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Flux Phases in the t-J Model

T. M. Rice

Theoretische Physik

ETH-Hönggerberg

8093 Zürich, Switzerland

After a short review of the case for the t — J model as a suitable low energy
model Hamiltonian for CuOi planes in the high-Tc superconductors, the renormalized

mean field approximation to this model is discussed. At half-filling the reduction
to a Hilbert space containing only spin degrees of freedom leads to a wide class of
degeneracies in the fermion meanfield description. One particular class of states which
has generated much interest in the past year, is that built from one electron Hofs-
tadter states which are eigenstates in the presence of a uniform magnetic flux. The
mean field theory of such states in a t — J model is reviewed followed by a discussion

of their unusual properties. In conclusion, some comments on the relationship
to anyon models and other open questions are given.

1. Introduction
The discovery of high-Tc superconductors has greatly stimulated interest in the

properties of strongly correlated electrons. The simplest model that one can use to
describe such a system has a single tight-binding band made from a single orbital
on each site 1. The strong correlation condition forbids double occupancy of this
orbital. At an electron density of exactly 1 electron/site this restriction limits the
Hilbert space to spin degrees of freedom only which are coupled with a Heisenberg
interaction (J). This simple model on a square lattice is a good description of the
low energy spectrum 2 of the insulating CuO^ planes which have a formal valence
Cu2+ The question of how to describe the removal or addition of electrons (i.e.
hole or electron doping) has been the subject of a great deal of discussion. The
simplest description was proposed initially by Anderson 1 namely that the extra
charge would be carried by formal valence Cu3+ or Cu+ ions which would be spin
singlets. The Hilbert space that results for electron count less than 1 per site say,
has 3 configurations on each site namely spin up or down and empty. Electrons can
transfer on the neighboring empty sites with a matrix element, t. These two terms
make up the t — J Hamiltonian which will be the subject of this talk.
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The adequacy of the simplest t — J model to describe doped CuÖ2 planes
is an interesting question which cannot be covered here in detail. The key question
is whether the starting Hamiltonian containing Cu — d and O — p orbitals can
be reduced to the much smaller Hilbert space with 3 configurations per Cu site.
Given that added holes go mainly into O-orbitals, the t — J model requires that
the formal Cu3+ ion that carries the charge is a tightly bound singlet between
the central Cu spin and the hole with spin residing on the four neighboring 02p-
orbitals, as discussed by Zhang and Rice 3. Unfortunately there is no small parameter
which can be used to formally justify the reduction procedure. In addition there
are many terms in the starting Hamiltonian such as direct O — O overlap or the
Coulomb repulsion on O-orbitals which complicate the description. There are also

questions concerning the values of parameters in the starting Hamiltonian. Recently
Hybertsen, Stechel, Schlüter and Jennison 4 have reported a detailed set of a priori
calculations based on the local density functional method to estimate the parameters.
They then examined the low energy effective Hamiltonian by comparing to the low

energy eigenvalues of the full Hamiltonian obtained by exact diagonalization on a
small cluster 5. The set of parameter values they obtain agree quite well with the
obtained in other calculations and empirically 6. The t — J model extended through
a small n.n.n. hopping term V is found to give a good representation for both
hole and electron doping. The Heisenberg coupling J estimated 4 at « 130 meV

agrees very well with experimental values 2 on La^CuO^ The n.n. hopping matrix
element t « 420 meV is essentially the same for both electron and hole doping 4

leading to a value for the ratio J/t ss 0.3. The ratio t'/t « — 0.2 is rather small.
Other estimates 7

gave a rather larger value for \ t' \. Nonetheless it seems that the
t — J model is the simplest reduced Hamiltonian that can be considered reasonable
for the CuO-i planes.

2. Renormalized Mean Field Theory
This talk will concentrate on only one of the many methods being used currently

to tackle the t — J model. The restriction to a reduced Hilbert space complicates
the problem considerably, even in meanfield theory as we shall discuss.

Thus a general Hartree-Fock-Bogoliubov wavefunction | $hfb) needs to be

projected on to the reduced Hilbert space so that the actual mean field wavefunction
is

|*mf) Pdl^HFB); Pd n - n»'Tn''i) • W
i

One approximation scheme which is reasonably accurate when compared to numerical

calculations and used by Zhang et al 8, replaces the projection operator by a

renormalization factor calculated according to Gutzwiller's prescription i.e. one
replaces

Ht-j Pd{-t J2 dt>d;° + h-c- + J E §i-Sj}pd
<ij>a <ij>

Pd{Ht + Hj}Pd (2)
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by the simpler form

Ht-j gt Ht + gj Hj (3)

where gt,gj are numerical factors which depend on the average densities of | al*d

J,-spin electrons. For paramagnetic translationally invariant states 8

gt 45(1 + 26)'1 gj 4(1 + 2S)~2 (4)

where n-j- n^ 1/2 — 6. (26 is the hole concentration). This approximation has

been shown by Vollhardt and coworkers 9 to be exact in infinite dimensions and was
shown by Kotliar and Ruckenstein 10 to be expressible as a slave boson meanfield
theory.

