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Mean Field Theories of the Quantum Heisenberg Model

Daniel P. Arovas

Department of Physics, B-019
University of California at San Diego
La Jolla, CA. 92093

Lecture given at the 13th Gwatt Workshop, "New Developments in the

Many-Electron Problem" ; Gwatt, Switzerland, 19-21 October 1989.

ABSTRACT: I review work done in collaboration with A. Auerbach on an SU(N)
generalization of the SU(2) quantum Heisenberg model. For antiferromagnets on bipartite
lattices, two distinct phases are identified: a Néel-ordered Bose condensate, and a feature-
less disordered spin insulator. The rotational invariance of the mean field theory and its

applicability to finite temperature make it an attractive candidate for various extensions,

such as the inclusion of holes.
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1. Introduction and General Historical Prattle

The quantum Heisenberg model,

H=J) 58-S (1)
(i7)
is the prototype of a broad class of interacting quantum systems. It is also blessed with physical

relevance. What do we know about it?

Consider, for the moment, the classical Heisenberg model. On bipartite lattices with nearest
neighbor interactions, which henceforth will be the only lattices considered, the transformation
S — —S of spin variables on one sublattice takes J to —J, and thus the partition function is only a
function of the magnitude |J| — the thermodynamics of classical ferromagnets and antiferromagnets
are identical. In two or fewer dimensions, the Mermin-Wagner theorem! precludes long range order

at any finite temperature.

Since the commutation relations [$%, S ’3] = €485 for quantum spins are not preserved under
S — —S, there is no thermodynamic equivalence between J and —J for quantum magnets. For the
ferromagnet (J < 0), one can easily construct an exact ground state by maximally polarizing each
spin in some fixed direction in internal space. Since this breaks the continuous SU(2) symmetry
of the Hamiltonian, Goldstone’s theorem guarantees the existence of gapless spin wave excitations.
Conservation of the order parameter in ferromagnets means that the dynamics are diffusive, and

the spin wave dispersion obeys w o k2.

The nature of the ground state of quantum antiferromagnets (J > 0) is not easily deter-
mined. Expanding perturbatively about an ordered Néel state,? one finds gapless antiferromagnetic
magnons with w « k, a consequence of the notionally broken symmetry. At finite temperature in
low dimensions (d < 2), thermal fluctuations always destroy Néel order, and one must go beyond
naive spin wave theory if one is to obtain sensible finite 7" results.> A more interesting possibility is
that the ground state itself is disordered due to quantum fluctuations. This is the case, for example,
in one dimension, where a quantum analog of the Mermin-Wagner theorem exists. In such cases,
the spectrum is not obliged to be gapless. Yet despite the general admonition that “that which is
not forbidden is compulsory,” it came as somewhat of a surprise to workers in the field when in
1983 Haldane* proposed that generic Heisenberg spin chains should possess a gap in their excitation
spectra. Why? Haldane’s reasoning relied on mapping the low-energy sector of the d-dimensional

spin § quantum antiferromagnet to a d + 1-dimensional classical nonlinear sigma model

d
S= é]ddﬂz 3 |Vigp 2)

=0
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with coupling (temperature) g = 2/5. In hindsight, this seems perfectly reasonable - linear dis-
persion of the spin waves suggests a relativistic effective long-wavelength theory, and the nonlinear
sigma model is a natural candidate. In two dimensions, the nonlinear sigma model exhibits ‘dy-
namic mass generation’ — the correlations decay exponentially — and from Lorentz invariance one
expects a mass gap of order A ~ ¢/§. What was troubling was that the excitation spectrum
of the § = -,1,- chain was demonstrably gapless,® with § = 1 excitations obeying a dispersion
wk = 1mwJ |sin k| identical (aside from an overall factor of 7/2) to that obtained via naive spin wave
theory.? Bethe’s exact ground state® possessed no broken symmetry, yet something masquerading
as a Goldstone mode, though ultimately quite different, was present in the spectrum. In addition,
the Lieb-Schultz-Mattis theorem” and its generalization by Affleck and Lieb® rigorously require the

existence of gapless excitations or a ground state degeneracy in half-odd integer S Heisenberg spin

chains.

