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QUASIPARTICLES AND PHOTOEMISSION SPECTRA IN CORRELATED

FERMION SYSTEMS

Peter Horsch
Max-Planck-Institut fir Festkorperforschung

D-7000 Stuttgart 80, Federal Republic of Germany

ABSTRACT

Results obtained for the single-particle Greens function by analytical and numeri-
cal methods are discussed for various models presently under consideration for the
electronic structure of high-temperature superconductors (HTSC). The numerical cal-
culation of photoemission spectra is performed for small systems by using the Lanczos
method.

For the Emery model (extended Hubbard model for the CuO2-planes) photoemis-
sion and inverse photoemission spectra for the insulating (undoped) and for doped
cases are discussed. High-energy satellites and new low-lying excitations in the charge-
transfer energy gap appear as a consequence of the strong Coulomb correlations on
the Cu-sites. These low-energy states appear to be responsible for conductivity and
superconductivity in hole-doped HTSC’s. The atomic character of these states and
their spin-correlations is examined.

The relation to the one-band Hubbard and the t-J model is reviewed and a detai-
led discussion of the spectral functions for these models is presented. In particular
we investigate the effect of the next-nearest neighbor hopping terms which appear in
order t2/U and which are frequently discarded in the derivation of the t-J Hamilto-
nian. Supercells up to 18 sites are studied numerically and the fundamental difference
between one and two dimensions is elucidated. In 2D we find evidence for a coherent
quasiparticle band of width 2J with a dispersion relation Ej ~ %(cos k;+cosky)? and
S = 1/2, which emerges at the low energy edge of the otherwise incoherent spectrum.

Finally we compare the single-particle excitation spectrum of the t-J model with
the low-lying excitations of the Emery-model.
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INTRODUCTION

Excitation spectra of strongly-correlated electronic systems are even more difficult
to calculate than ground state properties. In such cases the problem is often first
simplified by a further reduction of the model Hamiltonian, and (or) by searching
for reasonable approximations. The method of exact diagonalization of finite clusters
can be of great value in this process, as approximations may be more rigorously te-
sted than is otherwise possible. We present here calculations of the single particle
(hole) excitation spectrum of extended Hubbard models but also for the t-J model.
This provides a direct comparison of the physical content of these models and actual
photoemission and inverse photoemission spectra (PES) of high-temperature super-

conductors (HTSC).

Considerable insight into the electronic structure and the nature of the charge car-
riers in HTSC comes from various types of photoemission and inverse photoemission
experiments ! . Such experiments showed that the states close to the Fermi level in
the metallic samples have strong oxygen character, i.e. additional holes go essentially
on oxygen. Recent investigations of the O 1s absorption edge ?* showed that the
oxygen orbitals contributing to these states have 95% p, ,-symmetry, with x and y in
the plane * . By angle resolved photoemission in superconducting Bi;CaSr2Cu204
even a band crossing the Fermi level could be resolved #* . A Fermi edge has been
seen by several groups, which has subsequently been interpreted as indicating Fermi
liquid behaviour. A further success of this class of spectroscopies was the observation

of the superconducting gap by high-resolution UV-photoemission © .

The theoretical difficulty with HTSC’s is their closeness to Mott-Hubbard insu-
lators. The undoped reference materials such as La;CuO4 and Y Ba;Cu3Og are
antiferromagnetic insulators "® . Standard bandstructure calculations predict metal-
lic behavior instead, with no tendency towards antiferromagnetism ? . Bandstructure
theory also fails to explain photoemission, e.g. satellite structures at high energy,
because the single particle picture no longer provides a valid description. This is well
known for the transition metal oxides 1° , and suggests that the underlying physics
has certain similarities. Under these circumstances it is evident that electronic corre-
lation effects must be taken into account properly to achieve an understanding of the
electronic properties of these materials. Due to the complexity of the many-body pro-
blem at hand present theoretical studies of HTSC’s are still limited to simple models
for the electronic structure.

The 3-band Hubbard (Emery) model !! which includes both Cu and O degrees of
freedom is expected to contain the features discussed above. There is still controversy
whether the 3-band model can be reduced to an effective one-band model, which
describes the physics at low energy in the doped case. Zhang and Rice !? suggested
that a local singlet formed by a hole on Cu and a ﬁlopant hole distributed over 4
neighboring O(p,) orbitals leads for certain parameter choices again to an effective
single band model.



Vol. 63, 1990 Horsch 347

There seems to exist agreement that the magnetic properties of the undoped system
are well described by the isotropic spin-1/2 Heisenberg model ** , viz. the atomic limit
of the 1-band Hubbard model at half-filling. This is a direct consequence of the strong
correlations on the Cu-sites, that is the stabilization of the Cu d®-configuration. The
fact that doping destroys long-range antiferromagnetic order at rather low concen-
tration of holes (3% in La;_,Sr.Cu0,) is a direct indication of the strong coupling
between the holes and the Cu-spins. I discuss here the reverse question, namely the
effect of the spin-system on the nature of the carriers. That is the spectral function
of a hole in an Heisenberg antiferromagnet (t-J model).