At half-filling (6 0) the t — J model reduces to a Heisenberg model and
it now generally agreed that this has a antiferromagnetically ordered ground state
with a sublattice magnetization reduced to 60% of the Neel value due to quantum
fluctuation. The purely spin-problem is best described by the spin operators {Si}
which operate in a Hilbert space containing 2L configurations, (L: Number of
sites). But we are interested in representing it in the much larger fermion Hilbert
space which applies for 5^0. This introduces a tremendous redundancy since
the unprojected | ^Shfb) are vectors in 4L Hilbert space. Anderson, Affleck and
coworkers 1,n were the first to point out that this results in local SU(2) gauge
invariance. Thus if we on any set of sites {i} make a transformation

d+ —-> a{ d+ + ßi dn

di-a —» - ßi dît + «J dit ; [| ai |2 + | ft |2= 1] (5)

we change the unprojected wavefunction | ^hfb) drastically but after projection
of wavefunction which is now purely a spin wavefunction is the same. In the fermion
mean field theory this redundancy has the consequence that a large class of meanfield
solutions are degenerate at 6 0, even though they ostensibly represent fermion
states with quite different characteristics. For example two especially interesting
states are the d-wave superconducting state (or d-wave RVB state) and the Affleck-
Marston 12 state. These are represented by quite different diagonal and off-diagonal
expectation values in the unprojected states i.e. (t x or y)

Ar (4#+rl-4<&TT)
Xm+t X) (<*ï> di+r,o)

a

Äx -Ly Xi,i+x Xi,i+y 0.339 (6)

Ä« Â, 0; Xi,i+r 0.479 exp(±iir/4) (7)

in the <f-wave RVB and Affleck-Marston states respectively, yet when projected onto
the reduced Hilbert space these two states are identical.

take values
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These two states are of special interest because within this class of mean field
solutions they give the best expectation value of Ht when a small number of holes are
introduced. To leading order in 6 they give the same value 8 for the kinetic energy per
added hole. These states do not have long range AF order and since they are written
as fermion wavefunction are easily generalized to finite doping. At 6 0 Gros 13

found numerically an energy of —0.64 J/site which is several percent higher than
current estimates 14 of an AF ordered spin state — 0.67 J/site. Lee and Feng 15 have

shown that by introducing a long range AF into these states that their energy can be

lowered to values much closer to that obtained with spin wavefunctions. Introducing
holes suppresses the AF long range order and they find the generalizations of the
d-wave RVB state are stable against AF ordering beyond 5% doping. Therefore we

will concentrate on the generalizations of the paramagnetic wavefunctions at finite
doping and ignore the AF ordered states.

3. Flux States
The name flux states has been applied to the Affleck-Marston (AM) state 12

and generalizations thereof built from wavefunctions that describe electrons in an
external magnetic field or flux. The relevance of these wavefunctions was clarified
recently by the following conjecture 16. Consider a system of non-interacting electrons

(density v electrons/site) moving in a square lattice described by a n.n. tight-
binding matrix element (—t) but we introduce a phase factor e,ifii> for each n.n.
bond (ij). If we seek a solution with uniform density and choose the phases to
derive from a vector potential corresponding to a uniform magnetic flux (in units
of the flux quantum) $ (2"")_1 S fij ln each lattice square, then according

to this conjecture the ground state is not given by $ 0 (i.e. Bloch states) but
by the choice $ v. The eigenvalues of the uniform flux problem on a square
lattice were studied extensively by Hofstadter 17 who found a complex spectrum {e;}
with many bands which depend on the commensurability of the flux $ The choice

$ f corresponds to placing the Fermi level in the large gap between the ls< and
2 Landau-Hofstadter bands. Clearly energy is gained by having an energy gap at
the Fermi energy. However the Hofstadter spectrum is compressed overall relative to
the Bloch spectrum so that the question of whether

occ

EG(v,$) < Ec(v,$ 0); Ea[yt*) £ e, (8)
i

depends on which of these two factors is dominant. Hasegawa et al 16 and Montam-
beaux 18 and Nori 19 have made a series of numerical calculations which support this
conjecture. Eç(v, $) has a cusp minimum as a function of $ at $ v Note

