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Abstract

In this lecture a review of the existing theories of the Anderson model for a single

magnetic impurity and for the lattice case will be given. The basic physics of the

model will be discussed and some of the theoretical methods used will be critically

evaluated. New alternative approaches will be suggested.
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I. Introduction

In 1961 Anderson proposed a model for a magnetic impurity in a metallic matrix,

which incorporates the basic ingredients of moment formation in metals: a localized

atomic state with strong Coulomb correlations hybridizing with a band of conduction

electrons. The Hamiltonian of this problem in its simplest form is given by

H HC + Hf + Hmix (la)

where

k ci-

and

Hf e°fj2n- + UnH (lc)
(7

are the Hamiltonians for the conduction electrons (c) and the localized electrons (f),

respectively, and

Hmix=Vj2(cÌJa + h.C.) (ld)

is the hybridization term. For an orbitally nondegenerate impurity level and allowing

for the two spin states a, the possible occupation numbers of the local level are 0,1,2.

We will later discuss models with JV 2S + 1 spin states, where the limit N —> oo is

taken.

The part of parameter space relevant for moment formation is the one where the

local level is well below the Fermi level e°, « Ep, and the Coulomb repulsion is

strong such that the energy for the doubly occupied level is far above the Fermi level

(see Fig. 1). In the limit U —? oo there will be at most one electron in the local state,
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and for small hybridization the average number of electrons < nf > is close to one.

One may then expect a local magnetic moment to be formed. At low temperatures

the moment is screened by the conduction electrons via the socalled Kondo effect, and

a spin singlet state is formed (Anderson 1973; Wilson 1975). The low temperature

properties may be phrased in terms of a local Fermi liquid theory (Nozieres 1974).

At temperatures above the energy of spin singlet formation perturbation theory in

(V21'e",) may be applied to give e.g. the famous Kondo minimum in the resistivity as a

function of temperature (Kondo 1964). It turns out that the crossover between the two

temperature regimes is difficult to describe. Although there exist exact results on the

energy spectrum obtained by Bethe ansatz techniques (Andrei et al. 1983, Tsvelick

and Wiegmann 1983), a controlled description of the excited states of the system,

needed e.g. for the calculation of transport properties, is still lacking. This is even

more so for the Anderson lattice, consisting of a regular array of Anderson impurity

atoms. There, in particular the interplay between Kondo screening and conduction

electron induced magnetic exchange (RKKY) interaction between the localized spins

is not well understood.

2. Anderson Impurity Model

An important breakthrough in the theoretical formulation occurred in the early

80's when the concept of slave bosons (Barnes 1976) was applied (Coleman 1984). The

idea is to represent the projection operator onto the part of the Hilbert space with

no double occupancy (in the U oo limit!) by a bose operator 6, which describes

the creation (6+) or annihilation (b) of the empty local atomic level. Using these
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operators the mixing term may be expressed as

Hmix VYJ{ctJ>+U + h.c.) (2)
k,<7

describing the annihilation of an f-electron and the simultaneous creation of a con¬

duction electron and an empty site. The Coulomb interaction term may be dropped

since the number of doubly occuped sites is exactly zero in this limit. The b bosons

are "slaved" because the local level is either empty or singly occupied, i.e.

Qee6+6 + £/+/„=1 (3)
rj

In other words, these bosons cannot form a macroscopic condensate as free bosons

do, because of the local constraint (3).

It is now convenient to generalize the original Anderson model by allowing for

N 2S + 1 spin states, i.e. the spin index a in (1) runs from —S to 5, describing

a spin S local level coupled to N conduction bands. This model is referred to as

the SU(N) Anderson model. The model does not really describe a spin S 5/2

or S 7/2 impurity as encountered e.g. in the case of rare earth ions, because the

number of conduction electron bands hybridizing with the local level is usually less

than 25 + 1, and only certain linear combinations of local substates are coupled to

the conduction electrons (for a discussion of this point for the lattice model see Zou

and Anderson (1986) and Zhang and Lee (1987)).

The N-state model is appealing because it can be solved exactly in the limit

N —> oo. For this limit to make sense the hybridization matrix element V has to scale

with N as V VN-1'2. The solution is obtained from a mean field treatment of the
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model Hamiltonian

V +
H Hc + e°fnf+^=Y,b+U + h.c.)