The method used to calculate the spectral function is a generalization of the re-
cursion method of Haydock, Heine and Kelly * based on the Lanczos algorithm, which
has previously been used in a many-body context by Gunnarsson and Schénhammer °
and others 11718 Tt js remarkable that the Lanczos method retains its good con-
vergency known for the lowest eigenstates also for rather complex spectra as in the
case of the Emery model. This provides a direct comparison of the physical content
of these models and the outcome of approximation schemes.

This contribution is organized as follows. After a description of the numerical
approach to the calculation of spectral functions, I consider the photoemission and
inverse photoemission spectra obtained for the 3-band model. Particular emphasis
will be put on the characterization of the low-lying excitations in this model. The
next topic is the spectral function of a hole in the t-J model. Finally I conclude by

comparing the low-energy physics of the Emery model and the excitation spectrum
of the t-J model.

CALCULATION OF THE SPECTRAL FUNCTION

The spectral density of the single-hole excitations may be defined as

Ako(0) = 3= 2 [Wm(N = Dlarelbo(N)6(w = Bal) + En(¥ = 1) (1)

Here the operator ai, annihilates a particle with momentum k and spin &, |to(NV))
is the ground state eigenfunction of an N-particle system, and |¢(N — 1)) is an
eigenstate of the (N-1)-particle system, which have energies Eq(N) and En, (N —
1), respectively. An analogous definition applies for the particle spectral function.
Naturally momentum conservation restricts the possible final states |4, (N —1)) which
may contribute to the spectral function. The hole spectral function may be rewritten
as imaginary part of the single-particle Greens function:

1
——|uo(N — 2
sV = D), (2)
where |ug(N — 1)} = apo|to(N)), and E = w — Eo(N) is the excitation energy
measured from the ground state energy of the N-particle system, and § — 0. In

g Tt = %Imwo(zv _ 1)
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practice a finite value of § leads to a useful smoothing of the spectra, which would
otherwise consist of a set of spikes due to the relatively small number of k-points used.

The desired expectation value is readily calculated iteratively by using the Lanczos
algorithm to generate a basis in which the Hamiltonian is tri-diagonal. To begin
with the N-particle ground state eigenvector |¢o(N)) is calculated using the standard
Lanczos technique. Then a particle is annihilated in this state in a fashion which
may depend on the experiment which is being mimicked when there is more than
a single site per unit cell. This new (N-1) -particle state is then expressed in the
appropriate basis, and the problem of calculating the propagator has been reduced
to the evaluation of the expectation value of the matrix (H + z)~! in this state
|lug(N — 1)). The desired expectation value may be found by renewed application
of the Lanczos algorithm, with the starting vector given by |ug(N — 1)). After M
Lanczos iterations, an M dimensional tridiagonal representation of the Hamiltonian
is generated. The coeflicients of this matrix may then be used in a continued-fraction
expansion '* of the inverse (H + z)™1, or equivalently this expectation value may be
expressed in terms of the eigenvalues and eigenvectors of the (small) M-dimensional
tridiagonal matrix. The latter approach is to be preferred if frequency integrals over
the density of states are desired.

EMERY MODEL

The bandstructure of a typical HTSC !° looks rather complicated, nevertheless
essential features can be expressed in a simple 3-band tight-binding model 2° . The
problem is thought to simplify firstly because there is only one electron per CuO;
unit cell missing to fill all bands. Secondly the largest overlap is between Cu(d,2_,2)
and O(pe)- orbitals in the Cu-O planes. These orbitals have a relatively small energy
separation € = €, — €4, leading to strong covalent splitting of the corresponding bands.
The resulting bands form the top and the bottom of the band complex, and the
topmost anti-bonding band is half-filled. Apart from the bonding and antibonding
band there is a nonbonding band which is dispersionless as long as the direct hopping
matrix element ¢,, between oxygens is zero.

The Coulomb interaction is characterized by 3 terms, a Hubbard repulsion Ug(Uy)
for two holes on Cu(O)-sites, respectively, and a Coulomb repulsion V' = U,q4 between
nearest neighbor Cu-O pairs. This model, which is also known as Emery’s model ? ,
is able to describe a variety of situations, e.g. insulators with Mott-Hubbard and
charge-transfer gaps.

1
H = Zeirjaj:o'a'j’o + § Z Ui,jni,o'nj,a" (3)

i,5,0 t,5,0,0’

Throughout this work we use the hole picture, i.e. the a,?,'o are creation operators
for holes in copper 3d,2_,2 or oxygen 2p,(2p,) orbitals, respectively, and n;,, are the
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corresponding particle number operators. We use particle with the same meaning as
holes. The vacuum state has no holes, and corresponds to Cut and 0%, i.e. all
3d and 2p states occupied. Besides the site diagonal terms (¢;;,U;;), i.e. (€q,Us)
and (ep,Up), we may also include the nearest neighbor repulsion V = U, 2! . The
hopping matrix element ¢;; = t,4 = 1 is taken as unit of energy, and the appropriate
phases are taken into account according to the symmetry of the wave functions. In
certain cases also the hopping matrix element #,, between neighboring oxygen sites
is taken into account.

