
Zeitschrift: Helvetica Physica Acta

Band: 63 (1990)

Heft: 3

Artikel: Slave-Boson approaches to strongly correlated systems

Autor: Lavagna, M.

DOI: https://doi.org/10.5169/seals-116222

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-116222
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Helvetica Physica Acta 0018-0238/90/030310-13$l.50+0.20/0
Vol. 63 (1990) (c) 1990 Birkhäuser Verlag, Basel

SLAVE-BOSON APPROACHES TO STRONGLY CORRELATED SYSTEMS

H. LAVAGNA

Institut Laue-Langevin, 156X, 38042 Grenoble Cedex, France

and

Institute for Scientific Interchange, Villa Gualino, 10133 TORINO, Italy.

We give a general presentation of the different slave-boson

representations introduced in the problem of strong correlations. Then,

choosing one of this representation, we show how to set up a perturbation

expansion providing the microscopic basis of a Fermi liquid theory.
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The importance gained these last years by the study of

strongly-correlated systems lead to the search of new methods of tackling

the problem of correlations. We present here one of them, the slave-boson

approach 1) which turned out to be extremely powerful in the study of heavy

fermions 2) (Anderson lattice) and whose more recent adaptation to the

Hubbard 3'4) (or related t-J) model appears to already give very

encouraging results. For more clarity, we choose to present the method

exclusively on a single example (Hubbard or t-J model). Indeed, there is

not one possible slave-boson representation but rather a serie of them more

or less connected. In a first part, we will review the different available

choices with some emphasis on their similarities but also their

differences. Then, keeping one of this representation, we will show in a

second part how to set up a perturbation theory - saddle point plus

gaussian fluctuations - adapted to the presence of constraints.

I. DIFFERENT SLAVE BOSON REPRESENTATIONS OF THE HUBBARD MODEL

(OR RELATED t-J MODEL).

a) Kotliar-Ruckenstein3) (KR) representation

To keep track of the local configurations (4 configurations : empty,

singly-occupied of spin a and doubly-occupied on each site), K.R.

introduced some additional degrees of liberty represented by four fields

ei> Pia an<^ di- The corresponding occupation numbers e.e. p. p. and

d.d. represent the projectors on the 4 possible states on site i. One can

get the following correspondence between the initial representation of

fermions {fi<j} and the new enlarged representation {cia} @ {ei,pia,di} :
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Initial representation

|0> - |vac >

|t>. - ftt|vac >

K>i fiJvac >

lf°i * fiTfiJvac >

new representation

|1> - e.Ivac >

|2> - Pitcitlvac >

l3> " pUciJvac >

|4> d+c^c+Jvac >

The two representations are equivalent provided that some constraints

are satisfied which guarantee the physical interpretation of the fields :

P. ete. + Z pt_p. + dtd. - 1 =0i i i a n<fio i i
(completeness of the projectors)

Q. - et c. - (ptjj. + dtd.) 0wia ia ia lnifi(j ii'

(1)

(2)

(redundancy between c and p d degrees of liberty).

Note that there is an exact correspondence between f. f. and c. c.r m la ia ia
in each representation. The constraint (1) automatically implies that the

operators n a+a (with a » e, p or d) satisfy the algebra of projectors

Vß - 5aßna (3)

In order to obtain the expression of the Hubbard Hamiltonian in the new

representation, let us establish the following correspondence (easy to

proof matricially) :

f+ f.i« la
— +- +Z.Z. c. cia ]a ia ]a

for i * j

with z. =e.p. +p. d.la i*ia *i-a i
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ft f, > et cla la la la

n. .n. > dtd.lt u 11

Then the expression of the Hubbard hamiltonian in the new representation

can be written

H -I ti-i zil z-i- c7_ <=.._ + U I dTdi (4)- I t. z.+ z. et c. + U T dtd
ijo- !D I» Dff iff Iff vi

(within the constraints).

Let us make two remarks :

(i) To guarantee the fermionic character of the physical particle, the

operators which represent it in second quantification must respect the

usual anticommutâtion rules. This is automatically insured if c. obey

Fermi statistics, and e, p. d. Bose statistics (hence the term of
1 riu 1

"slave-boson"). We will see in the following that this is not the only

choice.

(ii) Indeed, the choice z. is not unique but one can replace z. by any •

combination U. z. V. where U. and V. are diagonal matrix whose onlyia ia ia ia ia ' •*

non-zero term (equal to 1) appears respectively on |0>, |-a> and |a>,

|tl> lines. One can in particular choose as K.R.

(1 - d^d. - 4jPia)~1/2 zia(l - e^e. - PÌ.^r172 (5)z.ia

All the choices are formally equivalent as far as the constraints are

exactly satisfied. This is no longer true when one makes approximations.

Typically, the mean-field approximation satisfies the constraint on

average, and leads to different results depending on the special choice of

z. These discrepancies are supposed to disappear if one could include

quantum fluctuations at all orders. When stopping at mean-field, the choice

(5) is more sensible since it renormalizes ~z. by its value in the

uncorrelated case and gives back the free electron gas in the limit U 0.

