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THE HUBBARD MODEL FOR LARGE U

T. Dombre

Centre de Recherches sur les Très Basses Températures,

C.N.R.S., BP 166 X, 38042 Grenoble-Cedex, France

Abstract: We review the present understanding of the physics of the Hubbard

model in the strong coupling limit, with a special emphasis on the two-

dimensional square lattice.

I - Introduction

The Hubbard model describes fermions on a lattice, with only one
+

orbital degree of freedom and spin 1/2, subject to an on site-repulsion U. If c-

denotes the fermion creation operator on site i with spin a =± 1/2 and t the

nearest neighbour hopping integral, the Hubbard Hamiltonian takes the form

H -t X(c|Gcja + h.c.) + UXniTnii (1-1)
<ij> i

This Hamiltonian was introduced in 1963 by Hubbard1 and others2'3 as a

theoretical way to capture the main effects of correlations in narrow d-bands of

transition metals. The first term represents the ordinary band energies of the

electrons for instance ek -2t (coskx + cosky) on the two-dimensional square

lattice with lattice spacing a=1). The local interaction term represents the Coulomb

repulsion between localized Wannier states on the same site. Thanks to the Pauli

principle, it acts only between electrons of different spin. The other matrix elements
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of the long range Coulomb interaction are completely neglected in the model.

Some justification for the validity of this approximation in real life may be found in

Hubbard's first paper. At zero temperature, the model depends only on 2

parameters: t/U the ratio'of the kinetic bandwidth over the interaction strength, and

Nt+Ni
n =—r-—the average site occupancy, to be noted in the following as 1-S.

In spite of its apparent simplicity and an exact solution in 1D4,

properties of the Hubbard model for d > 1 are hardly understood. Interest in

the 2D-case was naturally boosted up by Anderson's suggestion5 that it might

be relevant to understand the physics of high Tc superconductors. An

important issue is therefore to know whether the groundstate of Hamiltonian

(1-1) can be superconducting in some region of the parameter space (t/U,5).

But there are many other interesting problems like the interplay between

itinerant ferromagnetism, antiferromagnetism and paramagnetism or the

possibility of metal-insulator transition6 by correlation effects... At the present

time, we are certainly still ignorant of the full richness of the Hubbard model

and to draw even an approximate phase diagram appears like a very risky

task! In these introductory notes, I shall rather try to give a simple acount of the

various physical phenomena which happen in the limit of large U and small 5.

Some of them are known since a long time, others were discovered recently.

For simplicity, we will concentrate our attention to zero temperature properties

on the square lattice in 2D, although it is clear that many effects to be

discussed in the following find an extension to higher dimensions or other

lattices.

II- Strong coupling expansion

In the large U limit, difficulties arise when the density n of fermions becomes

comparable to 1. Indeed, when n « 1, the fermions can be seen as a dilute gas with

an effective interaction renormalized from U to some two-body scattering metrix of
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order t3: one therefore expects the formation of a featureless paramagnetic liquid at

low enough density. On the other hand, while approaching half filling (n=1),

correlations between spins T and 1 become very strong and fermions tend to

localize. On bipartite lattices, there is an electron-hole symmetry which allows to

relate the properties of the system at 1<n<2 to those at n<1. Let us indeed rewrite H

as

H= "t Ic|Gcja + UX(niî-i/2)(nii-i/2)-uè-f-) (11-1)

<ij> i

+
and make the substitution Cj -» ru c\a where r\,=+'\ on sublattice A and -1 on

sublattice B. It turns out that the first two terms are invariant in this transformation.

This implies in particular for the energy

E(n) ^-= E(2-n) + U(n-1) (II-2)

Therefore, it is enough to study the n <1 part of the phase diagram of the Hubbard

model (corresponding to the introduction of holes in a half-filled band).

For large U, real doubly occupied sites are energetically very unfavourable.