VN % (4)

+ \(nf + b+b - 1)

where the last term is a Lagrange multiplier term enforcing the constraint (3). Here

the Lagrange parameter A is not a classical variable, but rather is a real, scalar

quantum field, e.g. A
775 (A + A+) where A is a Bose field. The constraint is

enforced by requiring A to be time-independent, i.e. ^A 0.

The mean field assumption now is to consider the Bose fields to be classical

variables, which may be replaced by their (time-independent) expectation values

< b+ >=< b >= b0 and < A >= A0. This reduces the problem to diagonalization of

a noninteracting system. Minimization of the free energy with respect to A0 and b0

then gives the Euler-Lagrange equations

b20 1- < nf > (5a)

and

VN1'2 Y, < fU*° >= -*«.&„ (56)
k

The f-particle Green's function is obtained as

GfH 1-rï (6a)
w — tj + tl

where

tf e°f - A (66)

is the renormalized energy of the f-level and

T *hlÇpc (6C)
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is its renormalized width (pc is the DOS of the conduction band). The density of

f-states is given by

and the average number of f-particles is

n ,,r.nf=<Tf+fcr> -tan-1(-), T 0
'-~' it ef

(8)
__NT _b2V2Pc

Tre/
° e/

In order to evaluate the second Euler-Lagrange equation (5b) one needs the local

f — c Green's function

Gfc(w) b0VN-^2G0cHGf(u;) (9)

where

Using

g»(«) y —-—- (io)CK ' ^ U> - Ft -1-7.0 V
w - tk + iO

k

XI < fìcvo >= ~JduImGfe(u) (11)

one finds from (9) the equation for the energy scale

^,,-y^^lpA] (I2)

which may be solved in the Kondo limit, i.e. for large negative e°,, to give

(e2 r2)1/2^rjf=jDexp(^_} (13)
V*pc

Since we expect n/ —> 1 in the Kondo limit, we find from (8) that

r ~ ^ (14)
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and

Tk
(15)

V2Pc V2Pc

The real f-electron propagator is defined in terms of the slave bosons b and pseudo

fermions / as G£-e'(-r) - < TT{b+(T)fa(T)f+(0)b(0)\ >. In the above MFA the

Bose operators factorize, i.e. G^~el b2Gfa. Hence, the f-electron DOS is given by

Pf-el(e) bÎPf(e)> with />/(«) givel1 by CO-

In the Kondo limit and for N large the density of states pf-ei(e) shows a res¬

onance of width T oc -^ located at energy Tk above the Fermi energy (see Fig. 1).

A more refined calculation shows that there remains a broad maximum at e°p the

position of the atomic level.

IE)
Pf-el

E

Fig. 1: Density of states of /-electrons in the Kondo problem.
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The thermodynamic properties at low temperature may now easily be calculated

(Read and Newns 1983). One finds a linear specific heat cv 7T, with

7 s \k%nf/ef (16)

and a T-independent magnetic susceptibility

X ^ PÌffnf/tf (17)

as appropriate for a Fermi liquid at low temperature. A critical quantity in this

problem is the so-called Wilson ratio

R _/***i\X
V Plff ' 7

*23_
2

found to be R 1 in mean field theory. Deviations from R 1 are a measure of the

local Fermi liquid interaction induced by the Kondo impurity (Nozieres 1974).

The above results should be compared with the exact solution of the large N

model, obtained using the Bethe ansatz method, which is given by (Andrei et al.

1983; Tsvelick and Wiegmann 1983)

For N — 2, this is equal to R 2, the value first obtained by Wilson. In the limit

N —> 00 the mean field result (16, 17) is seen to agree with (19), but one should also

note that this limit is trivial in the sense that many body renormalization is absent

from R.

