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SLAVE-BOSON APPROACHES TO STRONGLY CORRELATED SYSTEMS

M. LAVAGNA

Institut Lauve-Langevin, 156X, 38042 Grenoble Cedex, France
and

Institute for Scientific Interchange, Villa Gualino, 10133 TORINO, Italy.

We give a general presentation of the different slave-boson
representations introduced in the problem of strong correlations. Then,
choosing one of this representation, we show how to set up a perturbation

expansion providing the microscopic basis of a Fermi liquid theory.
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The importance gained these 1last years by the study of
strongly-correlated systems lead to the search of new methods of tackling
the problem of correlations. We present here one of them, the slave-boson
approach 1) which turned out to be extremely powerful in the study of heavy
fermions 2) (Anderson lattice) and whose more recent adaptation to the
Hubbard 3/4) (or related t-J) model appears to already give very
encouraging results. For more clarity, we choose to present the methed
exclusively on a single example (Hubbard or t-J model). Indeed, there is
not one possible slave-boson representation but rather a serie of them more
or less connected. In a first part, we will review the different available
choices with some emphasis on their similarities but also their
differences. Then, keeping one of this representation, we will show in a
second part how to set up a perturbation theory - saddle point plus

gaussian fluctuations - adapted to the presence of constraints.

I. DIFFERENT SLAVE BOSON REPRESENTATIONS OF THE HUBBARD MODEL

(OR RELATED t-J MODEL).

a) Kotliar-Ruckenstein3) (KR) representation

To keep track of the local configurations (4 configurations : empty,
singly-occupied of spin ¢ and doubly-occupied on each site), K.R.
introduced some additional degrees of liberty represented by four fields
eir Pig and dj. The corresponding occupation numbers ezei, p;:opio and
d'{di represent the projectors on the 4 possible states on site i. One can
get the following correspondence between the initial representation of

fermions {fj,} and the new enlarged representation {cjq} C){ei,pia,di} §
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Initial representation new representation
|0> = |vac > —— |1> = eI|vac >

|t>; = fIT|vac > — |2> = p;Televac'>
[4>; = fz¢|vac > — |3> = p;¢cz¢|vac >

| 14>, = fITfI¢|vac > — |4> = dzc;TcI¢|vac >

The two representations are equivalent provided that some constraints
are satisfied which quarantee the physical interpretation of the fields :
+ + -+
By mejey + Ipy Py tdid; -1 = 0 (1)
(completeness of the projectors)

+ + +
Qo = Cid%ig~ Pifig* i) = 0 Ve sl

( redundancy between Cq and Py d degrees of liberty).

Note that there is an exact correspondence between £7 £, and c! c,
icTio is ie
in each representation. The constraint (1) automatically implies that the

operators n = o a (with a = e, p, or d) satisfy the algebra of projectors

nng = aaﬁna (3)
In order to obtain the expression of the Hubbard Hamiltonian in the new
representation, let us establish the following correspondence (easy to

proof matricially) :

+ - 4= + : ‘
f. f. — 2,2. c; cC. for 1 # 3
ic'ic id"jo "io jo

with 7z, = e.p

.+ P .
lo lo pl—o‘ 1
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+ +
£f. €. B —— i G
1uf10 clcclc
+
n. n. .d.
1tM1d dldl

Then the expression of the Hubbard hamiltonian in the new representation

can be written

- i + +
H = i%; tij 2 ¢ %4g Cie Cjo + U %’didi (4)

(within the constraints).

Let us make two remarks :

(i) To guarantee the fermionic character of the physical particle, the
operators which represent it in second quantification must respect the
usual anticommutation rules. This is automatically insured if i obey
Fermi statistics, and ey Py o di Bose statistics (hence the term of
"slave-boson"). We will see in the following that this is not the only

choice.

(ii) Indeed, the choice Eia is not unique but one can replace Eia by any
combination Ui ZidVie where Uig and v, . are diagonal matrix whose only
non-zero term (equal to 1) appears respectively on |0>, |-¢> and |o>,
|t4> lines. One can in particular choose as K.R.

/2 =172

+ + -1 - + +
2ig = (1 = djd; - Py P Zigll ~ €38 = Pj_Pi) (5)

All the choices are formally equivalent as far as the constraints are
exactly satisfied. This is no longer true when one makes approximations.
Typically, the mean-field approximation satisfies the constraint on
average, and leads to different results depending on the special choice of
Zi5 ¢ These discrepancies are supposed to disappear if one could include
quantum fluctuations at all orders. When stopping at mean-field, the choice
(5) is more sensible since it renormalizes Eia by its value in the
uncorrelated case and gives back the free electron gas in the limit U = 0.

It is this choice that will be retained in part II.
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b) Zou-Anderson and Schwinger-boson representation

Many other representations have been proposed such as :

f, — elc. + oct 4, (6)
lo 1l 10 1-0 1

The same rules stand as before : this transformation acts for any intersite

hopping term, but not for intrasite term where fldflo simply transforms

+ + :
as c; C; s and n, o, as didi‘ This transformation has the advantage to

require the introduction of only one constraint :

e‘i‘ei + % cte, + dta, =1 (7)

There are at least two choices which guarantee the Fermi statistics of the
particles : C; , May be taken as fermions, implying e;, dj bosons 5). Another
choice which seems to be even more interesting consists in taking Cis 28

bosons (Schwinger-bosons) and e, di as fermions 6).