One natural way of describing the low energy physics of the Hubbard model

consists in writing an effective Hamiltonian within the subspace of no doubly

occupied sites7-10. Admixture of virtual doubly occupied sites will result in

successive corrections to the Hamiltonian in powers of t/U. To see how this really

works, let us separate in the hopping processes of (M-1) the ones which do not

change the number of doubly occupied sites

H° _t X {(1"ni-o) c^Cjo 0-nj-o) + ni-cr <4 Cjo- nj.CT + h.c.j (II-3)



264 Dombre H.P.A.

from those which destroy or create a doubly occupied site (to be called hereafter

mixing terms)

Ht+ + Ht _t X jni-oC*Cjo(1-nj-a)+(1-ni-a)(^Cjanj^ + h.c.l (II-4)
<ij> I J

One then performs a unitary transformation which to lowest order in t/U eliminates

t++Ht"the troublesome part of the Hamiltonian Ht +H

Heff eiS He-iS H+i[S,H] + i2/2 [S,[S,H]] + (II-5)

The condition that Ht +Ht=-i [S,H0] yields at once S=-i/U (Ht -Ht), up to corrections

of order (t/U)2 and leads to

|0Heff=H^-1/U[Ht,HtT] (II-6)

New mixing terms have appeared in Heff beside the result (II-6) but they are of order

t/U compared to the initial ones. Clearly the procedure can go on recursively by

expanding S in powers of t/U. Although there is no proof of the convergence of this

infinite perturbation series, it is generally believed that Heff in (II-6) is a good

approximation to the Hubbard Hamiltonian provided that U > zt (where z is the

coordination number of the lattice).

Let us now make more explicit the expression of Heff acting on the subspace

of no doubly occupied sites. One gets

Heff -t £ (c+cio + h.c.) + 4t2/U X (S*jS*j - ^)
<i,i> <ij>

o

-t2/U £ (c^nj^Cia-C^C^CjoCk-o + h.c.) (II-3)
<i,j,k>
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where the operators cio=cio(1-ni-a) are fermion annihilation operators

projected on the subspace of no doubly occupied sites and ^\ is the spin

operator 1/2[cJaTCTo' eia'] •

The first term describes direct hopping between nearest neighbours.

The third one corresponds to an indirect hopping process between next

nearest neighbours. It involves the virtual creation at the intermediate site j, of

a Î4- pair, which then releases one of the spins î or i to site i. These hopping

terms become meaningful only at nonzero 5, since at half-filling electrons

cannot move without violating the constraint. The third term is usually not

retained in the so-called t-J model, because it is t/U smaller than the leading

hopping term.

In the half filled case, Heft reduces to the antiferromagnetic Heisenberg

Hamiltonian with nearest neighbours coupling constant J=4t2/U. This

exchange interaction first obtained by Anderson11 has the same physical

origin as the last part of Heff. Neighbouring antiparalell spins can lower their

energy by virtually sharing the same site. This favours the formation of local

singlet pairs (with energy -3/4 J). The nature of the groundstate of a quantum

antiferromagnet is not as simple as for a quantum ferromagnet, because the

classical Néel state with staggered spin order is not an eigenstate of the

Hamiltonian. Whether or not the ground state for spin 1/2 possesses long

range spin order in 2D has been a highly debated matter these recent years,

following the suggestion by Anderson5 that strong quantum fluctuations could

rather favour the formation of a spin liquid state, in contrast to the "crystalline"

Néel state. We shall come back to this question in the next section. It is worth

noting that the tendency towards antiferromagnetism is also observed in the

weak coupling limit (U/t «1) and that it occurs at infinitesimal values of U on

bipartite lattices due to the perfect nesting properties of the Fermi surface12'13.
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In eq.(ll-7), the projected operators c- and eia are rather awkward

operators which do not have good commutation rules on the same site. This

makes diagrammatic expansions in terms of these operators very

complicated. An elegant way to bypass this problem consists in the

introduction of auxiliary fields which keep track of the empty sites, in the same

spirit as the slave boson approach14 in the mixed valence problem. In the

present case, two ways are opened: either occupied sites are described by
+ +fermions Cj and empty sites by a boson bj with the constraint that at each

site the number of bosons and fermions be equal to 1. The physical electron

(as involved in hopping events) is then represented by the composite operator
+

CjGbi. Alternatively, one can describe spins by Schwinger bosons operators15

Sj=1/2(b|aTaa'bia') and holes by a spinless fermion operator yi with the

same constraint as before. In the first formulation the t-J hamiltonian reads

-lI bi C^Qa^-J/2 £ ((iqaXVQrfK^bibfbjlX^ifl c|aCio+bi+bi-1)(ll-8)
Ü <ij> I J i aa

The Lagrange multiplier X-, enforces the constraint at each site, while the

remaining part of the Hamiltonian evolves obviously inside the restricted

subspace. A similar expression is obtained in the second formulation with

appropriate changes of operators. Note that now charge and spin degrees of

freedom are clearly disentangled, but strongly coupled by the hopping term.