It is this choice that will be retained in part II.
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b) Zou-Anderson and Schwinger-boson representation

Many other representations have been proposed such as :

f. * e.c.+ac.d. (6)la i ia l-a i

The same rules stand as before : this transformation acts for any intersite

hopping term, but not for intrasite term where f. f. simply transforms

as c. c. and n..n.. as d.d.. This transformation has the advantage toia ia it U il 3

require the introduction of only one constraint :

eIei+ I CLCia+ dtdi 1 (7)
a

There are at least two choices which guarantee the Fermi statistics of the

particles : c. may be taken as fermions, implying e^, d^ bosons 5). Another

choice which seems to be even more interesting consists in taking c. as

bosons (Schwinger-bosons) and e., d. as fermions 6).

c) Large U limit of the Hubbard model

In the large U limit, the Hubbard model can be projected on the

Hilbert subspace of states which do not contain any double-occupied sites.

This leads to the t-J model which can be derived within a canonical

transformation. This comes down in the slave-boson representation, to

truncate the second part of the expression containing d.

HPr°3 -lt., e.et e+c. + J(|..l. -X-^i (8a)L i] i u j ]a i j 4

With t £ C^T)^ Ciß
a,p

2
where t represent the Pauli matrix, J 4t /u and the constraint becomes :

e!ei + I ClaCia » 1 (9)
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As before, one can choose as well the fermionic or the bosonic

representation. The Schwinger bosons c. can be viewed as hard-core bosons.

It is worth noting that the fermionic representation (e.c.) coïncide with

K.R's at the saddle point level in the limit of infinite U and infinite
spin degeneracy N. However, while the saddle-point approximation is exact

at infinite N and the gaussian fluctuations at the order 1/N, the fermionic

representation requires much higher orders in the expansion to describe the

magnetism at half-filling which manifestly occurs in the physical systems

closer to the situation N » 2. From this point of view, K.R's

representation seems to be more suitable since, as we will see below, the

exchange interaction is already taken into account at the level of gaussian

fluctuations. It is this representation that we will retain in the rest of

the paper where we will set up a systematic perturbation theory.

II. PERTURBATION THEORY IN KOTLIAR-RUCKENSTEIN REPRESENTATION

Since the time evolution generated by H preserves the constraints

([H, P.] - [H,Q. ] » 0), it is only necessary to enforce the constraints at

one particular time : this is done by introducing time-independent Lagrange

multipliers XJ ' and x! ' The partition function can thus be written as

a functional integral over the fermion and boson fields :

Z pc3)e2)p2)d n dx!1' dx[^ exp [- J^(T)dx ] (10a)

where the Lagrangian JL (t) is :

3T(t)-Z cJ«l<aT+x£)) Vj + A^ Vj«1]C

+ et(aT+^),ei + pta(aT+x^-x^,pic

y dt(3 + xi1' -Y \\2' + U)d. (10b)
i 1 T 1 1 <J 1l a
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a) Saddle-point

The idea is to start from the simplest saddle-point approximation

where is considered uniform and static distribution of boson fields. One

can then integrate over the Grassman variables and obtain for the free

energy :

F - f + Ud2 + X«1' r e2n + I p2 + d2 - 1 1

oo o o L o *- roa o J

+ I xi <n~ - PÌ - d„) (11a)^- os oa roa o
a

*»'• fo" - ï I ln(- iwn + %c£k] (llb)
k,iw a

2in the notation q z^oa oa

ek I t., exp^^i-^J»
ij -1

The physical picture provided at the saddle-point level is that of a gaz of

quasiparticles (represented by the operator c^g) of enhanced mass m* -
m/q0. The saddle-point equation (minimization of the free energy) allows to

determine the values of the boson fields and Lagrange muiltipliers. It is

particularly interesting to remark, that, thanks to Uia and V^^, one finds

exactly the results of the Gutzwiller approximation7' for q0. One recovers

at half-filling the Brinkman-Rice transition (Mott localization due to

correlations) above a critical edge of localizatin uc 16 Jwp0(w)dw

(proportional to the averaged energy per site in the uncorrelated case). We

put here the results for the two interesting regimes close to half-filling.
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Regime I (metallic regime) : U U/Uc < 1 and n » 1

q0 1 - u2

Regime II (vacancy regime) : u > 1 and 1 - n » 8 « 1.

28
q° /i - Uc/U

Regime I (U < Uc) is believed to provide a "lattice" description of normal

3He, and the Copper oxides (high Tc) in the normal phase are supposed to be

good candidates for regime II.

There is an additional information contained in the slave-boson

formulation which is the determination of the Lagrange multipliers at the

saddle-point : their evolution as a function of U is reported on figure 1. It
is very interesting to remark the existence of a gap delimited by the values

of X^2' in the vacancy regime (n < 1) and the electronic regime (n > 1).

This gap of width A - U/ 1 - Uc/U can be interpreted as a Mott gap.