SINGLE-PARTICLE EXCITATIONS OF EXTENDED HUBBARD MODELS

There are a wide variety of experimental probes of condensed systems (XPS, UPS,
BIS, EELS, etc.) ! for which a theoretical description may be formulated simply in
terms of a single-particle (-hole) propagator. In the particular case of transition metal
oxides, these measured excitation spectra cannot be understood fully using conven-
tionally calculated band structures. These discrepancies may however be understood
to arise from correlation effects which are not properly treated in single particle band
structure calculations. These features may most simply and successfully be handled
within an impurity model !° , where a single metal ion coordinated by the appropriate
ligands models the crystal. This approach has the advantage of being simple enough
to allow for a realistic treatment of many atomic orbitals with crystal-field effects etc.
On the other hand, there are interesting questions concerning for example quasipar-
ticle dispersion, i.e. width of bands, which cannot readily be considered within the
impurity approach.

The model calculation presented here may be considered as a step from the impurity
problem toward the crystal. Even with the restriction of the model to only a single
orbital per site, the practical limit is at present reached with a cluster of only 4 CuO,
units. This is a rather severe limitation because the discrete nature of the spectra of
finite systems may cause difficulties in the interpretation of the calculated spectra.
This problem is at least partially overcome through the use of modified periodic
boundary conditions 22:2% , This consists of the inclusion of complex phase factors
exp(i¢) when a particle crosses the boundary of the cluster and enters again at the
other side. Through this device it is possible by varying the angle ¢ to alter the set of
allowed single particle momenta continuously. The accompanying energy shifts result
in a filling in of the calculated spectra.

We begin with a qualitative discussion of the spectral function and of the main
changes expected from correlation effects on the large energy scale. Figure 1(a) gives
a sketch of the density of states for the 3-band model. For the undoped system the
antibonding band is half-filled, that is the bandstructure is that of a metal. If we
include the large Coulomb correlation on Cu this band is expected to split, forming
a lower and upper Hubbard band (Fig. 1b). These ’bands’ correspond to transitions
d® — d® and d° — d*°, respectively.
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(a) B (b)
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Fig. 1:

(a) Sketch of density of states for the 3-band model. The antibonding band is half-filled
in the undoped case (d°p®). The nonbonding band (NB) is dispersionless for t,p, = 0.
(b) Sketch of Photoemission (shaded) and inverse PES in the presence of strong cor-
relations on Cu (large Ug). The antibonding band is split into a lower and upper
Hubbard band as a result of correlations. In the case Uy > € shown here the lowest
particle-hole excitations are across the charge transfer gap Ecr.
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Fig. 2:

Photoemission spectra for the parameters ¢ = 2.0, Uy = 6.0, U, = 3.0, Upq = 0.0,
with t = 1.0 taken as the unit of energy. Figures 2(a,b) show PES and inverse PES,
respectively, for the undoped initial state. Figs. 2(c,d) represent a repetition of the
same calculations starting from an initial state with one eztra hole, which implies a
doping concentration of 25%.
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The d® final state (2 holes on Cu) is shifted by an energy ~ Uy. Such a spectrum is
characteristic for charge-transfer insulators 1%-? with a CT-gap Ecr.

Figure 2(a,b) shows typical photoemission and inverse photoemission spectra (PES)
starting from the undoped ground state !®* . The parameters chosen are ¢ = 2.0,
Ui = 6.0, U, = 3.0, Upg = 0.0, with ¢ = 1.0 taken as the unit of energy. All energy
scales must be multiplied by ¢,4 ~ 1.5¢V to have energies in eV. This parameter set is
representative for the values found in the constrained-density-functional approach 24 .
The existence of a gap between the top of Fig. 2(a) and the bottom of Fig. 2(b) is
consistent with an insulating ground state at half-filling, as expected. The structures
B and C in PES (2a) derive from the nonbonding and bonding bands, respectively.
A sharp and well separated d° — d® satellite appears only for larger values for Uy
(see Fig. 3(b)). For the parameter set of Fig. 2 a more complicated structure D,E,F
results due to a mixing with other final states, e.g. d'%p*. This actually shows that
the ground state fluctuates between d°p® and d'°p® (< ng >~ 0.7 holes).

The most interesting feature, however, are the low-lying excitations A which have
no correspondence in the bandstructure, and appear as result of correlations. This
also implies an important modification of the picture as sketched in Fig. (1b). We
will discuss these states below.

The most notable change in spectra (2c) and (2d) of the hole-doped system is the
appearance of states in the inverse PES within the energy region corresponding to the
gap at half-filling shown in Figs. 2(a) and (b). The emergence of these states upon
doping is actually seen e.g. in XAS-experiments 2 . The existence of a pseudogap
between these states and the upper Hubbard band H sets a lower limit for e.