Although both formulations are exact, they lead to very different physics,

once approximate treatments are introduced. The Schwinger bosons

approach gives certainly a more physical way to deal with spin variables

(which applies to arbitrary values of the spin) The fermionic approach, on the

other hand, may become more useful at relatively high hole concentration,

where it allows to recover quite naturally a Fermi liquid picture.
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III- Half-filled band

The only physical processes left in this limit are spin exchanges. It is

now widely accepted that the ground state of a S=1/2 quantum antiferromag-

net possesses long range order on the square lattice. Moreover, usual

bosonic spin waves are thought to give a good description of the elementary

excitations.

Evidence for long range order comes from exact diagonalization on

finite clusters16-18, Monte Carlo calculations19, Monte Carlo variational

methods18'20'21 or renormalization group analysis22. To get some feeling of

the problem, it is instructive to look briefly at the different wave functions that

have been considered in the third class of approach. On a bipartite lattice,

according to a theorem by Lieb, Schultz and Mattis23, the ground state wave

function vo is a spin singlet. The central question is to know whether the spin-

spin correlation function I<sV^r>I vanishes or tends to a finite value at large

distances. Marshall24 has proven that yo may be chosen to be real in the basis

of the eigenstates of the individual Sj. In addition, yo changes sign upon

exchange of any nearest neighbour pair of antiparalell spins. The Marshall

sign rule can be enforced by seeking \|r0 in the form

Ì7C £(l/2-SjZ)
|\/o> X c{o} e ieB |oi...on> with c{o}>0 (III-1)

where the lattice has been divided into two sublattices A and B and {a}

represents the 2N possible spin configurations. The classical Néel state
x

<Sj >=±1/2 is obtained for constant weights c{o}. Quantum corrections to the

classical wave function may be introduced by taking c{a} ~ exp - [EK(rij) S; S, 1

i,j ¦ J

25,18,20 Usually, the wave functions obtained in this way are not singlet states.

They rather describe broken symmetry states, with a finite staggered
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magnetization along the x direction. Very good values of the energy were

obtained in ref.20, by allowing long range distribution of the two-spin

interactions K(ry) (E ¦» -0.3319J per bond, to be compared to series estimates

-0.334J 26).

In a RVB-type approach, Liang et al.21 studied singlet wave functions of

a Jastrow-type

lYi> S h('H1> -h('n-Jn)(il.Jl) - On.jn) (M-2)
iaeA
jßeB

where (i,j) |iTjl> - |iljî> is a singlet bond between a A-site and a B-site and

the summation is over all possible coverings of the lattice by such bonds. The

Marshall sign rule is obeyed if h(i-j)>0 at all distances. If h(i-j)*0 only for

nearest neighbours, one recovers the dimer wave function introduced by

Sutherland27, which is known to have very short range AF order28. If on the

contrary h(l) does not depend at all on the bond length it can be shown that

\|/1 describes a classic Néel state averaged on all spin directions. In ref.21, the

best variational states (E -0.3344J per bond) were obtained when including

long bonds with a power law decrease of h(l) and these states displayed long

range order. However, disordered states with only short bonds were found to

lie very close in energy (E -0.3338J).

Beside variational approaches, renormalization group study of the long

wave length action of Heisenberg antiferromagnet22 strongly suggests that

S=1/2 is above the critical value Sc where spins disorder because of zero

point quantum fluctuations. The same conclusion was reached by a mean

field theory15, based on the Schwinger bosons representation, which

decouples the spin interaction in a BCS-like approximation by introducing the
A B A B

order parameter D^=<biTbj * rbjjb: Aî> on each bond. In this approach, Sc

was found to be of order 0.19. For S<SC> there is a gap in the mean field
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boson (triplet) excitation spectrum and the spin-spin correlation length is finite.