Corrections to the mean field result may be calculated in a systematic way by

expanding in -^. The leading correction is obtained by summing the diagrams with
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the maximum number of fermion loops in each order (this is similar to the usual

RPA approximation for the electron gas, which is the first correction term in the

limit of high electron density). Alternatively, the -^-correction is obtained from a

calculation of the Gaussian fluctuations about the mean field in a functional integral

representation. The results (Rasul and Hewson 1984) obtained to O(j^) for ns,

7 and x are in agreement with exact Bethe ansatz results (Ogievetskii et al 1983,

Schlottmann 1982), if the cutoff energy in the latter is suitably chosen.

3. Anderson Lattice

The preceding mean field theory may immediately be carried over to the Ander¬

son lattice model (Read and Newns 1983; Auerbach and Levin 1986; Millis and Lee

1987), defined in slave boson representation by

H He + e°f Çni + VN^'2 £ [<&&+/,•„ + h.c]
ia ia (20)

Introducing the mean field values b0 and A of 6; and Aj one finds the effective Hamiltonian

Hmf Hc + (e°f + X)J2 fcfk* + KVN-V2 X>+CT/k(7 + h.c.)
Va k<7 (21)

A\(bl-1).
Diagonalization yields renormalized quasiparticle bands with energy

*£ \{*1 + * ± yftet - <02 + W0V2/n} (22)

where the renormalized /- level energy is given by €/ A + A (see Fig. 2).

Minimization of the free energy yields the same Euler-Lagrange equations (14,15) for b0
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and A as for the single impurity problem. In addition, the chemical potential p needs

to be determined by fixing the total number of particles

n nf + nc nf+N(p- ea)/2D (23)

Here ea is the lower band edge of the lower quasiparticle band and a constant bare

density of states Pc jg has been assumed. The characteristic energy scale is set by

the renormalized /-energy:

TA ef-p (24)

determined by the equation

TA
TA - (e°f -p) -NV2p°c Mpf^) (25)

•0--S
A•/////•' // /EkE,+

—•—•
Ef

#—•—•

Z./' Ek

///
Fig. 2: Quasiparticle bands in a slave boson mean field theory of the

Anderson lattice.
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The specific heat coefficient 7 and the magnetic susceptibility are given by the

single impurity result (16,17) plus the conduction electron contribution

T-^(g+», ro

* %ifai> «
and the Wilson ratio R 1 in MFA.

These results provide a first qualitative explanation of heavy fermion systems:

for large negative (t°, — p) and small hybridization V the characteristic temperature

Ta << Tf, the Fermi temperature. Consequently, 7 and \ are strongly enhanced by

an effective mass factor ^- ss ^e.. The charge susceptibility Xo on the other hand,

is found to be essentially unrenormalized.

The interpretation of this ground state is that of Kondo screened spins, where

however the screening is a collective effect. This is seen by analyzing the conduction

electron Green's function, which in MFA takes the form

Gc(k,u,)=
*

Ç5p- (27a)
ii) A u — eu :—¦—

At low frequencies, Gc reduces to the quasiparticle form

G'(k,w) ;
Z

,u>«\ts-p\ (27b)
w — Vp I k — kp I

where vF y^vp and z -^ is the quasiparticle weight factor. As seen from (27a),

Gc(k,w) approaches its noninteracting form Gc ° — (u> — e*)-1 only at much higher

energies u> »\ Vb0 |, i.e. energy states in a shell of width ~| Vb0 | about the Fermi

surface participate in the formation of the Fermi liquid.



Vol. 63, 1990 Wölfle 295

Furthermore, the spin polarization cloud around a given / spin may be shown to

contain only T/D «1 electrons, in contrast to the impurity case, where exactly one

conduction electron is needed to screen a local spin| (Millis and Lee 1987). Nozieres

(1985) has pointed out that the screening of magnetic moments in an Anderson lattice

can not easily take place locally at each site in an independent fashion. Given the

extension of a screening cloud by £ Kvp/Tk, for Tk « Tp the screening clouds

overlap substantially. If the characteristic velocity is replaced by vF -^vp, £ turns

out to be of the order of one lattice spacing, which would be acceptable. On the other

hand, only a fraction Tk/Tf of the conduction electrons takes part in the screening

of a single local spin, whereas the total number of conduction electrons would be

necessary in the lattice case, i.e. all states in the energy band. This is clearly not

the case, and as explained above only a fraction T/Tf of the electrons participate

in the correlation effect, in contrast to the simple independent Kondo ion picture.