Eq(i/, $ v) seems to be a continuous function of v without obvious structure at

commensurate values of f18.
Earlier this year Anderson, Shastry and Hristopolous 20 proposed generalizations

of the AM-state and in particular a variational state which can be written as

occ
I vash) Pd n dn dn Ivac). (9)
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where dfa creates a Hofstadter state {la} Lederer, Poilblanc and Rice 21 (LPR)
showed that this state can be used to minimize the energy of the exchange term Hj
when the flux in the Hofstadter problem is chosen to be commensurate with density
of j (or J.) spin electrons i.e. $ rij n^ Consider just one term in the

Heisenberg interaction, then we may write

(Vash I StSy | Vash) (*ash I e*"* d+ djT • e"1*« djt dn \ VASH) (10)

and the expectation value factors into j" and j. expectation values. Introducing the

phase factor simplifies the problem when we choose the phase tpij to be the same

as in the one-elctron Hamiltonian used to generate the Hofstadter eigenvalues. This
choice allows us to express each expectation value simply as a sum over occupied
Hofstadter eigenvalues and using the singlet character of the wavefunction and the
renormalization approximation LPR get

3 7 1 occ

(*ASh\Hj\VASH) -TTPJ(7E£')2- (û)

This energy is then minimized by the choice of the commensurate flux $ nj
leading to the name commensurate flux phase (CFP) for this choice. The fact that
Hj describes an exchange process whereby f and J.-spin electrons interchange
positions allowed us to introduce a phase factor to the hop for f and |-spin
separately and this in turn allowed us to introduce a fictitious flux for each species

determined by the other species. Note since the Hofstadter eigenvalues depend only
on the flux and not on gauge in which this flux is represented, this property carries

over to the /ij-term.
In the presence of holes we have to examine also the kinetic energy, Ht.

Introducing the phase factor again into the expectation value gives again a sum over
Hofstadter eigenvalues but now the phase factor is not compensated so that

occ

{*ash I Ht | Vash) Itdt^'1 Y, Sl ' (cos W)™ (12)

but now the average over all bonds depends on the gauge in which the flux is
represented. This degree of freedom can be used to minimize the energy. LPR defined a

function K($) max (cos tpij)e.ve where the maximum is taken w.r.t. the choice

of gauge and also there is a discrete degree of freedom since a unit flux may be added

or subtracted from a square in the magnetic supercell. This gauge dependence shows

up clearly in the case of $ 1/2 (AM-state) where a Landau gauge give 1/2 but
a choice with alternating fluxes ±1/2 on neighboring squares and | tpij \ 7r/4

gives K(\) l/%/2. Also A'(*-+0) 1 but in between, 0 < $ < 1/2, K($)
varies with a lower bound of 2/7T. This function shows up also in the study of
Josephson junction arrays and it has been extensively studied 22 in that context. It
is clear that these values of K($) represent a considerable cost in kinetic energy in
the CFP-states.
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This kinetic energy cost shows up as a limitation on the stability of the CFP
for J/t < 1. This in the renormalized mean field theory it has the consequence
that for 26 1/8 the state with $ 7/16 requires a value of J/t ~ 1.8 to
be stabilized. This unfavorable cost in kinetic energy is not just a consequence of
the renormalized mean field theory. Poilblanc, Hasegawa and Rice 23 examined a

4x4 cluster with 2 holes (i.e. 26 1/8) by exact evaluation of the ASH-states
and by exact numerical diagonalization. Again the choice $ 7/16 is not favored
for J/t < 1 but smaller commensurate flux values (e.g. $ 1/16) can occur.
The overall comparison to the exact energies is not bad. There are many interesting
aspects to this comparison for small clusters which cannot be covered here such as the
role of the broken translation symmetry and the introduction of hole-hole repulsion.

Liang and Trivedi 24 have reported a series of exact numerical evaluations on
quite large clusters (20 x 20) which agree in their overall conclusion that relative large
values of J/t are required to stabilize the CFP.

There is another generalization of the AM-state namely a staggered flux phase

(SFP) with alternate values ± $ on neighboring squares. Such states were proposed
by Harris, Lubensky and Mele 25 and their energies were considered in some detail by
Poilblanc and Hasegawa 26. Such states do not have a gap at the Fermi energy but
they gain energy through the splitting of the van Hove singularity at the Bloch band
center. The analogous Ä"s($)-function which appears in the kinetic energy Ht-term
is however much larger since a continuous choice | tpij \ 7r $/2 is now possible so

that K$($) > K($) ¦ Thus the overall energy is improved for J/t < 1, relative to
CFP. Poilblanc and Hasegawa 2S find in their exact studies on small clusters that the
kinetic energy term favors SFP over CFP in this region. There remains however the
possibility that introducing further correlations in the wavefunctions or additional
terms in the Hamiltonian might change this.