For S>SC, the gap closes, which means long range antiferromagnetic order. In

this regime, the low energy excitations are well described by usual spin wave

theory around a broken symmetry Néel state.

In contrast to the bosonic theories, approaches based on fermions

unavoidably lead to disordered spin liquids. The Princeton group29 introduced

as a candidate for the description of a quantum spin liquid the Gutzwiller wave

function30

iv> pg n 4Ai i°> 0"-3)
EK<ef

where Pg is the so-called Gutzwiller projector on the space of no doubly

occupied sites. Here, Pg is applied to the Fermi sea of tight binding electrons

at half filling (described by the energy dispersion Ck =-2t(coskx+cosky)). This

wave function is known to give good results in 1D for the energy and the spin-

spin correlations31. \|/ in (III-3) is obviously a singlet wave function (the

property is true for the independent electrons wave function and is preserved

in the Gutzwiller projection).In 2D, y turns out to be not so satisfactory33.

Within this family of RVB-wave functions, better results are obtained when one

forms Slater determinants with eigenstates of tight-binding electrons moving

in a magnetic field of flux k per plaquette, which creates two subbands of

energy ek=±2Wcosi!kx+cos2ky. This is the flux phase, first discovered by

Affleck, Marston34and Kotliar35. It is worth mentioning at this point, that there is

a close paralell between these variational wave functions and Hartree-like

factorizations of the Heisenberg Hamiltonian in fermionic variables29'34-35
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H-X .IMIil2"
Aij(CjTCiT+CjiCi4,) + h.c. - -J (III-4)

where the order parameter Aij=<Cj1.CiT+Cj|Cji> is a complex number

measuring the formation of singlet bonds between neighbouring sites.

Both Monte-Carlo calculations36 and mean field theories favour the flux

phase whose energy however remains rather far from the estimates for the

true ground state. In the mean field approach (which becomes exact in the

formal limit of a large number of fermion colours), the best choice for the Ay

happens to be a dimer phase (where each site is linked to only one of its

neighbours so that there is no bond overlap). The flux phase was even shown

to be unstable against dimerization37.This trend could signify the inadequacy

of fermionic variables for representing spins at dimensions greater than 1. It

has been argued in ref.38 that the fermionic theories (with their prediction of

dimer phases) may give a good description of strongly disordered spin liquids.

IV- The infinite U limit

In this limit, Heff reduces to the nearest neighbour hopping term. Spins

have no dynamics by their own, they move only through collisions with holes.

At half filling, the ground state has a 2N degeneracy corresponding to the two

possible spin orientations per site.

IV-a) One hole problem

There is a theorem by Nagaoka39, which states that the ground state is

ferromagnetic on bipartite lattices, i.e. it has the maximum total spin S=-p-.

This result can be understood as follows: the vacancy, by hopping from site to

site, scrambles the spins behind it and usually leaves after running along a

closed loop a final configuration of spins orthogonal to the initial one. So a
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disordered spin configuration destroys the coherence of Bloch states and

reduces the effective bandwidth of the vacancy. It is only in a perfect

ferromagnetic environment that a vacancy can take its minimal kinetic energy

-zt.

This band narrowing was studied by Brinkman and Rice40 in various

spin configurations. In the case of Néel order, they used a retraceable path

approximation, which turned out to be very accurate and found an incoherent

band of width 24R(z-1) t < 2zt, except in 1D where z=2 (the absence of band-

narrowing in this last case is an exact result: at infinite U, fermions cannot

cross and are therefore insensitive to their spin degrees of freedom in 1D). As

discussed in ref.41, the Brinkman Rice approximation amounts to neglect any

overlap between the various strings of overturned spins that the hole leaves

behind its path. It was noticed in ref.42, that this assumption fails as soon as

the hole goes around a loop one and a half times but these paths become

significant at relatively high energy compared to the bottom of the band.