Similar results have been obtained by variational methods using an adaptation of

the Gutzwiller approach to the Hubbard model for the Anderson lattice (Rice and

Ueda 1986), with one important difference: the Wilson ratio R, found in slave boson

theories as given by (19), is found in the variational theory to depend crucially on

the ratio a — [(eZ — p)/(^NV2)], as R oc —£n~1a. For a < 1 the spin susceptibility

is found to be negative, signalling a ferromagnetic phase transition. In other words,

the normal Fermi liquid state is stable only for sufficiently large degeneracy N. It is

unclear whether the variational result (presumably valid for all N) or the slave boson

result for R (up to order 1/N) are more reliable.

While the above mean field results appear reasonable, an extension of the theory

to higher temperatures, to dynamical properties and to the calculation of the
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quasiparticle interaction has proved to be difficult. A straightforward evaluation of

the mean field theory at finite temperatures gives poor results. Here the main problem

is that the mean field assumption < b >= b„ corresponds to introducing a Bose

condensed ground state. With increasing temperature the condensate will be

depleted until at the critical temperature Tf a thermodynamic phase transition into

the normal state takes place. The latter is an artefact of the meanfield assumption.

In fact Bose condensation of slave bosons is impossible because the bosons at each

lattice site are separately constrained by (3). As a consequence the model has a local

gauge symmetry with respect to simultaneous gauge transformations fia —» e^'fia

and bi —> e^'bi, which eliminates the possibility of spontaneous symmetry breaking

as implied by a finite expectation value < bi > (Elitzur 1975). Indeed, the calculation

of < bib~j > to order ^ shows that long range order, present in mean field theory,

where < b >^ 0, is destroyed by the phase fluctuations and only power law behavior

< bibf >oc (Rij)-1^ remains at T 0 (Read 1985). At finite temperatures the

spatial decay of < bibj > is exponential. The effect of fluctuations can be expected

to be largest in the transition regime and T ~ Ta or w ~ Ta- A meaningful treatment

of fluctuations clearly requires a nonlinear theory.

In a certain sense, such a theory already exists in the form of a self-consistent

theory for the pseudo fermion and slave boson propagators: the non-crossing

approximation or NCA (Kuramoto 1983). Originally derived diagrammatically using a

particular form of perturbation theory in V (Keiter and Kimball 1971), the NCA is a

kind of self-consistent one-loop approximation for the fermion and boson self-energies

E£ and E1. The NCA may also be motivated using the slave boson method. For the
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impurity problem, the selfenergies are found to satisfy the coupled equations

S£H V2 £(1 - /k) Ij- (28a)
k ui - e* - 2^ (w - ek)

E»(W) W2 XI /k 1—j- (286)

In general these equations have to be solved numerically.

Comparing the NCA results at not too low temperatures with exact results for the

static properties one finds remarkably good agreement. Unfortunately the violation

of exchange symmetry inherent in the NCA leads to spurious singularities in the NCA

solutions in the limit of zero frequency and temperature, such that all Fermi liquid

relations are badly violated for finite N. However, the energy scale below which the

singular behavior develops is given by Tnca Tj^/T, which in the Kondo limit is

well below Tk itself, so that the NCA describes the crossover from low temperatures

Fermi liquid behavior to high temperature local moment behavior correctly (Bickers

1987). An extension of the NCA has been applied to the lattice case (Grewe 1987).

More recently Jin and Kuroda (1988) have reported a diagrammatic 1/JV ex¬

pansion for both the impurity and the lattice Anderson model, which reproduces the

limiting behavior at low temperatures and at high temperatures correctly and is free

of spurious singularities. Starting point is the Hamiltonian (20), for which a perturbation

theory in V is considered. The three propagators for the pseudo fermions,

Gl(iu)n), the conduction electrons G^a(iwn) and the slave bosons, D(ivn), are given

in the lowest order by

Gi <•>(«*») (iwn - A - e})"1 (29a)

Gk<rc (0)(iwn) (tu„ - ek)"1 (296)
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D<0)(u/n) (iv - A)"1 (29c)

