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Abstract

Perturbation theory is analysed for a class of standard many Fermion
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I. Introduction

In this paper we study perturbation theory about the spherically

symmetric independent electron approximation for a crystal at temperature

zero.

We start by describing the d-dimensional independent electron

approximation. Imagine a finite crystal with "ions" fixed at the points

of Z H t~ y/?] (with L a positive integer) and with N freely moving

electrons. Each electron moves in a common electric field - VU(x) which

is periodic with respect to Z Imposing periodic boundary conditions on

the Laplacian, the Hamiltonian for this system of electrons is

* [-kAi+u(xi']-
1=1

In this paper, we shall, for pedagogical reasons, consider only the

spherically symmetric case in which U 0. The general case will be

treated in another paper.

The independent electron approximation is the limit of these finite
N

systems as N and L tend to infinity with the density p — held fixed.
L

This limit is described by a statistical mechanical Fock space

F 0 F
n,mn,m=0

F. 0
C is identified with set of, all multiples of £2, the fermionic

ground state. The state Sl, normalized by llßll=l, should be thought as the

Fermi sea in which, by the Pauli exclusion principle, each single particle

electron state of energy less than or equal to y — — r(-)p is

filled with two electrons. The bounding sphere is called the Fermi

surface. For each k e R and a e{+,-}, a, is the operator which when



158 Feldman and Trubowitz H.P.A.

k2 k2
— < y creates a hole of momentum -k and spin a and when — > p2m 2m

annihilates an electron of momentum k and spin o. Conversely, the adjoint

+ k2 k2
a, annihilates a hole when — < u and creates a particle when — > u.k,o 2m H 2m M

To be technically precise we should smear a, and a, with SchwartzJ K k,o k,o
space test functions 0 (k) and specify the domains of the resulting

operators I J d k 0 (k) a, but these details do not play a role in our
o '

formulation of the model and so are neglected. The anticommutation

relations are

{ak,o'ak',o'} {ak,o'ak\o'} °

{ak,o'V,cfa =ôo,o'ô(k-k'>-
Now, F is the closed span of all states of the form

n,m "
a a a, a, £2 (1.1)
p. ,o. p a h, ,t, h t*l 1 n n 11 mm

(suitably smeared against test functions). Here |p. | > V2nm for 1 <, i £ n

and |h.| < V2ym for 1 £ j £ m. The Hamiltonian describing the independent

electron approximation is

H I J °r e(k) at a.° ,r, ,d k,o k,oae{ + ,-} (2tt)

e(k) k2/2m

We have

.d
H Q 2 J"

__
^-^r e(k) Q

° |k|sV2iriir (2tt)

and (1.1) is a generalized eigenstate of eigenvalue

l e (p.) - I e(h J + 2 J 2JL^ e(k)
i=l j=l J |k|sV2nüI (2tt)

The number operator

,1
î ,77^ ak<° afc'°

oe{+,-} (2tt)
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also has (1.1) as a generalized eigenstate with eigenvalue

n - m + 2 J ^
|k|sV2my" (2TT)d

As usual it will be convenient to deal with correlation functions

like the Schwinger functions, that is the imaginary time Green's

functions, rather than operators. The free Schwinger functions are

defined as expectations of the free field operators

r d k ik-x0(x,o) J a e
(2tt)U K'°

,+. r d k + -ik-x* (x,o) J a e
(2ttT '

K T -K T ,d,
o o p d k lk-x -e(k)T</>(x,t,o) e V(x,a)e J -r a, e e

(2TT)a K'°
K T -K T -d,

7, o .+ o r d k + -lk-x e(k)T0(x,t,o) e i/i (x,a)e J t a e e
(2Ti)d k,a

where

and

K H - yN
o o

k2
e(k) e(k) - y — - y

The free n-point Schwinger function is

S° (Çj_ 5n) (-1) " < Q,T ?(Ç1)...*(Çn) Q>

where \. (x.,t.,o.) (-) denotes that the bar - may be present or

absent. As usual T is the time ordering operator which orders the
Psmallest t to the right and introduces a compensating sign (-1) the

signature of the permutation required to restore the original order. When

there are coinciding times the i/>'s are ordered to the left of 0's. Note

that if n is not even S vanishes identically. For convenience we shall

also denote the free 2-point function S_ by C.