Nagaoka's theorem raises the important question of the domain of

stability of the ferromagnetic phase in function of the concentration of holes. At

high density of holes (n«1), it is clear that a paramagnetic phase will appear

since it costs a lot of kinetic energy to align all the spins. Estimations for the

instability threshold from the paramagnetic side are difficult and not very

reliable because of the strong correlations From the ferromagnetic side, one

may look at the local stability with respect to the reversal of one spin (creation

of a magnon): even if the problem looks simpler, it is yet unsolved. The

reversed spin acts as a scatterer for the holes, which keeps a memory of the

collisions through its position. Recently Shastry et al.43 approached the

problem by using a variational wave function which overturns an up spin

electron at the Fermi surface and places it at the bottom of a down spin band

narrowed by correlation effects. More precisely, they considered the trial wave

function
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|Xv> (L)-« Se'qrmc*j, (1 -nmî)ckFT |F> (IV-1
m

where IF> is the ferromagnetic Nagaoka state nc^lO;». They proved the

instability for 8>0.49 on the square lattice.which is of the order of mean-field

estimates3'44. However, there is some suspicion at the present time that more

exotic physics may happen well before reaching these high densities.

IV-b) Two holes problem

Indeed Nagaoka's theorem fails already for two holes on a finite lattice.

This was first observed in exact diagonalization studies on small clusters45,

which showed that the ground state in this case is a spin singlet. The

underlying physics has been convincingly explained in ref.46: two holes can

overcome the cost in kinetic energy due to the Pauli principle, by taking

advantage of the spin texture around them, which helps them to mimic hard

core bosons. To understand qualitatively how this can be achieved, let us

come back to the t-J Hamiltonian in the Schwinger bosons formulation at J=0.

The spins are treated at a mean-field level and we consider a static spin

configuration described by a slowly varying unit vector Q( r If 0 and cp are the
A

Euler angles of Q, then the spinor b =(bî,bi) may be parametrized as

(cos0/2,sine/2e"i(P) and for two neighbouring sites, the spin-spin overlap

intervening in the hopping term takes the form

K—K—

^T^ eicpi
«py - sin26/2 nj • Vcp (IV-2)

We see that the spin distortion reduces the effective hopping metrix but also

gives a phase to it, similarly to the Aharonov-Bohm effect in a magnetic field.
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For topological^ non trivial spin configurations like the skyrmion47, which

wraps the order parameter sphere once, a net flux of 2n is produced, which

affects the hole spectrum. A detailed calculation46 shows that one can build

variational wave functions along these lines, which have a lower energy than

the Nagaoka state with two holes.

To which extent this argument can be extended to finite hole density

and favour "flux phases" over the ferromagnetic state, is not yet entirely clear.

The only firm result concerns tight binding electrons in an external uniform

magnetic field. It has been shown numerically48 and more recently

analytically49 that on a lattice the total electron energy reaches an absolute

minimum, when the flux per plaquette is 2tc times the density, as had been

conjectured by Anderson and Wiegman50. This gain in energy should be

compared to the kinetic bandwidth reduction resulting from eq. (IV-2). It may

also be necessary in the present problem to go beyond mean-field level and

to take into account spin-backflow effects49.

V- One hole at finite U

This is a highly non trivial problem, because the hole moves rapidly and

is strongly coupled to the spin waves. Considerable physical insight has been

gained by first treating the Ising limit (Jx= 0), where the quantum spin

fluctuations are frozen41'51, or the slow hole limit (t<J)52. For the real problem

of the Heisenberg interaction with t»J, the general conclusion is that a

quasiparticle band should form at dimensions >2 42.52-54 of width scaling like J

rather than t. The energy minima are found in numerical work42'56"58 to lie at

the AF zone face center T?=(±k/2,±ji/2) (with a possible shift to (0,ji) above t/J

~4).

V-a) Ising limit
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In the very large U limit, Nagaoka's theorem tells us that the hole

prefers to live in a ferromagnetic environment. However, at finite J, one single

hole can order the spins only in a finite area to avoid a too large cost in

magnetic energy The size of the ferromagnetic region is such as to balance

the localization energy ~t/R2 against the exchange energy ~JR2. A precise

calculation (assuming sharp polaron walls) gives in 2D the energy

E0 -4t + 8.5(Jt)1/2 + 0(J) (V-1)

Note that the inclusion of Jj_would modify the numerical coefficient of the

second term but not the basic physics. This magnetic polaron is a very heavy

object which can move only through the diffusion of magnetization across its

area. In the domain of very low values of J/t where this object may appear (see

below), it is energetically advantageous for many holes to share the same

polaron, so that there is a phase separation between an antiferromagnetic

phase without holes and a ferromagnetic one rich in holes60.