The reason why half-odd integer S is somehow special was elucidated by Haldane,*®1° who

showed that a topological term

0 . 02 N
S‘OP:E/dm[dtn'ExE’ (3)

with § = 275, was present in the continuum field theory. This contribution to the action may
be written as 6Q);:, where @,: is a topological integer, known as the Pontryagin index of the
field fZ(a:,t). The term exp(27iSQ,:) is therefore ‘invisible’ for integer spins, but may lead to
interference between configurations of differing Pontryagin index for half-odd integer S. The logical
argument may now be stated as follows: We may not know how the d = 2 nonlinear sigma model
behaves at § = m,!! but we do know, based on Haldane’s analysis, that aside from quantitative
differences arising from the numerical value of the coupling g, all half-odd integer Heisenberg spin
chains should behave alike. The § = % chain is rigorously known to be gapless with low-lying
excitations obeying w o k, therefore this behavior is also expected in the § = %, g == %, etc.

chains. Integer S chains should exhibit a gap, because the d = 2 nonlinear sigma model at § = 0

is massive.12

Other evidence has arisen which corroborates this general picture. Faddeev and Takhtajan!®
showed that the S = 1 excitations of the Bethe chain found by des Cloizeaux and Pearson were
not elementary, but rather composites of truly elementary § = —% excitations, and are thus quite
different from conventional spin waves. Recently, a class of nonintegrable models with exactly
solvable ground states was discovered by Affleck, Kennedy, Lieb, and Tasaki.}*!> The AKLT models

exist on arbitrary lattices in any dimension provided that the spin is an integer multiple of half the



326 Arovas H.P.A.

lattice coordination number. In d = 1, the § = 1 antiferromagnet
Hykir = ) Sn - Sng1 + 3(Sn - Sns1)’, (4)
n

which includes biquadratic exchange, rigorously is known to feature an excitation gap and exponen-
tially decaying spin-spin correlations.!'* Another nonintegrable spin chain with a solvable ground
state exists for S = 1 with longer ranged (1/7%) exchange, as recently discovered both by Haldane
and by Shastry.!®17 Like Bethe’s model, it features gapless elementary § =  excitations, although

a much richer structure to the spectrum, as yet not completely understood, also is present.!®

For two-dimensional (2D) quantum antiferromagnets, there are few exact results. It is known,
for instance, that the § > 1 Heisenberg model'® on the square lattice possesses a Néel ordered
ground state!® — similar exact results exist for other two-dimensional lattices (e.g. there is order
for § > 2 on the honeycomb lattice!*). There is considerable numerical evidence?® suggesting that
the § = % model on the square lattice orders as well. The only exactly solvable ground states I
know of are all associated with AKLT models. Recently, Haldane®1° has suggested a classification
of the behavior of disordered 2D systems based on an examination of tunnelling between different
instanton sectors of the associated continuum field theory. Interestingly, the interference from the
topological term is sensitive only to the value of 25 modulo z, where z is the lattice coordination
number. This interference vanishes when 25 modulo z is zero, and this is precisely the condition
for the existence of an AKLT model.?! A rather complete account of the physics of low-dimensional

quantum antiferromagnets has now been given by Read and Sachdev.?%%3

In this lecture, I will describe a simple mean field approach to the quantum Heisenberg model,4
applicable to both ferromagnets and antiferromagnets at finite as well as zero temperature. The
mean field approach is based on a generalization of the usual SU(2) Heisenberg model to a class
of SU(N) models where a 1/N expansion yields exact results in the large-NV limit. A much more
general and insightful examination of SU(XN) antiferromagnets, based in part on what I shall de-
scribe here, is to be found in the papers of Read and Sachdev.???? In addition to deriving many
new and important results, those authors have gone very far in providing a comprehensive picture

of the physics which ties together virtually all extant theories.