At this level one is working with a grand canonical ensemble with respect to the

particle numbers Qi. The physical subspace (Qi =1) may be projected out of any

correlation function or expectation value by considering the limit A —> oo as defined

by (Coleman 1984)

<ô>= hm [<ôniQi>x/<n<gi>Al, (30)
A—*oo L J

where < >\ denotes the expectation value in the grand canonical ensemble. The

limiting process (30) allows to pick out of the fugacity expansion of < O >\=

2{Qi> < Ô >{Qi} *A l-n^ the terms with Qi 1. For the free energy, a more

convenient expression is (Coleman 1984)

AF « -| Hm [tn{< lUQi >x exp(-/? £ A,)}] (31)

Gc : ~*~
Gf : -*-
Gb : —-

F <jC~ò> + aQ
"*

0ai 0(1)

?C3> ?'••£>¦• °Q
a i *j

Fig. 3: Diagrams for the free energy of the Anderson lattice.
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The diagrams may now be selected according to the following rules: (i) only

diagrams with exactly one loop of fermion-boson propagators need to be considered

(ii) diagrams with n fermion loops (consisting of pseudo fermions and conduction

electrons) and 2m hybridization vertices contribute in order Nn~m (see Fig. 3).

For the single impurity problem Jin and Juroda (1988) calculated the thermal properties

free energy F, number of fermions n/, spin and charge susceptibility, analytically

to order 1/N in the three temperature regimes defined by T « T„, T0 > T « Tk

and T »Tk, where T0 Tk/ItiN, and Tk is the Kondo temperature. The results

agree with those of previous 1/N calculations for T « T0 and with standard

perturbation theory at T >> Tk- These authors also discuss the relaxation time of a

conduction electron due to scattering off the impurity, and find

i f^n-Wi. T«T° ,_
I *W[«»£5,-4<j)]»+(»)» ' lK

in agreement with a jj expansion at T << T„ (Houghton, Read and Won 1987) and

the high T limiting behavior (here c is the impurity concentration). It may be shown

that the Friedel sum rule

1

=^sin2(^) T 0 (33)
2t irpc N

is satisified up to and including 0( ^j) terms.

The transport properties of the lattice may also be calculated using this method.

Defining the T matrix in the grand canonical ensemble by

Tij(iwn) -V2 J e*-* < rT[/i<T(r)6+(r)6j(0)/+ (0)]n4Ç< >a (34)
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the quasiparticle relaxation rate is given by

-L -Im{ Km [Çe»*-»*)n,(£i + iO)/ < »Q >]} (35)

It turns out that the dominant term at low T appears only in order ^5, such that

(Jin and Kuroda 1988)

in agreement with Fermi liquid theory. The numerical coefficient in (36) has not been

confirmed yet by an independent, e.g. functional integral, calculation.

The above results are encouraging and raise the hope that a controUed theory of

the Anderson lattice model may be within reach. There remains the question of how

rapidly the 1/iV expansion converges. Is it sufficient to calculate quantities to order

1/N3, if one is actually interested in N 2, or does one need to sum up an infinite class

of contributions of the 1/N expansion? The answer to this is not known at present,

but it is more Kkely that the latter alternative applies. In this case it is advisible

to look for a self-consistent approach in which large classes of diagrams are summed,

while at the same time certain exact relations are conserved in the approximation.

One possible approach would be to work within the grand canonical ensemble (with

respect to Qi) and to attempt to recover the exact constraint by including suitable

vertex corrections (Hirschfeld, Muttalib and Wölfle 1989). The vertex functions A/,;,

defined by
A'ft.i,,«,) s -(r{Q(<o/«r(<j)/+(<»)}>

(37)

Ab(h,i2,t3) -(T{Q(<1)6(<2)6+(t3)})

obey the Ward identities (in frequency space)

nA0(a) + n,w) G0(ü; + n)-Ga(w), a /,6 (38)
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which are crucial for the preservation of the constraint (3). In fact from (38) it

follows that the constraint correlation function (Q(t)Q(0)) is identically zero at all

times, provided the A's are smoothly varying functions.