1.2 12 ¢
E (a) E (b)
10 £ 10 £
> L -
= : 9__48
2 8 F 8 é‘ d _""d
2z 2 3
: |/
L A .SE'

Fig. 3:
(a) Photoemission spectrum as 2(a) in comparison to a PES (b) where Uy was in-
creased from 6 to 12. All other parameters as in Fig. 2.
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A further possibility for this type of calculation is illustrated in Fig. 4, where
another example of an inverse photoemission spectrum for a hole-doped ground state
is shown. In distinction to the previous case, electrons are now injected on Cu-sites
or alternatively on oxygen-sites by an appropriate definition of the creation operator
af_ in the Greens function (2). The oxygen spectrum, Fig. 4, is related to an Ols
absorption spectrum (XAS) 2% . It is evident that the upper Hubbard band has some
oxygen character, because in the ground state < ngy >~ 0.7. The ’oxygen related’
gap states are strongly hybridized and have considerable Cu-character. Evidence for
such a strong hybridization of the states close to the Fermi level has been found in
recent photoemission experiments of the Bi,Sr;CaCu3;0s materials 2° . We also
mention that the weights in a PES depend sensitively on what linear-combination
e.g. of O-orbitals in a unit cell is chosen in the definition of a;cl'.

30
25 f

20

Intensity

Fig. 4:
Inverse photoemission for a hole-doped ground state. Electrons are injected on Cu-
sites (solid line) or on O-sites (dashed curve). Same parameter set as for Fig. 2.

LOW-LYING SINGLE PARTICLE EXCITATIONS

A particularly interesting feature in Fig. 1 is as already emphasized the appearance
of the low-lying excitations (A). They have no explanation in the bandstructure fra-
mework. In order to characterize these states we calculate the local singlet and triplet
correlation functions

Ca = Z < "/)j-i"/’si > (4)
Ce=)  <yfidu >, ()

1
i = —=(dit Py F dy P 6
¥ \/i( t£i) F diy T)? ()
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where the —(+) sign refers to the local singlet (triplet). Here, the operator P*
creates a hole in a symmetric linear combination of oxygen orbitals around a Cu site,
i.e. the symmetric orbital has the same symmetry as d,:_,2. For the lowest final
state A (Fig.2) we find a large singlet correlation C, and almost vanishing triplet
correlation function (Fig. 5), that is a strong antiferromagnetic correlation between
an oxygen hole and its Cu-neighbors. Similar results for C, have been obtained by
finite-temperature Monte-Carlo calculations 26 . These results support arguments
given by Zhang and Rice !? and also by Eskes and Sawatzky 27 . They argued that
the singlet state

1
V2

formed by two holes in a CuOy-cluster for Uy 3> ¢ > t and which is separated from
the triplet and nonbonding states by

¥0 >= —=(Pfdf - Pfdf)o> (7)

2 2

t t
Ba=-8 (52 + %), ®)

should also form the low-lying excitations of the CuO,-planes. Equation (7) may also
be seen as Heitler-London limit of a covalent bond

b
Poonl0 >= (a dfdf + E(P;“d;r — Ptdf)+ec P;Pj) 0> (9)

formed out of the d;z_,: and the corresponding symmetric oxygen orbital.

20

Cs,t

1.5 1
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05 &

-
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NUMBER OF ADDED HOLES
Fig. 5:

Local singlet (C,) and triplet (C,) correlation functions in the ground state of the
Emery model with 0,1, and 2 additional holes. Parameter set as for Fig. 2.
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Doping introduces holes into these low-lying states. This leads to a strong suppres-
sion of the antiferromagnetic order between Cu-sites,. which may be measured e.g.
by the spin-spin correlation function between nearest neighbor Cu-sites

1 z — Aoz —
01 = W Z < Scu(ri + 6)501,,(7'1‘) > (10)
1,6
1 . rer | B e oz (=
Ca =5 D < S&u(Fi +8) no(F +8/2) Sz.(7:) > - (11)
%,0

Here § connects nearest neighbor Cu-sites. The second CF C is particularly inte-
resting because it measures the spin-correlation function between two Cu-neighbors
only when an oxygen hole sits in between. With one additional hole, corresponding
to a doping concentration of 25%, C; is strongly reduced, yet still antiferromagnetic.
C; on the other hand is ferromagnetic 17 , that is the oxygen hole tends to align it’s
neighboring Cu-spins ferromagnetically when it moves through the crystal. Note that
the correlation between Cu and the spin of the O-hole is antiferromagnetic, due to
the singlet formation. This feature is similar to the frustration model of Aharony 2% ,
albeit the size of the local ferromagnetic correlation is much smaller than in their
model 7 | which does not allow for hybridisation and the motion of the carriers.