Clearly C(Ç ,£ is translation invariant and therefore is the kernel
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of a convolution operator. Direct calculation yields

c(Çrç2) s°2Kx,l2)

rddk ik-<xrX2> -(e(k)-M)(VT2'
o J r e e
°1'°2 (2TT)d

j -x(|k|-V2my) if t^t^
x {

| x(V2my-|k|) if t^t^
fç£±k_ ei<k'W- (I2.

°1<°2 (2n,d+1 iko-e(^'

where

k (k ,k) e Rd+1
o —

< k,£ >_ -k T + k • x.

and

II
if t > o

0 if t < o

d+1 i<k,Ç1-Ç2>_ _xis the Heavyside function. The integral / d k e [ik -e(k)]

is not absolutely convergent so the last equality requires some

_iko(Tl-T2) -1explanation. For t - t. ^ 0, the integral J" dk e [ik -e (k) ]

is conditionally convergent and a contour integration yields the previous

expression. The special case t - t. 0 is defined by the limit

Tl - x2 - ° With Tl - T2 < °-

Observe that the (partial) Fourier transform

r jd —ik'X _, ;
J dxe C((x,T,a (o,o,o

k2 k2
is supported in {k|— £ y} when t. > 0 and in {k|— £ y} when t S 0. The

k2
discontinuity in the partial Fourier transform at the Fermi surface — y

is reflected in a singularity of the full Fourier transform

C(k,0;L,o2) J ddx d t e~1<k'P C(£, (o,o,o2)
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- ô
1

°1'°2 "V*®
on {k =0,e(k)=0}. Thus the singular support of C has codimension 2. It
will follow that the behaviour of the infrared end of the model is largely

independent of dimension in contrast to conventional field theory models.

The Schwinger function S is easily expressed, using the

anticommutation relations, in terms of C,

S2n <VVV*2 VV det tC'VV]- (I-3)

Consequently, S. may be represented as the Grassman integral:
_ (") (-) (-) (-)

s° (Çj çn) J" 0 (^)...* (ïn) djjc(?,*).
The Grassmann "measure" dy (0,0) is a linear functional on polynomials in

'-' d+1
0 and 0, where now by abuse of notation 0 (£), Ç e R x{+,-} are the

generators of an infinite dimensional Grassmann algebra and no longer

refer in any way to the field operators introduced above. The measure is

defined by requiring:

(a) that (1.3) be satisfied
(-) (-)

(b) that J 0 (Ç 0 (Ç dy (0,0) 0 if the number of 0's differ

from the number of 0's
(-) (-) (-) (-)

(c) that 0 (Ç) 0 (Ç) -0 (Ç) 0 (Ç) and

(d) that J" • dy be linear.

We consider a spin-independent two-body interaction with potential

A V(x-y) ô ,ô (where a,oc',ß and ß' are spin indices). In general, V

is assumed to be an even function in L (E )fll (R )• However, as we shall

e-m|x|
see, the screened Coulomb potential V(x) —j—r— is also admissable in

two or more dimensions.

The interacting system is described in the Fock space representation
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by the Hamiltonian

H H0 + I \ J".», 3 <2")d S(d) «WWa,ße{+,-} i=l (2tt)

A V(k.-k, a, a. „a, „a,3 1' k^cc k2,ß k4,ß k3,cc

Similarly K is replaced by K H - yN. To get the interacting Schwinger

functions the free measure dy (0,0) is replaced by the formal interacting

12 —- e dyc(0,0)

where

y- I J dx do dx dy 0((x,T,a))0((x,T,a))o(T-o) V(x-y)
a,ß

0 ((y,o,ß)) 0 ((y,o,ß)).

and

-Kxr
Z ; % dyc(0,0).