At lower values of t/J, a string-like picture seems more appropriate. In

the space of random walks of the Brinkman Rice approximation, the Ising part

of the exchange hamiltonian provides a confining potential roughly scaling

like Jl, where I is the number of steps (or of overturned spins). As a

consequence, the eigenstates become discrete with an energy spacing

t(J/t)2/3. In ref.41, the hole energy was predicted to be

Ei -2V31 + 2.74t(J/t)2/3 (V-2)

in rather good agreement with recent exact diagonalization results61. As

argued in ref.41, Ex <E0 provided J/t < .005, so that the string polaron replaces

very rapidly the Nagaoka's one. These states are tied to an origin and do not
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form delocalized Bloch states. No binding between two such objects was

found at energy scales t(J/t)2/3, as an effect of Pauli statistics.

V-b) Heisenberg limit

The Jj_part of the Heisenberg interaction is necessary to delocalize

these states and give them a dispersion41'42. This is easily understood in the

small Jx limit. The spin flip term is able to repair pairs of overturned spins in

the trail of the hole. The action of Jxon the first bond of a string attached to

some point makes the new string state look like emanating from one of the

eight next nearest neighbours of this point. This simple argument gives

Ek - J_l (coskx + cosky)2 (V-3)

showing that the energy minimum is pushed on the faces of the AF zone.

Although this naive result cannot be trusted in the Heisenberg limit, it is

suggestive of how a bandwidth of order J may come out, once the energy

scale t has been absorbed in the formation of a string-polaron.

In the Heisenberg case, the vacuum is very different from the classical

Néel state, because of zero point quantum fluctuations. Furthermore, in

contrast to the Ising case, there is no gap in the spin wave excitations. In

ref.53, the problem was formulated as an electron-phonon problem and

convincing arguments were given for the existence of a quasiparticle pole in

the hole Green's function, with a strong renormalization of the mass due to

incoherent scattering processes. Nevertheless, the position of the energy

minimum in function of t/J,the scaling of the bandwidth with J as well as the

relevance of the string picture in the Heisenberg limit are still debated

matters57'58.

V-c) Semiclassical analysis
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The far field distortion of the spins around a moving hole can be

understood in a transparent way by Shraiman and Siggia's semiclassical

analysis52 of the problem. They consider a small t limit and treat the spins

semiclassically. Since Haldane's work on quantum spin chains62, we know

that on a bipartite lattice, the low energy spin fluctuations around the Néel

state may be parametrized as

SA(B)(?) +(-)SQi(T>) + M(t) (V-4)

where Q. is the local staggered order parameter and M* the local
A

magnetization, which is the conjugate momentum of Q. The exchange energy

is given in the long wavelength limit by the non-linear o Hamiltonian

H= 1/2 d2rI >Ôfô)J
M*2

X J
(V-5)

where % is the susceptibility ~ 1/J and p the spin wave stiffness ~JS2. Keeping

only the staggered part of ^ in (V-4) and expanding to lowest order in

gradients the hopping term in the t-J Hamiltonian, one gets

ieA
X (Vu?Vi - V: ?¥i) 8*

8^
S(^9+isine^(p)+(h.c.) (V-6)

-»where 0 and (p are the Euler angles of Q. We see that the hole momentum p
A A

(sinkx,sinky) couples to the background spin current QaB^Q, like a dipole

moment to the electric field in usual electrostatics. It follows that the static spin

cloud far from the hole has a dipolar configuration

[3a3hq]z «
(Suv 2rurv)pv(k)

(V-7)
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Beside the coupling to the spin current in (V-6), the hole couples also to the

magnetization. This effect, responsible for the formation of the Nagaoka

polaron around ~k*=(0,0), turns out to be negligible on the AF zone faces. This

picture of a long ranged dipolar distortion of the order parameter is expected

to hold even in the large t-limit and is Confirmed by recent numerical

investigations59. However, the strength of the effective dipole moment in this

limit is not obvious. Note also the importance of the position of the energy

minima: at ~k*=(0,7c), "j?vanishes, whereas at ~k*=(7t/2,7t/2) it points in the (1,1)

direction.