Conserving approximations are introduced for the fermion and boson self-energies

E£ and E*, defined as usual by

<#K) ; _„ : (39a)
wn - e°f - A - Ei(w„)

and

Bose condensation is not allowed to occur and the average constraint is used to

determine A. This requires a particular shape of the Bose spectral function Ab(u>)

^ImGJ(w) in order to aUow for a finite number of bosons at T 0. Since u;A6(w) > 0

on general grounds, one must have a finite negative portion of Ab(u>) for u> < 0, such

that at T 0 the number of bosons is given by

nb
r°

- duAb(io). (40)
J — oo

A finite negative frequency part of Ab can only appear through a frequency dependent

self-energy. Since we are interested in the Kondo limit, the number of Bosons rc&

may be assumed to be small. In this case the ladder diagrams give the dominant

contribution (see Fig. 4) and E^ and E6 may be approximated by

E'K) - -V2T£GV„ - oOG'K) (41a)

EVn) (25 + 1)V2T £G'K + OG'«) (416)
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Here Gc is a "screened" conduction electron propagator, given by

G>„) G>„)[1 + £(«„)<?>„)], (42)

where Gc is the bare local conduction electron Green's function and L(wn) is the sum

of the f-b ladder diagrams,

with

I»/ [(£S/)-1-V2G>»)]-1

L°bf(wn) -T ]T <?'(««)<?>* - wB).

(43)

(44)

-*Ä
Gc

Fig. 4: Fermion and boson self-energies in a self-consist ent theory of the

Anderson lattice.

It may be shown that the above approximation is conserving in the sense that the

Ward identities (38) are satisfied, provided the irreducible vertex function is chosen

to be equal to Gc.
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One may also show that the Fermi liquid relations, e.g. the Friedel sum rule (33),

are satisfied in the above scheme. The evaluation of the self-consistent equations for

E* and E° requires a substantial numerical effort and has not been completed yet.

FinaUy there remains the important problem of magnetic interactions between

localized spins in the Anderson lattice. Crudely speaking, one expects a magnetically

ordered state for sufficiently small exchange interaction J Y_ of localized spins

and conduction electron spins. The effective spin-spin interaction is in lowest order

given by the RKKY expression

Hrkky ^i,jIijSi • Sj, (45)

with

lij (Jpc)2epF(2kFRij) (46a)

and

F(x) (ecosx — sinx)/z4. (466)

A simple, and possibly too naive estimate of the region of stability of the magnetically

ordered state is obtained by comparing the energy gain of a pair of localized spins at

distance R in the Kondo effect, 2(e*l — tf), to the energy gain by magnetic ordering,

2e® — (Hrkky). For nearest neighbor distances R satisfying the condition

(kpRf $ ^{NJpc?^ (47)

one expects magnetic ordering to play an important role. The latter is clearly

suppressed at large N and for not too small exchange coupKng J (recall Tk ~

exPÌ~N7JTc))-
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The above simple estimate is contradicted by a numerical study of the two impurity

problem using Wilson's renormalization group transformation. (Jones and Varma

1987; Jones, Varma and Wilkins 1988). There one finds that a Kondo quenched-

moment state is formed for aU values of ferromagnetic (i.e. negative) RKKY coupling,

and for antiferromagnetic coupling such that J < 2Tjf. The actual screening process

may take place in several stages, depending on whether the two impurity spins form

a singlet or a triplet state first or do not bind at all, before the spins are quenched

at lower temperature. An unstable fixed point of the RG procedure is found at the

relatively large antiferromagnetic value J ~ — 2Tk- At this point the staggered

magnetic susceptibiKty and the specific heat coefficient 7 are found to diverge whereas

the uniform susceptibiKty remains finite. Beyond this point, i.e. in the limit of large

AF local-moment coupKng the local moments are not screened anymore and a total

singlet state is formed. Apparently the AF correlations between the two conduction

electron spin clouds screening the local moments become so strong as to render a

complete screening impossible.