¢) Large U limit of the Hubbard model

In the large U limit, the Hubbard model can be projected on the
Hilbert subspace of states which do not contain any double-occupied sites.
This leads to the t-J model which can be derived within a canonical
transformation. This comes down in the slave-boson representation, to

truncate the second part of the expression containing d.

. N,

gPred = -2k j &% e+c st J(g § __z__l ) (8a)

]3]

with 8, =Y ¢} (%)
o, B aﬁ

where T represent the Pauli matrix, J = 4t2/u and the constraint becomes :

+
eje; + 2 cla jg= 1 (9)
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As before, one can choose as well the fermionic or the bosonic
representation. The Schwinger bosons C; 4 Can be viewed as hard-core bosons.
It is worth noting that the fermionic representation (e;ci) coincide with
K.R’s at the saddle point level in the limit of infinite U and infinite
spin degeneracy N. However, while the saddle-point approximation is exact
at infinite N and the gaussian fluctuations at the order 1/N, the fermionic
representation requires much higher orders in the expansion to describe the
magnetism at half-filling which manifestly occurs in the physical systems
closer to the situation N = 2. From this point of view, K.R's
representation seems to be more suitable since, as we will see below, the
exchange interaction is already taken into account at the level of gaussian
fluctuations. It is this representation that we will retain in the rest of

the paper where we will set up a systematic perturbation theory.

II. PERTURBATION THEORY IN KOTLIAR-RUCKENSTEIN REPRESENTATION

Since the time evolution generated by H preserves the constraints
((H, Pi] - [H'Qia] = 0), it is only necessary to enforce the constraints a£
one particular time : this is done by introducing time-independent Lagrange
multipliers Xil) and Xgi) . The partition function can thus be written as

a functional integral over the fermion and boson fields :

8
Z = JEcEDei)po‘éDd 1 ot a2 exp [ Io’f(r)dr] (10a)

io

where the Lagrangian;Z?(t) is :

- s (2) +
L () -i%; il (av + A[2)) 84+ 2] 2, tigles .
+ (1) + (1) ,(2)
vey(3r v T e+ (3 N - NP,

PO HE NSNS SV L (10b)
1 (o}
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a) Saddle-point

The idea is to start from the simplest saddle-point approximation
where is considered uniform and static distribution of boson fields. One
can then integrate over the Grassman variables and obtain for the free

energy :

2 (1) 2 2 2
Fo= £+ Ud] + X [eo+Zp +d—1]

g

(2) 2 2
? % Xog Pog™ Pog ~ 9! (1la)
where £= -5 T ln(- iw + g8 (11b)
k,iw_,o ?
n
. . 2
in the notation %6 = 200
-’
iR(B; - B
g =L tiy exp (Ry j)

The physical picture provided at the saddle-point level is that of a gaz of
quasiparticles (represented by the operator cij4) of enhanced mass m* =
m/qo. The saddle-point equation (minimization of the free energy) allows to
determine the values of the boson fields and Lagrange muiltipliers. It is
particularly interesting to remark, that, thanks to Uj, and Vj,, one finds
exactly the results of the Gutzwiller approximation’) for do. One recovers
at half-filling the Brinkman-Rice transition (Mott localization due to
correlations) above a critical edge of localizatin U; = 16 [wpg(w)dw
(proportional to the averaged energy per site in the uncorrelated case). We

put here the results for the two interesting regimes close to half-filling.
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Regime I (metallic regime) : U=UMU; <l andn =1
Qo =1 - u?

Regime II (vacancy regime) : u> 1 and 1 -n= 8 << 1.
28

9o = 7T = U0
Regime I (U < Ug) is believed to provide a "lattice" description of normal
3He, and the Copper oxides (high Tc) in the normal phase are supposed to be

good candidates for regime II.

There is an additional information contained in the slave-boson
formulation which is the determination of the Lagrange multipliers at the
saddle-point : their evolution as a function of U is reported on figure 1. It
is very interesting to remark the existence of a gap delimited by the values
of ko(z) in the vacancy regime (n < 1) and the electronic regime (n > 1).