4. Properties of Flux States and Relation to Anyons
In this part the CFP will be emphasized although SFP are clearly of interest too.

The first property that is clearcut is the chiral spin order in these states. Following
Wen, Wilczek and Zee 21 the chiral spin order expectation value on a square can be

expressed as

(Ei23 + EUi + Ei24 - E23i) - 4Jm{(xi2X23X34X4l) -
- (Xl4X43X32X2l)} (13)

with i?i23 <T\ • (<?2 X a-A). The r.h.s. depends directly on the value of sin(2n$)
so that for $ ^ 1/2 (i.e. except AM-state), it is nonzero and such states have a
chiral spin order.

A second property concerns orbital currents. Since the current on an individual
bond varies as Yii(dta di-x,a — df_xcrdia) it will be proportional to sin(tpij) so

a
that there will in general be a current pattern in the magnetic supecell when 6 ^ 0

The detailed current pattern will depend on the flux $ and the gauge. Thus
these states are in the category of orbital magnets discussed in the classification of



342 Rice H.P.A.

diagonal long range order by Halperin and Rice 28. The CFP-states are characterized
by a particular orbital current pattern which in turn will generate spatially varying
magnetic fields in the sample. Note these fields are not to be confused with the flux
generated selfconsistently through the meanfield treatment of the correlated motion.
The real magnetic fields are much smaller in magnitude since they are proportional
to the density of holes through the gt-iactor. However they should still be quite
measurable 29 in NQR, NMR, jiSR and other experiments which are sensitive to
small internal magnetic fields.

The most interesting properties of the CFP are their superconducting properties

discussed by LPR. Since the expectation value of the kinetic energy, (ZzVterm)
depends directly on the gauge in which the flux is represented, these states have

a collective gauge coordinate. This was used by LPR 21 to construct a Ginzburg-
Landau-like expansion for the energy as a function of an applied e.m. field. The

coupling between the gauges for f and |-spin electron implied by the factorization
in Eq. (10) leads to a gauge coupling similar to that in usual BCS-states and to
flux quantization with a charge 2e. The cusp property of exchange energy, (Hj-
term) as a function of the flux, $ leads to a rigidity of the wavefunction w.r.t. a

small external e.m. flux so that this will be screened out by a surface current i.e.

a Meissner effect. The question of the compressibility of this state is trickier since

the function K($) is not differentiable 22 w.r.t. to $ at all rational values of $
leading to an incompressible state. However as discussed out by Lederer and Rice 30,

various perturbations such as lattice imperfections, impurities or interlayer coupling
etc. may smooth out the cusps in K($).

The CFP described above have a number of properties in common with the

anyon gas model. This model for the superconductivity in the cuprates is based on

Laughlin and Wiegmann's proposal that the charge carrying holes are particles which
obey 1/2-statistics 31. This proposal has led to many papers on the properties of the
free anyon gas 27>37'33. Such a gas may be represented as a system of spinless fermions
which carry a fraction of a flux quantum leading to long range interactions due to
the resulting vector potential. If these are treated in a mean field approximation the

parallel to the mean field CFP is quite close. In the anyon gas model there are two
species of holes labelled by isospin which as free particles in a fictitious flux such

that each species exactly fills its lowest Landau level 33. Such an anyon gas has been

shown to exhibit a Meissner effect and to have a Goldstone mode characteristic of

superfluidity 37'33. Further Halperin et al 33 show that a net orbital moment results
on each CuO^ plane. In addition to this diagonal long range order they show that
there is an off diagonal long range order defined by adding and removing two nearby
holes with the accompanying flux at large distances.

There is a close parallel between the CFP and the anyon gas as regards the

diagonal long range order but although it is plausible that CFP also have ODLRO
this remains to be shown explicitly. One important difference is the role of the

underlying lattice. In the anyon gas model, it determines only the effective mass of
the anyons and none of the commensurability effects associated with cusps in K($)
appear.
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5. Conclusions

The past year has seen a lot of progress in the understanding of flux phases
and the closely related anyon models and their fascinating properties. Clearly there
remains many open questions in this subject especially regarding the relative stability
of the commensurate and staggered flux phases and the d-wave RVB state at finite
doping levels. In this connection, Zhang 34 has recently reported that the staggered
flux phase when treated in the Gutzwiller approximation is unstable towards d-wave

pairing. The interrelationship between the mean field theory for the t — J model
discussed above and the anyon gas models needs to be clarified further. A word
of caution however is in order since very recent reports 35 of /zSR experiments
stimulated by the prediction of Halperin et al 33 give a preliminary limit on the
magnetic field at the muon sites which is much below values estimated from an
orbital magnetic moment. The definitive results on this point will be a crucial test
of the diagonal long range order in the CFP or anyon gas models.
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