EFFECTIVE HAMILTONIAN FOR THE STRONG CORRELATION LIMIT:
t-J MODEL

It was emphasized by Anderson that the low-energy physics of the CuQO;-planes in
high-T,-superconductors is contained in the single-band Hubbard model:

H=—-1 Z (c;*:ac_;,,, + c;-':ec,-,,) +U Zni,Tni,l- (12)
(i,3) i
The t-J-model is derived from the Hubbard Hamiltonian in the limit ¢/U < 1. By ca-

nonical transformation doubly occupied configurations are eliminated 29:3%:3! leading
to the following Hamiltonian up to order ¢2/U

t2
_ E: + ZZ + 4+ ot . :
ij,0 i 6¢

+C;_+.51°3!.1°J'+6'1CJ‘T + c;'l}cﬁalcjlcﬂ&'T),
where j + 6§ and j + &' are nearest neighbors of j, respectively. It is understood here
that creation and annihilation operators are restricted to the space without double
occupancy. The t?/U-terms describe a hop from j+6 to j+§' via a virtual intermediate

state with a double occupancy at j. The t-J-Hamiltonian with J = 4t? /U follows from
the 2-site contributions (§ = §') after rewriting in terms of spin and number operators.

HtJ = —-tzc;-tucj,a + JZ (§t . g] - 2‘—41}1) . (14)
tJ (4,3)
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The 3-site terms (§ # §') only contribute in the presence of a hole. These terms are
frequently neglected, which is a valid approximation close to half-filling when one is
interested in e.g. the ground state energy, where the corrections are of the order §,J
with 65 being the concentration of holes. Yet for our problem, i.e. the propagation
of a hole, it is not at all obvious that they can be neglected. This is easily seen when
acting with the 3-site terms of Eq.(3)

2
%) tE:E: + +
B =-7 €i+6,0M30Ci+8' 0 ~ €j46,5%,5%0Ci+8 o (15)
jo 876

onto the Néel-state with a single hole. The effect of the first term of Hf,s) is to
propagate the hole on it’s sublattice and thereby leaving the Néel order unchanged!
The second term describes also a next-nearest neighbor hop but with an associated
spin flip.

Zhang and Rice 1% argued that the low lying excitation spectrum of the Emery
model ! | which gives a more realistic description for the electronic structure of the
CuOgz-planes in HTSC’s, can be mapped on the t-J-model. This correspondence is
considered valid in the limit that Uc, and the level spacing € = ¢, — eq between
Cu(d;2_,2) and O(p,) orbitals is large compared to the hybridisation ¢p4. In this
limit the superexchange is given by

. 1 1
—_pdf - 16
J 62 (Ud+6)’ ( )

while the hopping matrixelement describing the motion of a singlet is of the order 12

t2
b s P (17)
€

An alternative derivation of a generalized t-J model has been proposed recently by
Ramsak and Prelovsek 32 .

We note that the upper and lower Hubbard band of the effective single-band Hub-
bard model corresponds to structures (A) and (H) in the spectra of the Emery model.
The effective U being of the order of the charge- transfer gap. We will return below
to the question of the equivalence of the low-lying excitations of the Emery model
and those of the t-J model.

SPECTRAL FUNCTION IN ONE DIMENSION

The spectral function for a hole moving in a classical Neel-state (J=0), that is mo-
ving via the restricted hopping only, has been worked out by Brinkman and Rice *? .
The single particle Greens function for this case

1/w

(18)
1- &l - y/i-(-D&

G(w) =
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describes a k-independent continuum, i.e. the Greens function in real space is given
by G;j(w) = 6;jG(w). In 1D, i.e. the number of nearest neighbors is z=2, their
retraceable path approximation gives a rigorous result for a hole moving in a classical
Neel-state.

The inclusion of J within the same framework 3* yields in 1D a k-dependent defor-
mation of this continuum

1
J cos 2k + /(w — J cos 2k)? — 412 ’

G(k,w) = (19)

which results from the spin-flip terms in the Hamiltonian (15). The edge of the
continuum is at wE = +2t 4+ J cos 2k neglecting the Ising part of H; which leads
merely to a shift of the edge in one dimension. We note that in this approximation
the width of the dispersion is overestimated by a factor 2 as compared to the numerical
result in the complete Hilbert space 3° .

To illustrate the importance of the 3-site terms (14) we compare in Fig. 6 the results
for the lower edge of the continuum for 3 cases: the 1-band Hubbard model, the t-J and
the t — J*-model. The latter model includes the 3-site terms. The inclusion of these
terms improves the quantitative agreement with the Hubbard model significantly. Yet
as the dispersion is not significantly changed by including these terms, they seem not
to be particularly relevant for the propagation of carriers.

‘25r/__. . ] 11
. 7'
< /
= wy5l A 73
E
£ d
3
=451 X
| i |
0 /2 T
k

Fig. 6:

k-dependence of the state with lowest energy in one dimension (N=8) for various
models: (1) Ising ,(2) t —J, (3) t — J*, and (4) the single-band Hubbard model. The
energy for J=0 was subtracted for each k-value to account for finite size effects. The
difference is given in units of J, which was 0.2 in these calculations.
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We will not describe here the interesting changes of these continuous spectra when
one starts from the exact singlet ground state as initial state in (2) instead. Numerical
results for the k-dependence of these spectra are given by Szczepanski et al 35 .
Analytical studies on the role of zero point motion in the ground state have been
performed by Brenig and Becker 3¢ and by Ziegler and Horsch 3% .