There does not exist a theoretical formulation which would allow to reproduce

the above findings in a simple qualitative way. The problem seems to be that in the

conventional slave boson formulations discussed before the RKKY interaction comes

in only at order 1/N2, which implies that any interference effects between RKKY and

Kondo interaction would have to be looked for in even higher order of 1/N. The fact

that the slave bosons do not carry spin introduces an assymmetry in the treatment of

charge and spin fluctuations, which is an unpleasant feature of this approach. There

are, however, alternative slave boson representations of the Anderson model, such as

the "labelKng of states" approach introduced by KotKar and Ruckenstein (KR) (1986)
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mainly for the Hubbard model. There one defines slave bosons for each atomic state

at the lattice site i, the empty state |i'0), the singly occupied ones \i |), \i [) and, if

necessary, also the doubly occupied one \i fj.), so that

\iO)=ef\vac) (48a)

N=(/^i).H »=î.l (486)

|iîI)=^/^H- (48c)

where /, /+ are the fermion operators of the localized electrons. In the original

formulation of KR only two bosons pj, p| for the singly occupied state were introduced,

leading to a violation of spin rotation invariance. A manifestly spin rotation invariant

formulation requires the introduction of four bosons, a scalar (spin 0) boson po, and

a vector (spin 1) boson p (pi,P2,Ps) (Li, Wölfle and Hirschfeld 1989).

The Anderson lattice Hamiltonian can be expressed as

H HC + Hf+VY, {4a4fi*Pi°'° + h-c)
i,°,a> (49)

+ (constraint terms),

where piaa> l/\/25fa P»/*(T>)<"" ^1^ *^e 1V are ^e un^ matrix ro and the three

PauK matrices Tj. There are now two types of constraints, the one expressing the fact

that there is exactly one boson at each lattice site at any time, or

Qi e+ei+ pfPia + pf ¦ pi 1 (50)

and a further constraint guaranteeing the correspondence of fermions and bosons,

to(wtPi) Y,f£{Tli)a<,.fi(r,. (51)
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As pointed out by Kotliar and Ruckenstein, the straightforward introduction of

the slave bosons into the mixing term as in (49) leads to problems in the weak coupling

limit U —> 0. Therefore, they proposed to define a "normaKzed" projection operator

in (49)

Hmix= £) (ctfia-Zia'a+h.c) (52)

with z (generalized to the spin-rotation invariant formulation) given by

Zi [(1 - dtdi)r0 - ptp.] -1/2 (efp. + pUi) [(1 - ete,-)xo - P[pJ "^ (53)

In the weak coupling limit and for rif ^ 1, the expectation value of all the Bose fields

tends to 1/2 and hence z —» 1, as it should. The latter choice of Hmix leads in mean

field theory to the same results as have been found within the Gutzwiller variational

approximation (Rice and Ueda 1986). In particular, the characteristic temperature

for Kondo screening is found to have an additional factor of 1/2 in the exponent (this

holds for degeneracy N 2), as compared to the standard definition of the Kondo

temperature. In the above formulation the same result would be obtained for the

single impurity in contradiction to exact results. Therefore, in order to recover the

known Kondo temperature Tk for the N 2 Anderson impurity in the above formulation

fluctuation corrections must be taken into account. A systematic investigation

along these lines has not been performed yet. The above formulation does have the

attractive feature of treating charge and spin degrees of freedom on the same level.

It therefore should be better adapted to describing the competition between Kondo

screening and RKKY interaction.

Even if all the above questions have been answered, the application of the

Anderson lattice model to real systems still requires to take the lattice structure into
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account. This problem has been addressed by Fulde et.al. (1988) in a model where

the Kondo ions are described as atomic potentials scattering electrons resonantly (i.e.

the scattering phase shift is tt/2). In this way one hopes to take into account the

many-body renormalizations of the band structure.

4. Conclusion

As discussed above, important progress has been made in recent years in un¬

derstanding the physics of the Anderson lattice. The properties of the ground state

and the weakly excited states are believed to be reasonably weK described by the

1/N slave boson techniques, although even there discrepancies between different

approaches (e.g. slave boson versus Gutzwiller approaches) still exist. The behavior at

higher energies and/or temperatures is not weK understood, especially regarding the

crossover from the low temperature Fermi Kquid regime to the high temperature local

moment regime. The importance of the RKKY interaction for the interesting case of

moderately small antiferromagnetic Kondo coupling is unclear. Possible approaches

for solving these problems have been suggested here.
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