SU(N) Quantum Magnets

The algebra of quantum spin is that of the group SU(2):

(5%, 5P] = ienp,SY; S-S =5(5+1). (5)
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Conventional spin wave theory makes use of the Holstein-Primakoff representation,

St = nt\/25 — hth

(6)
§% = hth - 8,

in which each spin is represented by a single Bose oscillator subject to the anholonomic constraint
that states in the physical sector must obey 0 < m) < 2S5. In a functional integral approach,
for example, constraints of this form are difficult to handle because they define boundaries in
Hilbert space. Oftentimes, it proves convenient to eliminate the anholonomic constraint in favor of
a holonomic constraint at the expense of introducing an additional ‘slave’ degree of freedom. For
instance, we could introduce an additional ‘slave’ boson, g, subject to the condition Ath+gtg = 25,
and then take §* = hig, §— = hgt, and §* = %(h’fh — gtg). In terms of the column vector
b = (h,g), this is nothing but the Schwinger boson representation of spin: § = 1b'.o - b. There
are several advantages to this formalism. First, whereas the vacuum for the Holstein-Primakoff
system represents a broken symmetry state with maximally polarized spin, the Schwinger boson
vacuum is trivial and featureless and does not presuppose any broken symmetry. Second, holonomic

constraints are easily incorporated into a functional integral approach via delta functions.

Another feature of the Schwinger representation is its direct generalization to more than two

species of boson. This is accomplished by defining the SU(XN) generators 58 with @ and 8 running

from 1 to N via

n
N
> blb, = ne . (7b)
oa=1
The S5 thus satisfy
N
52=1
Z i (8)
5 § _ g6
[$2,5%] = 6855 — 45,55,

which are the defining relations for the generators of SU(N). For N = 2, the parameter n. (adopted
from the notation of Read and Sachdev??) simply is 25, and one directly recovers the original
Schwinger representation of SU(2). In general, we may define an analog of the spin quantum
number § by § = n./N - this ‘spin’ is quantized in integer multiples of 1/N. The mean field
theories described in this paper will be exact in the limit where N is large and S is held fized. The
generalized SU(N) Heisenberg model may now be written:

H= 533 s86) S50). (9)

(ij) aB
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It should be stressed that while the Hamiltonian of Eq(9) together with the defining relations of
Eq(8) are completely general, the representation of Eq(7) is but one of many possible for the group
SU(N). Indeed, Eq(7) describes a totally symmetric representation of SU(N) corresponding to a
Young tableau with a single row consisting of n. boxes. As discussed by Sachdev,?? this represen-
tation can also be described in terms of fermionic operators, and in addition other representations
which are totally antisymmetric with m rows of one box each, or of mixed symmetry with m rows

of n. boxes each, may be derived.

The reader should content himself by verifying that the Hamiltonian of Eq(9) reduces to the
familiar form for the case N = 2. We shall choose different SU(N') generalizations of the ferromagnet
and antiferromagnet. For the ferromagnet, we employ the same representation of SU(/N) on each
lattice site. For the antiferromagnet, once we pick an SU(NV) representation for the A sublattice,
we employ the conjugate representation s8 - —5% on the B sublattice. The issue here is that
all representations of SU(2) are self-conjugate, but this is not so for SU(N). By using conjugate
SU(N) representations on alternate sublattices, the general tendency of antiferromagnets to form

local singlets is preserved.
For the case of the ferromagnet, one can define a composite operator F;; via

N
Fii= Z bz,abj,a (10)

a=1
in terms of which the Hamiltonian of Eq(9) is
e = -1 Y FLF i -E (11)
F = N (n). 13 'J' 0.
L)

where : O: is a normal-ordered operator, and Eg = —S§%N,,.q, is a constant. Likewise, in the case

of the antiferromagnet we may define

N
A= Zbi,abj,a (12)
a=1
and obtain
J
(i)
(Here and henceforth we set |J| = 1 and measure energies in units of |J|.) This form of the

Hamiltonian, H = —N~1! E(ij): Z:er'-j:, with Z;; a composite operator as in Eqs(10,12), motivates
a Hubbard-Stratonovich decoupling via an auxiliary bond field Q;;, yielding the following functional
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integral representation of the partition function:

Z= ] D[,5,@,Q, A exp(~5)

5] o = N =
= 1 : Jbi abia) + = :§Qij
S = /0 dr 2;Gr:(b,,(,,b,,(,,—151,0,!;,,(,,)+ = %%Qw (14)

+ Y (QiiZi + QiiZij) + ) Xi(bigbia— 5) ¢ -
(i7) 0

Here, the A integration contours stretch from —ioo to +ioo; this enforces the fixed occupancy

constraint of Eq(7b). The action possesses a local gauge invariance,

b; o(T) — eiqs‘(f)bi,a(r)