-fv
Since e is not a polynomial in 0 and 0 it is far from clear that

integrals against this formal measure exist. As a first step towards the

construction of this measure we study perturbation theory for the

Schwinger functions. The most naive perturbation expansion is derived by

expanding

e-X/2tr
~

j_ ^m
m=o

Then the numerator of the interacting Schwinger function

S2n(V^l VV
J Jl [0(S 0 (Ç )] e~X/2 V dy (0,0)
i=l x 1 L

-X/2U

becomes the formal power series

Je-A/^ dyc(0,0)
(1.4)
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» .m n _ _I ;^r-<f)m J" n [01^) 0 (q)]Vm dyc(0,0).
m=o ' i=l

The coefficient of X is then the integral of a monomial and consequently

can be evaluated explicitly in terms of C. The result is conveniently

represented in terms of labelled Feynman graphs.

An m order labelled graph contributing to the integral
n _ _ _J It [0(Ç.) 0 (Ç.)]'l>m dy (0,0)

i=l
is constructed from three kinds of vertices. There are n external hole

vertices labelled 2L ,...,Ç n external particle vertices labelled

£.,,..,£ and m internal generalized vertices which are represented as

X. (x.,T.,a.) %/\/\* (y.,o.,ß.) r\.

The intermediate squiggle v/w is called an interaction line. These

vertices are then connected by particle lines * in such a way that

a) each external hole vertex is connected to precisely one line and

the arrow of that line points towards the external hole vertex

b) each external particle vertex is connected to precisely one line

and the arrow of that line points away from the external particle

vertex < « £.i
c) each end of each */\/\> is connected to precisely two lines, one

incoming, one outgoing

Xj - - - .3

An important graph contributing to the second order term of the

:fa^fa

perturbation expansion of S-(£,C) is

I x1 \ x2 n2 ç •

and an important graph contributing to the second order term of

S^^.Çj.Çj) is
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Altogether there are (n+2m)! such labelled graphs G. The value Val(G;C)

is by definition

Val(G) sgn(G) Jt [I/dd+1X. I/dd+1r,.] It [V(X,-tlJ ô ix*+1~ru+1) ]

j=l J J j=l J J J -1

It C((X ,T (X ,T
*ePG

Here by an abuse of notation V(x--r|.) is the potential evaluated at the

difference of the spatial (R components of x- ar*d n.. ; (x ,t )e R and
J J X X

-d+1(x.,r )e R are the space-time components of the end-points of the

particle line x

(Xî'Vax) 'VW
and P denotes the set of all particle lines of G. Each (x ,t ,oc is a

„d+1
5i or Xj or rij and each (x^t^c^) is a Zi or Xj or n.. Each I J" d Xj

integrates over the space-time components of x• and sums over the spin

component of x- The sign sgn(G) is determined as follows. Consider the

1V.Vby\/ \/.auxiliary graph G' gotten by replacing each Vvv^by »« »* Permute

the vertices of G' to write it as a graph of the form •-*-• •-*-• ¦•• •-*—

Then sgn(G) is just the signature of this permutation. When n 1 i.e. we

are considering a 2-point Schwinger function sgn(G) reduces to (-1) where

b is the number of independent loops of G i.e. the first Betti number of

G'.

It is important for us to reexpress Val(G) by taking its Fourier

ransform

Val(G) H Jdd+Y e
3 3 Jdd+1Ç. e

3 3 \ Val(G)
j=lL 3 3 -1
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Then

~ d kx 1
Val(G) sgn(G) J It

„ „ ,„ ,d+l i(k„) - e(k.)xeP„ (2ti) Jt o -xG

m d y.