SPECTRAL FUNCTION IN TWO DIMENSIONS

The density of states A(w) of a single hole in the t-J model for J = 0 is shown in
Fig. 7. The Néel state has been taken as initial state. Brinkman and Rice predicted
a narrowing of the band for this case, as compared to e.g. the motion of a hole
in a ferromagnetic background. The lowest spin-1/2 states lie at wy ~ —3.45¢ for
N=16, which is very close to the band edge wy = —2v/3t in the retraceable path
approximation Eq.(18). The band tail extending to —4t is formed by high spin states,
which have small spectral weight.

0.3F
302}
<
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Fig. 7

Density of states of single hole in a classical Neel-state in 2D. A(w) was calculated in
the t-J model for J=0 numerically for a 4 x 4 unit cell. The arrows indicate the edges
of the Brinkman-Rice continuum at w = +2+/3t.

The S = 1/2-states become lowest when the antiferromagnetic coupling between
the spins exceeds a critical value. Exact diagonalization studies showed the existence
of a critical value of J. for finite systems 373® above which the fully spin-polarized
state, which is stable according to Nagaoka’s theorem *° in the limit J = 0, becomes
unstable. For 16 sites the ferromagnetic state becomes unstable for J7*" ~ 0.06, while
above J*** ~ 0.075, the ground state already has spin S = 1/2. As an estimate for
the thermodynamic limit one finds J, ~ 0.005 when neglecting H#. ** That is, in the
physically interesting regime the low-energy states have low spin (5=1/2).
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Fig. 8

Spectral function A(E,w) at k= (3, %) for a single hole inserted into the exact singlet
ground state of the Heisenberg antiferromagnet in 2D (N = 4 x 4 and J/t=0.2).
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Fig. 9:

Momentum integrated 3pectfal function (density of states). Same parameters as Figure
8.
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A different picture emerges if one considers the spectral function of a hole moving
in a spin fluctuating background ¥ for finite J 1*** . A typical spectrum for A(k,w)
at k = (%,%) is shown in Fig. 8 for N = 16. The form of this spectrum with a
peak at the low-energy side of a continuum of width 7t is similar to spectra at other
k-values for N = 16 and N = 18, except for those at the special points £ = (0,0) and
(m, 7).

The momentum integrated spectral function starting from the singlet ground state
of the Heisenberg model is shown in Fig. 9. The set of peaks, which arise from
different k-values at the bottom of the continuum, appear well separated from the
incoherent part of the spectrum. The separation is of the order of 2J and might
be related to a density of states effect of the spin excitations as suggested by Kane
et al. 1 The depletion of A(w) in the interval 0 < w < 2t is already present for
J — 0 and is a signature of the singlet ground state. It is not seen in calculations
starting from the classical Neel-state. The peak at w ~ 1 stems from the spectrum
at k = (m,7). The dispersion of this quasiparticle (QP) band is drawn in Fig. 10
for systems with N = 16 and 18 sites and different values of J, after subtracting
a momentum independent, but J-dependent constant Ejs. The lowest energies are
found close to the Fermi surface of the noninteracting case, i.e., k= (32'-, %) and (r,0).

The center of the QP band, i.e., the mean of the QP energies at k= (m,7w)and (3,3
for 16 sites, is given by Ep(J) = —3.28 + 5.09 J%8! for J between 0.04 and 0.5. A
very similar dependence is found for the 18 site system. The solid line in Fig. 10
shows the function

E;=1J %(cos k; + cos ls:,;,)2 —1f. (20)

The form of this dispersion wj is related to an effective next-nearest neighbor hop-
ping. The dependence of the QP bandwidth W on J is more accurately described
by W(J) = —0.23 4 2.66 J°-%? for 16 sites and J between 0.04 and 0.5. The negative
intercept indicates two conflicting mechanisms: (a) the coherent motion via spin-flip
and (b) higher order processes in the hopping 42 . For larger values for J the spin-flip
process is dominant. The “reversed” dispersion is actually observed for J < 0.06, as
well as in the pure Ising case. We note that the uncertainty in both the choice of the
upper limit of the QP dispersion and the J-dependence of the QP bandwidth made
a reliable establishment of the behaviour in the thermodynamic limit impossible. On
the basis of our data we therefore cannot decide, whether the bandwidth is linear in
J or obeys a sub-linear form as proposed by Gros and Johnson. 4

Our finding of a well defined peak at the bottom of the continuum confirms the
dominant pole approximation in the work of Kane, Lee and Read %! in their extension
of the approach of Schmitt-Rink et al * . The emergence of undamped low-energy
excitations may be understood as consequence of the string energy associated with
the motion of a hole in 2D, which survive when spin-wave excitations are included.
Surprisingly their perturbative treatment about the Ising limit, i.e., considering the
anisotropy a = J1/J* as small parameter, gives the proper width for the quasiparticle
band at the isotropy point (oo = 1). In the retraceable path approximation one obtains
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the same dispersion relation, yet the width is overestimated by a factor of 2, as in
1D. We emphasize that the spectral weight of the quasiparticle peak is large over
the whole Brillouin zone except at the special points k = (0,0) and (m, ) where the
weight is rather small and other states dominate the spectrum.