N(T) = A7) = imoi(7) (15)
Qii(1) — e#NeFH() Q5(r),

where the minus (plus) sign in the last of the above equations refers to the case of the ferromagnet
(antiferromagnet). In order to obtain a faithful representation of the partition function, one must
fix a gauge in order to avoid integrating over the infinite copies of each gauge orbit; this may be
accomplished by enforcing dA;/dt = 0 on all sites.?? The utility of this representation of Z is that
the action is now a quadratic form in terms of N ‘flavors’ of decoupled Schwinger bosons, and in

principle the b,b fields may be integrated out, yielding an expression
7= [ D10, @\ exp(~NFIQ. Q. ), (16)

where the free energy F is a function only of Q,@, and X and not a function of N. Treating 1/N
as a small parameter akin to h in conventional quantum theory, a systematic 1/N expansion for all

thermodynamic properties and response functions can be derived.

Mean Field Theory of the Ferromagnet

Making the static assumption
A(M=Q
() = A
with ¢ and A both real, the Schwinger bosons can be integrated out explicitly, resulting in a specific

(17)

(per site) free energy per flavor of

MF _ 1,12 _ l d%
P = 30" - 53+ 5 [

In(1 — e~Pwk), (18)
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where z is the lattice coordination number, d is the number of spatial dimensions, and where the

integral is performed over the first Brillouin zone. The dispersion wy is defined by
u=A=2zQ
_1 ik-a
N = Za: ¢ (19)
Wy =4 + ZQ(]- - ’yk)a

where a denotes a nearest neighbor displacement vector. The saddle point equations §F/6Q = 0

and 6F/é6X = 0 are

’ ‘
Q=5- (;i% (L= 7k)nk, (20b)

with n, = (e —1)~1. Remarkably, the above mean field equations are identical to those obtained
earlier by Takahashi,?® who employed a variational density matrix under a zero net magnetization
constraint to study the finite temperature behavior of low-dimensional ferromagnets. Takahashi
found his results for the free energy and magnetic susceptibility to be in remarkable agreement
with exact thermodynamic Bethe Ansatz results. There are, however, differences in our theories.
For instance, while the mean field equations coincide, our expression for the free energy (minus
the classical contribution) is a factor of two larger than Takahashi’s energy. This factor of two
seems to be an artifact of the static assumption and is a generic consequence of approximations of
this sort. The SU(N) theory is defined in terms of N bosons and one constraint per site. Taking
AMF = X constant amounts to ignoring the nonzero wavelength components of the constraint field,
enforcing the local restriction ) bib, = NS only on average, as in Eq(20a). Thus, at the mean
field level, the number of independent degrees of freedom is overcounted by a factor g = N/(N —1).
This is partially corrected by the O(1/N) contribution F(/N) arising from integration over the
Gaussian fluctuations of the constraint field.?* The main difference lies in the fact that our mean
field theory preserves global rotational invariance, unlike the theory of Ref[25]. Our spin-spin

correlation function and static susceptibility are given by
(SR5) = $58ap br.ms + Sbapl f(R - B)?

; 7
f(R—R):/Wek(RR)nk (21)

zz 1 1 ddk
ETX™(a) =25+ 7 | Gayd ™ Merar

At the mean field level, there is a temperature-dependent excitation gap u which vanishes at the

Curie transition. The transition temperature T is zero in two or fewer dimensions, in accordance
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with the Mermin-Wagner theorem, and is nonzero for d > 2.2 The mean field critical exponents
are determined by how p vanishes as T — T, g and were derived in d = 1,2 in Ref[24]. Recently,
Sarkar, Jayaprakash, Krishnamurthy, and Ma,?® examined the theory in d > 2 and obtained the

following mean field exponents:
b~ t2/(d—2)

£~ t—l/(d——?) (22)
y ~ 1=(4-D/(E-2)

with t = (T — T¢)/Tc. The phase transition is thus a Bose condensation.?”