V-d) Two holes

The situation is not very clear up to now: exact diagonalization

studies56'57'63 find a spin singlet groundstate with a dx2-y2 symmetry and a

positive binding energy of order J, for J/t above a critical value of 0.25. This

trend is far less conspicuous in the genuine Hubbard model than in the t-J

model. The pure long wavelength approach described in the previous

paragraph predicts also pairing between holes.

VI- Finite hole density

Considering the region in parameter space of small 8 and J/t, it is clear

that different physics will emerge, depending on the ratio -r. Broadly speaking,
J

if t8»J, the exchange energy can be neglected and one should recover the

infinite U physics which was discussed in section IV. For t5«J on the contrary,

the Heisenberg part dominates and antiferromagnetic correlations should

persist up to scales at least of the order of the mean hole-hole distance. We do

not discuss in this section the very small J/t limit, where a phase separation

occurs (defining a first order critical line 8C ~ (J/27tt)1/2). We consider values of
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J/t high enough (>0.01) to favour the second type of polaron around each

hole. One crude estimate for the boundary between "antiferromagnetic" and

"ferromagnetic" behaviours is obtained by comparing the reduction in the hole

kinetic energy (4-2V3)t8 to the gain in magnetic energy J. This gives 8 ~2J/t. It

should be noted that this approximate boundary is reached well before the

cores around each hole (whose linear extension is of order (t/J)1/6 in the Ising

limit) percolate. Therefore, if one is interested in understanding the gradual

loss of antiferromagnetic correlations upon doping, it seems appropriate to

focus on the long wavelength interaction between the heavy quasiparticles

which have been found in the 1 hole problem.

The dipolar spin distortions around each hole mediate between them a

dipolar interaction of strength ~J, which turns out to have drastic

consequences for the spin ordering. It was shown in ref.64 that under certain
A

conditions, a spiral phase may form, in which the order parameter Q is planar

and spirals around a fixed direction, with a pitch scaling like 8. This phase is

metallic, with a small hole Fermi surface. In ref.65, a more microscopic mean

field theory was elaborated, treating in a better way the quantum spin

fluctuations. Beside the single spiral phase, a "double spiral" phase was

discovered, in which locally the spins spiral in orthogonal planes in the x and

y directions. This phase has a ring of low lying excitations with a radius in k-
8c,

space scaling once again like 8 and a finite gap at T=0, A - 8Jexp[ - -f\, which
8

means that long range order has been lost. Although the double spiral phase

has a higher energy than the spiral phase at mean field level, it was argued 65

that fluctuations may help in stabilizing it. Recently, it was shown66 within

Shraiman and Siggia's theory that above a critical strength of the dipolar

interaction between holes, the spiral phase is unstable towards the formation

of domain walls in the (1,1) or (1,T) directions on the square lattice. This

leads to an insulating modulated spiral phase. Similar predictions for the
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appearance of domain walls had been made before within direct Hartree-Fock

factorizations of the Hubbard model at strong67 or weak coupling68.

We are still lacking a complete understanding of how the introduction of

a small density of holes destroys antiferromagnetic correlations. All the

propositions dicussed so far, have in common to lead to modulations of the AF

order at length scales of order 8_1, much greater than the average distance

between holes. The corresponding instabilities arise in 2D at infinitesimal

values of the density. It is worth mentioning another work addressing the same

problem in a very different spirit: in ref.69, it was argued that holes induce a

next nearest neighbour AF spin coupling of order J8 ,and the resulting

frustrated spin Hamiltonian was shown to have a disordered groundstate

above a critical density of holes70.

If one assumes from the beginning a complete disordering of spins,

then the variational Gutzwiller wavefunctions based on the fermionic

representation can be thought to give better results in the presence of holes

than exactly at half filling. Two possible extensions of the flux phase (0=7t per

plaquette)can be contemplated: either a staggered flux phase which keeps a

two-sublattice structure, with an elementary flux smoothly decreasing from n to

0 at a finite value of t where one recovers a standard Fermi liquid3371. The

other more exotic possibility is a uniform flux phase, with a flux

commensurable to the hole density72-50. In contrast to the staggered flux

phases which have free carriers, the generalized flux phases are insulators,

which may be superconducting according to arguments given in ref.72. At the

present time, a detailed study of the relative stability in the (J/t,8) plane of

these various proposals is missing, even at the mean field level.
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