We finally mention that the features of Fig. 8 in particular the well separated
quasiparticle peak, are hardly changed if we perform the same calculations for the
XY-Hamiltonian.

() {0,0) = (T,0) (T,m)

Fig. 10:

The dispersion of the quasiparticle peak in the spectral function (2D) is plotted along
the principle azis of the Brillouin zone, after subtracting a momentum independent
constant Ep and normalization by J. The numerical results for N=16 and 18 sites
are included for two different values for of the interaction strength J/t=0.2 (0.4). The
dispersion Eg , Eq. (20), is drawn as solid line.

EQUIVALENCE OF LOW-LYING EXCITATIONS OF THE EMERY MODEL AND
THE t-J MODEL.

According to Zhang and Rice the separation between singlet and triplet excitations
should persist in the CuQy-lattice. Recently Prelovsek and coworkers 32 have sup-
ported this point of view by studying small clusters. If we assume this to be the case,
then we expect that the singlet states will form a incoherent band of width 7t and a
quasiparticle peak at the low-energy side of this continuum as in the t-J model. This
structure should be still separated from the triplet excitations.

Numerical studies are still limited to supercells with 4CuO;-units which corre-
sponds to a 4-site t-J model. The low-lying excitations in the Emery model have
been identified according to their singlet and triplet character. We find that the
singlet structures are below the triplet excitations and there exists a one-to-one cor-
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respondence to the spectra of the t-J model for the different k-values. To be more
specific, for e.g. k = (m, 0) there are only two peaks in the t-J model for N = 2 x 2.
These peaks are separated by an energy of Tt, this is by coincidence precisely the
width of the continuum for the larger system (N = 4 x 4) in the t-J model. The
corresponding low-energy structures in the Emery model have singlet character and
are below the triplet states.

The correspondence is clear for large values for U; and ¢ but seems to persist into
the realistic parameter regime. We finally mention that finite ¢,, does not destroy
this result. Actually the singlet is further stabilized, which has also been reported by
others *° .

SUMMARY

The most notable structures in the photoemission spectra of the Emery model
are besides the satellites at high energy the appearance of low-energy states below
the band-like states (Zhang-Rice singlet). Occupation of these states leads to the
frustration of antiferromagnetic order between Cu-sites. In the hole-doped systems
these states appear in the charge-transfer gap and are seen in inverse PES. Remnants
of the charge-transfer gap are expected to remain as pseudo-gap for sufficiently large
p-d level separation. The spectra calculated for realistic parameters also show that the
states in the CT-gap are strongly hybridized, i.e., additional holes do not exclusively
reside on oxygen. We finally mention that the energetic position of the satellites
calculated for parameters taken from the constrained-density-functional approach are
in good agreement with experiment.

New puzzles are posed, however, by the recently found electron doped supercon-
ductors with CuO;-planes *® , e.g. Ndy_,Ce,CuOy. In the framework of the Emery
model these electrons would go into the upper Hubbard band (H in Fig.2) correspon-
ding to the formation of Cut. The edge of the Hubbard band would be pinned to
the Fermi level. The low-energy states found in inverse photoemission (XAS) in these
compounds 2 could be taken as confirmation of this picture. Yet these states have also
been interpreted differently 2 , and furthermore there is still no clear experimental
evidence for the substantial increase of Cut. This might indicate the necessity to
extend the model.

The motion of a carrier (hole) strongly interacting with the spins of a Heisenberg
antiferromagnet was studied in detail in the case of the t-J model. Our central finding
is a coherent quasiparticle band with dispersion E ~ %(cos ks +cosk,)? and § =1/2,
which emerges at the low-energy side of a broad incoherent spectrum of width 7t.

ACKNOWLEDGEMENTS

I am particularly grateful to W. Stephan, M. Ziegler, K.v.Szczepanski, W. von der
Linden who have contributed to this work, and to P. Fulde, J. Fink, A. Muramatsu,
P. Prelovsek, and J. Zaanen for many stimulating discussions.



362 Horsch H.P.A.
REFERENCES

d J. C. Fuggle, J. Fink, and N. Niicker, Int. J. Mod. Phys. B1,1185 (1988)
and references therein.

2 J. Fink et al. in ’Earlier and recent aspects of Superconductivity’, ed. K.A.
Miiller and G. Bednorz; Springer Series of Solid-State Sciences.

3. F. J. Himpsel et al., Phys. Rev. B38,11946 (1988).

4. T. Takahashi et al., Nature 334,691 (1988).

5. R. Manzke, T. Buslaps, R. Claessen, and J. Fink, Europhys. Lett. 9, 477
(1989).

6. J. M. Imer et al., Phys. Rev. Lett. 62,336 (1989).

7. P. W. Anderson, Science 235,1196 (1987), Proceedings of the International
School of Physics 'Enrico Fermi’, July 1987, (North Holland, Amster-
dam,1989), and Physics Reports 184, 195 (1989).