This gap of width A = U/ 1 - Uo/U can be interpreted as a Mott gap.
MOTT P
A‘ L e o
2
R

MOTT
- GAP

(1)

C
B 2) ND_y@

/ n<l

| >
U, C

Fig. 1 Saddle-point values of the Lagrange multipliers

Notice the opening of a Mott gap for U > Uc. In

the insert, U dependence of the Mott gap.
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b) Gaussian fluctuations

For the consideration of quantum fluctuations, it is useful to remark

that Qf(r) obeys a local gauge invariance :

e, — exp(i ei}ei

di —_— exp[i(ei - g xia)]di

Pi, — expli(®; - X;,lp{,

. —_— iX. !
Cig exp[lxldlclc

A D g8
i i i

(2) (2)", .
Ma Ty t iy
It is often more convenient to absorb the phases of the boson fields
into the Lagrange multipliers which turn out to also be fields. This
defines the "radial" gauge that will be retained in the following since it-
introduces only real fields. We are then left with the problem of two
fermion fields (cj4) in interaction with 7 boson fields which can be
classified into symmetric and antisymmetric channels :
(2) (2)
{ ¢ 4 po- Pr* P (1) 2 M TN
’ ’ po _2_" ’ o =

} and

’

(2) (2)
{ = Pr Py x(z’ = XT - A¢ } In fact this formulation
P,= —7 N —z -

obviously breaks the spin-rotation invariance which can be restored by

introducing 2 x 2 spinor fields :

3
= ~0L ~ : .
B, =p,, . I + %;1 3ia . T (where T are Pauli matrix)

The generalized basis of 11 boson-fields has the advantage of making the

unperturbated boson propagators ﬁo_l block-diagonal
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~-1
e 0 0 0
o =1 « —1
D, " = 0 Dos ~0—l 0 (12a)
0 0 Doa
~ -1
] 0 0 0 o
(1) ]
ko .0 0 e, 0
(1)_,(2) y
0 U+XO X 0 d, 2d,
£ -1 _ (1)_,(2) "
where Do 0 0 200" "=27T) 2py 2p, (12b)
e do 2p0 0 0
0 —Zdo —2po 0 0
- -1 JONSURNCIS ~4p,
and Doa - “4po 0 (12c)

The effects of the quantum fluctuations can be carried out in the functional
integral formalism4); The role of the correlations is to introduce some
effective interactions (mediated by the slave-bosons) among the quasiparticles
defined at the saddle point level. Coming from the structure of the boson
fields, there is a complete separation between symmetric and antisymmetric

channels as represented in the energy diagrams of figure 2.

Within the approximation where one can neglect the ﬁadependence of the

s(a)(

vertex, this defined effective interactions F a) which can be expanded

into Legendre polynomial (or cubic) if the symmetry is spherical (or cubic).

We are left with a Fermi liquid picture with quasiparticles inter-

a

acting through a set of Landau parameters F? » Fy.
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effective interaction ra(q)

effective interaction rs(g)

(a) (b)

Fig. 2 Diagrammatic representation of the free energy

(2a) Bubble diagrams; (2b) Ladder diagrams.

We have explicitely calculated these parameters in the channel 1 = 0.

It is remarkable that the wvalues that we draw from the calculation of
gaussian fluctuations, coincide exactly with those obtained in the
Gutzwiller approximation. This is a very sensible result since in our
language here the Gutzwiller approximation corresponds to a self-consistent
saddle-point with an implicit dependence of the boson-fields with the

external excitations (electromagnetic fields). We found :

a ed 1 : :
F.o=-1+ —33 in regime I or II (13a)
° (e+d)? (20)

Explicitely : Fg = [-1+1/(1 + u)2] in regime I

and Fg = [-1 + 1/4u) in regime II
S 1 . .
Foo=- 1+ in regime I (13b)
(1-u)2
Fg = -1+ 2u-1 in regime II (13c)

28/u(u-1)
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In the weak U limit, we recover the standard RPA results of weak coupling
(Fg = 2U and Fg = -2U). In regime II, we find FE ~ 1/8 and the
compressibility is enhanced as expected for an incompressible Fermi liquid.
This approach seems to be very powerful since it provides a unique
interpolation between the weak-coupling regime (paramagnon theory) and the
strong-coupling regime (incorporating the dynamic effects which were

missing in the Gutzwiller approximation).

The discussion of the eventual instabilities (magnetic, flux phase,
superconducting...) essentially depends on the structure of the correlation
function Xo considered in the unperturbated case. For a spherical symmetry,
Xo is given by the Lindhard functions, and one finds a ferromagnetic
instability at large U but no antiferromagnetic instability. The situation
is rather different in the case of an alternated structure (e.g. cubic)
where the nesting property of the paramagnetic Fermi surface at half
filling gives an AF instability at n = 1 for infinitesimal small value of
U. The ferromagnetic instability occurs above Up = 1/[4(1-a)] at n = 1. The
F-AF boundary is asymptotic to the line n = 1 at U = « as required by

Nagaoka'’s theorem.

From a general point of view, the Fermi surface of the perturbated
system is identical to that of the unperturbated system. Then, the
eventuality of a superconducting or flux phase might be examined by already
breaking the symmetry at the unperturbated level (through X5). In that
sense, we think that the above calculation may be useful since it may be
adapted to any "unperturbated" structure. It constitutes a frame in which a
s A A(l) X(Z)

F

- *
set of parameters go = m/m", For For (0)" %o

are defined independently
of the structure. It would be interesting to apply it to some more complex
situations (flux phase, superconductivity...) perhaps in closer connection

to the physics of high-T. superconductors.
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