Mean Field Theory of the Antiferromagnet

The static mean field approximation of Eq(l?) leads to the following mean field Hamiltonian:

23

+zQ(7kbk,ab-k,a + 7kbk,abir-k,a)] .
It can easily be verified that the Hamiltonian does not break global rotational symmetry. H™F is
diagonalized by a Bogoliubov transformation to the quasiparticle operators ﬁk, o = Cosh Hkbk,a +

sinh Gkbf_k'a with tanh(26, ) = —2Q~,/A. The mean field specific free energy per flavor is given by

FMF — % -(S+ 2))\ -i— d% In(2 sinh %,Bwk)
B J(2m)
(24)
wy = 4/ A? — 22Q243.
and the steepest descents equations are
d FYF d%

dA == (271_)([ COSh(on) (nk + %) - (S + %) = 0

(25)

1 dFMF d% _ i
0: do - 1- /W’yk sinh(26, ) (ny + 3) = 0.

There is a k = 0 energy gap A = \/m, and when A is nonzero there is an exponential
decay to the spin-spin correlations with £ ~ ¢/A. At finite temperature in two or fewer dimensions,
A > 0, and the system is disordered, again in conformity with the restrictions of the Mermin-
Wagner theorem. For d > 2, there may be a nonzero Néel temperature Ty at which the spins
freeze into a Schwinger boson condensate. For large S, Sarkar et al. have obtained the result
kaTn ~ $252%, which compares well in d = 3 with the cubic lattice numerical estimate of 1.4552.26
The critical properties of the antiferromagnet derived in Ref[26] are identical to those of Eq(22) for

the ferromagnet.
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The condition for an ordered ground state (T' = 0) is

d% 1

Oy

with M, the spontaneous staggered magnetization. For d = 2 this yields the condition § =

M,=5+

b=

-1 > 0, (26)

ne/N 2,0.19. Thus, for what it’s worth, the mean field theory predicts the § = % square lattice
Heisenberg antiferromagnet to order at T = 0. Of course, small N extrapolations are not expected
to be reliable. In d = 1, the integral in Eq(26) diverges, and thus the ground state is predicted to
be disordered for all S, as is known to be the case. As shown by Read and Sachdev, interference
effects from Berry phases unaccounted for at the mean field level lead to a qualitative alteration
of the physics of the disordered phase when n. is odd in d = 1, or whenever n. is not an integer

multiple of 4 on the square lattice in d = 2. In such cases, spin-Peierls order is generic.

It is instructive to analyze the mean field ground state,

|G) =exp | Y g(R-R)bh bk, ] 10) (27)
R,R',«
where
gR-R')= 18 tanh 4, '*(R-E)
(27r)d k
(28)

tanhf, = (\/1 —n2yd - 1) /1

and 7 = 2Q /. It is easy to see that g(R—R') vanishes whenever R and R’ lie in the same sublattice.
Mindful of the fact that the SU(NV) representations on alternate sublattices are conjugates, one sees
that | G') describes a condensate of singlet pairs which, when projected onto the physical subspace
in which there are n. bosons per site, is an SU(N) version of the RVB states of Liang, Dougot, and
Anderson.?® We can also expand the function g(R. —R’) in powers of 7 and find that the amplitude
to connect two sites which are L links apart behaves as L. If g is restricted to connect only nearest
neighbors (lowest order in 7), one finds when n. = 0 modulo z that the projected ground state is

dominated by the associated AKLT state in the thermodynamic limit.

Quantitatively, the mean field theory seems to work well when compared with existing results.
For instance, the mean field result? for the d = 1 Haldane gap is given (for S large) by A ~
Se~™5, which is precisely the result obtained from a 1-loop renormalization group calculation of
the nonlinear sigma model with coupling ¢ = 2/S. For the square lattice antiferromagnets, the
low-temperature correlation length was found?* to behave as £ ~ eA(S)T  with A(S = %) = 1.10

and A(S = 1) = 5.45, which again compares well the sigma model results of Chakravarty, Halperin,
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and Nelson.® The renormalization constants Z, and Z,, for the spin wave velocity and magnetic
susceptibility, respectively, are found?* to be Z, = 1.16 and Z, = 0.53 for § = }, which nicely match
the numerical results Z. = 1.175, Z, = 0.529 obtained by Singh and Huse.?® Such quantitative
agreement may well be spurious, given that the mean field theory is exact only in the N — oo
limit, however the qualitative physical picture makes good sense and I suspect that the techniques
discussed here should prove serviceable if extended to models of the t — J variety, where slave

fermions can be employed to keep track of holes.30:3!
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