8. P. Fulde, Physica C153-155,1769 (1988).

9. J. Zaanen, O. Jepsen, O. Gunnarsson, A.T. Paxton, and O. K. Andersen,
Physica C153-155,1636 (1988). |

10. J. Zaanen, G.A. Sawatzky, and J.W. Allen, Phys.Rev.Lett. 55,418 (1985), J.
Zaanen, C. Westra, and G. A. Sawatzky, Phys.Rev. B33,8060 (1986).

11. V. J. Emery, Phys. Rev. Lett. 58,2794 (1987).

12, F. C. Zhang and T. M. Rice, Phys.Rev. B37,3759 (1988).

13. See e.g. 'Dynamics of Magnetic Fluctuations in High- Temperature Super-
conductors’, ed. G. Reiter, P. Horsch, and G. Psaltakis, (Plenum, New
York, 1990).

14. R. Haydock, V. Heine, and M. J. Kelly in Solid State Physics, Vol.35, edited
by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1980).

15. O. Gunnarsson and K. Schénhammer, Phys. Rev. B31, 4815 (1985).

16. C.A. Balseiro, A.G. Rojo, E.R. Gagliano, and B. Alascio, Phys. Rev. B38,
9315 (1988).

17. P. Horsch and W.H. Stephan, in ’Interacting Electrons in Reduced Dimen-
sions’, ed. by D. Baeriswyl and D. Campbell (Plenum,New York,1989).

18. P. Horsch, W.H. Stephan, K. v. Szczepanski, M. Ziegler, and W.v.d. Linden,
Physica C 162-164, 783 (1989).

19. W.E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

20. M. S. Hybertsen and L. F. Mattheiss, Phys. Rev. Lett. 60,1661 (1988).

21. W.H. Stephan, W. von der Linden, and P. Horsch, Phys. Rev. B39, 2924
(1989) and Int. J. Mod. Phys. B1, 1005 (1988).

22, R. Jullien and R. M. Martin, Phys. Rev. B26,6173 (1982).



Vol.

23.

24.

25.
26,
27,
28.

29.

30.
31.
32.
33.
34.
35.

36.
37.
38.

39.
40,
41.
42.
43.
44.

45.
46.

63, 1990 Horsch 363

A. M. Oles, G. Treglia, D. Spanjard, and R. Jullien, Phys. Rev. B32,2167
(1985).

M. S. Hybertsen, M. Schliiter and N. E. Christensen, Phys. Rev. B 39,
9028 (1989); A.K. McMahan, R.M. Martin, and S. Satpathy, Phys. Rev.
B38, 6650 (1988); E.B. Stechel and D.R. Jennison, Phys. Rev. B40, 6919
(1989).

R.S. List et al., Physica C 159, 439 (1989).
G. Dopf, A. Muramatsu, and W. Hanke, to be published.
H. Eskes and G.A. Sawatzky, Phys. Rev. Lett. 61, 1415 (1988).

A. Aharony, R. J. Birgeneau, and M. A. Kastner, Int.J.Mod.Phys. B1,649
(1988).

L.N. Bulaevskii, E.L. Nagaev, and D.L. Khomskii, Sov. Phys. JETP 27, 836
(1968).

J.E. Hirsch, Phys. Rev. Lett. 54, 1317 (1985).

J. Zaanen and A.M. Oles, Phys. Rev. B37, 9423 (1988).

A. Ramsak and P. Prelovsek, Phys. Rev. B40, 2239 (1989).
W.F. Brinkman and T.M. Rice, Phys. Rev. B2, 796 (1970).
M. Ziegler and P. Horsch, unpublished.

K.J. von Szczepanski, P. Horsch, W. Stephan, and M. Ziegler, Phys. Rev.
B41, February (1990).

W. Brenig and K.W. Becker, preprint 1989.
J. Bonca, P. Prelovsek, and 1. Sega, Phys. Rev. B 39, 7074 (1989).
D. Poilblanc, Phys. Rev. B 39, 140 (1989) and W. von der Linden, private

communication.
Y. Nagaoka, Phys. Rev. 147, 392 (1966).
B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett. 60, 740 (1988).
C.L. Kane, P.A. Lee, and N. Read, Phys. Rev. B 39, 6330 (1989).
S.A. Trugman, Phys. Rev. B 37, 1597 (1988).
C. Gros and M.D. Johnson, Phys. Rev. B40, 9423 (1989).

S. Schmitt-Rink, C.M. Varma, and A.E. Ruckenstein, Phys. Rev. Lett. 60,
2793 (1988).

H. Eskes, G.A. Sawatzky, and L.F. Feiner, Physica C160, 424 (1989).
Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345 (1989).



	Quasiparticles and photoemission spectra in correlated fermion systems

