave vectors (7,7 & Aq) and (7 & Ag, 7). As the band filling is lowered,
Agq grows and the magnitude of the peaks decreases. The form of the magnetic
structure factor at off half band fillings is especially subject to finite size effects
due to the incommensurate nature of the spin density wave. Unfortunately simu-
lations on larger lattices and p < 1 were not realizable due to severe sign problems.
The question about the divergence of the peaks in S(g) with increasing lattice size
remains open.
We have equally studied the occupation of single particle states through the
quantity:
il leh e )ob(e — e(k)
S - ek)

Here, (k) = —2t(cos(k,) + cos(k,)) denotes the single particle eigenvalues of the

n(e) (34)

kinetic energy in units of the lattice constant. Figure 12 plots n(e) for p = 1 and
U=2U=4. At p =1, the jump at the fermi level seems to disappear as ap-
propriate for an insulator. For this filling, particle-hole charge-density fluctuations
involve an energy gap set by U and an insulating state is expected. We have com-
pared the Q.M.C. results to a mean field spin density wave approximation which
predicts the opening of a gap A at the Fermi level. The magnitude of the gap is

given by:
U 1

- 2Nsitea 3 (62(];) + A2)%
For a 10 x 10 lattice and U = 4, equation (35) yields A/t = 1.38. The mean

field prediction of n(e) is confronted to the Q.M.C. data in figure 12. Although
meanfield yields a good qualitative fit to the Q.M.C. data, it overestimates the

1

(35)

size of the gap. A renormalized gap of Ag.ymc./t = 1.07 gives a better fit. For an
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8 x 8 lattice at U/t = 2, equation (35) predicts A/t = 0.429 whereas an optimal
fit to the Q.M.C. data yields Agac./t = 0.378. At off half band fillings, and
small to moderate values of the on site Coulomb repulsion, meanfield predicts a
paramagnetic ground state. Figure 13 plots n(e) for an 8 x 8 lattice at various off
half band fillings and values of U. The U = 0 sharp Fermi surface is much less
smeared out by the on site Coulomb repulsion than at half band fillings. Again, for
such fillings, the sign problem prevents us from carrying out simulations on larger

lattices required to establish the existence of discontinuity at the Fermi level.

3 Conclusions

In comparison to the finite temperature algorithm [6], the ground state simulation
method is expected to be more efficient at low fillings since the dimension of the
matrices involved is of NT() x NT()) rather than Nyies X Nyizes- The ground state
algorithm is valid only if one is able to reach high inverse temperatures required to
filter out the ground state from the trial wave function. This implies the capacity for
dealing with numerical instabilities at low temperatures and with the sign problem.
We have shown how to circumvent the problem of numerical instabilities at low
temperatures. As for the average sign, our results show that it decays exponentially
with growing inverse temperatures. However, for band fillings where the ground
state of the non interacting system is not degenerate, high inverse temperatures
may be reached without being confronted to a major sign problem. Unfortunately,
simulations in the parameter range 0.8 < p < 1 and U > 2 were not realizable
due to severe sign problems. The ground state algorithm leaves the freedom of
choosing the trial wave function. Depending on how clever one is at choosing it,
the inverse temperature required to filter out the ground state may be significantly
lowered. This is crucial in view of the sign problem. Very recently, Sorella et
al. have proposed to use a Gutzwiller projected trial wave function and claim
that inverse temperatures of 8 ~ 6/t are required to stabilize the ground state
energy [22]. In summary, our Q.M.C. data supports the accepted picture of a Mott
insulating antiferromagnetic ground state at half band filling. A mean field spin
density wave approximation was found to overestimate the size of the gap at the
Fermi level. When doped, the antiferromagnetic structure is drastically suppressed
leaving place to an incommensurate spin density wave. Unfortunately, the sign
problem prevents us from carrying out simulations on large lattices and off half
band fillings. It remains the most challenging problem of Q.M.C. simulations of
the Hubbard model.
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