MOTTli GAP

*?,

MOTT
GAP

i_^* \l n<l

Fig. 1 Saddle-point values of the Lagrange multipliers

Notice the opening of a Mott gap for u > Uc. In

the insert, U dependence of the Mott gap.
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b) Gaussian fluctuations

For the consideration of quantum fluctuations, it is useful to remark

that ^C(x) obeys a local gauge invariance :

ei —> exp[i 9i]e|

di —* «*P[i<Ôi - §Xiff)ldî

Pia —? exp[i(e. - x^lpi,

c.a —» exp[ixia]cfa

X(D_X(1)' +iè.111x<2>_x<2)'+ix.la i a ia

It is often more convenient to absorb the phases of the boson fields

into the Lagrange multipliers which turn out to also be fields. This

defines the "radial" gauge that will be retained in the following since it'
introduces only real fields. We are then left with the problem of two

fermion fields (ciff) in interaction with 7 boson fields which can be

classified into symmetric and antisymmetric channels :

P.-P.L .1,1 ,,« >¦?' *>\2'„a.p.-Vi.x'», »J«. 2-p-) and

1 pz - —i— ' xz - 2 ; • In fact this formulation

obviously breaks the spin-rotation invariance which can be restored by

introducing 2x2 spinor fields :

P. p. T + Y $. Ta (where t are Pauli matrix)i rio "- lace=l

The generalized basis of 11 boson-fields has the advantage of making the

unperturbated boson propagators D
~ block-diagonal
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ti 0 0 0

V1- 0 C 0

6»1
0

0 0 0

0 0 0 c

319

(12a)

where D.os

,(D

0 U+X^-x«2»
o o

0

do

-2d.

0

0 do

2<xo1)-xo2)) 2P0

2Pc

"2P,

"2dc

-2Pc
0

0

(12b)

and 5 1

oa

2(x^)-xi2);
-4p„

-4p„
(12c)

The effects of the quantum fluctuations can be carried out in the functional

integral formalism4). The role of the correlations is to introduce some

effective interactions (mediated by the slave-bosons) among the quasiparticles

defined at the saddle point level. Coming from the structure of the boson

fields, there is a complete separation between symmetric and antisymmetric

channels as represented in the energy diagrams of figure 2.

Within the approximation where one can neglect the k-dependence of the

vertex, this defined effective interactions Fs' (q) which can be expanded

into Legendre polynomial (or cubic) if the symmetry is spherical (or cubic).

We are left with a Fermi liquid picture with quasiparticles

interacting through a set of Landau parameters F? Ff.
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effective interaction r8(q)

effective interaction rs(q)
(a) (b)

Fig. 2 Diagrammatic representation of the free energy

(2a) Bubble diagrams; (2b) Ladder diagrams.

We have explicitely calculated these parameters in the channel 1-0.
It is remarkable that the values that we draw from the calculation of

gaussian fluctuations, coincide exactly with those obtained in the

Gutzwiller approximation. This is a very sensible result since in our

language here the Gutzwiller approximation corresponds to a self-consistent

saddle-point with ein implicit dependence of the boson-fields with the

external excitations (electromagnetic fields). We found :

Fa - - 1 + —^-y i-« in regime I or II (13a)° (e+d)z (2pV

Explicitely : Fa [-1 + 1/(1 + u) ] in regime I

and Fa [-1 + l/4u) in regime II

Fs - - 1 + — in regime I (13b)
(1-u)2

-n * - 1 +° 28/u(u-l)
Fs „ _ +

2u 1 in regime II (13c)
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In the weak U limit, we recover the standard RPA results of weak coupling

(F^ - 2U and Fa - -2U). In regime II, we find F^ ~ 1/8 and the

compressibility is enhanced as expected for an incompressible Fermi liquid.
This approach seems to be very powerful since it provides a unique

interpolation between the weak-coupling regime (paramagnon theory) and the

strong-coupling regime (incorporating the dynamic effects which were

missing in the Gutzwiller approximation).

The discussion of the eventual instabilities (magnetic, flux phase,

superconducting...) essentially depends on the structure of the correlation

function Xo considered in the unperturbated case. For a spherical symmetry,

Xo is given by the Lindhard functions, and one finds a ferromagnetic

instability at large U but no antiferromagnetic instability. The situation

is rather different in the case of an alternated structure (e.g. cubic)

where the nesting property of the paramagnetic Fermi surface at half

filling gives an AF instability at n - 1 for infinitesimal small value of

U. The ferromagnetic instability occurs above Up - l/[4(l-ot)] at n » 1. The

F-AF boundary is asymptotic to the line n - 1 at U - • as required by

Nagaoka's theorem.

From a general point of view, the Fermi surface of the perturbated

system is identical to that of the unperturbated system. Then, the

eventuality of a superconducting or flux phase might be examined by already

breaking the symmetry at the unperturbated level (through Xo>- In that

sense, we think that the above calculation may be useful since it may be

adapted to any "unperturbated" structure. It constitutes a frame in which a

set of parameters q0 - m/m*, Fs, Fa, X: X( ' are defined independently

of the structure. It would be interesting to apply it to some more complex

situations (flux phase, superconductivity...) perhaps in closer connection

to the physics of high-Tc superconductors.
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