3=1 (2n) J

It (2TT)d+1 ô I w (1.5)
veN„ leh

G v
Here, N is the set of all vertices (nodes) of G and L is the set of all
particle and interaction lines attached to the vertex v. The way to

interpret this formula is the following: Momentum p. enters the graph

through the j external hole vertex; momentum q. enters through the j
external particle vertex; k. is the momentum flowing through the particle

line x; y. is the momentum flowing through the j interaction line and

the d+1-dimensional delta function ö( £ w.) enforces conservation of
xeL

v
momentum at the vertex v.

Expression (1.5) can be simplified by eliminating most of the delta

functions. The result is interpretted as follows. Choose a maximal set

Z of independent closed loops of G. That is, a basis for the first
homology group of G. Select a distinguished external vertex. Construct a

set of 2n - 1 paths each joining a different external vertex to the

distinguished one. View momentum y, as circulating in the loop L e Z_ and
L u

momentum p.(q.) as flowing in the path connecting the j hole (particle)

vertex to the distinguished external vertex. Then

^, (5+1 n n
Val(G) sgn(G)(2n)a x ô £ p + £ q

j=l J 3=1 J

dy m

S* dïï n i(k -e(k n V(^'- (I-6)
LeZ„ (2tt)q+i JteP„ llVo el-*' j=l 3

tr G

Here, k is the signed sum of those mementa {y.,p.,q.} flowing through the
x L 3 3

particle line Ä and y. is the signed sum of those momenta flowing through
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the interaction line j.
Using (1.3) it is easy to see that the integral

n _J II [0(Ç.)0(Ç )]'(/% (0,0) £ Val (6)
i=l X X L

G

where the sum runs over all labelled graphs of order m described above.

The formal perturbation expansion for the numerator of (1.4) is now

complete.

However, we are really interested in the perturbation expansion of

S. itself. One can show that taking the quotient of the two formal power

series has the effect of restricting the class of graphs to those for

which each connected component contains at least two external vertices.

Note that in any connected graph the number of external particle and hole

vertices are the same. Thus

S2n- ï (=mf <f>mEVal<G> "•'>
m=o G

where the sums are restricted to those described above.

There are a number of questions concerning the formal power series

(1.7). Is each Val(G) finite? If so how big is it? These questions

cannot be immediately answered because the covariance C defined in (1.2)

is a rather complicated function: in three dimensions for |x| and/or t
large

C((x,T,a),(o,o,ß)) --Ô a^L cos/^|xl+/2MT/lx|)sin7ü;|x|
a,ß (2iT)Z |x|Z + 2y t

The first question is easily answered. One can construct graphs G

for which Val(G) is infinite. In fact let G be any graph containing a

subgraph of the form

with n £ 1. Suppose furthermore that the lines i,lt...,i. lie on a

closed loop L in G. An explicit example of such a graph is
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R
Choosing L as one of the elements of Z_, Val(G) becomes an integral of the

G

form

d k
r r 1- ± f(kJ J

,„ ,d+l r. ..n+1 ^V '
2tt i k -e k

L O L

The function [ik -e(k)] ' has a nonintegrable singularity on the Fermi
o —

surface k 0, |k| V2my when nil for all dimensions d. This follows
-1from the observation that near the singularity [ik -e(k)] behaves like

'kJ+/F |lkl-V2lnul
o »m | |

It turns out that there is no obstruction to the finiteness of Val(G)

other than that above. This is true even for the singular, screened

e-m|x|
Coulomb potential —j—j— in dimension d £ 2.

Roughly speaking there are two complementary mechanisms for
-1generating infinities: the large (k ,k) behaviour of [ik -e(k)] (the

ultraviolet regime) and the singularity of [ik -e(k)] on the Fermi

surface k o, |k| V2my (the infrared regime). We will consider these

two regimes separately. We shall see in section III that, for all d,

there are no ultraviolet divergences at all.
On the other hand we have already given an example of an infrared

divergence. There is a good reason for this divergence. We are

attempting to expand the physical Schwinger functions, in particular S

in terms of C S„. The latter has a singularity at k o, e(k) y.

The divergence above reflects the fact that the singular surface, i.e. the

physical Fermi surface, moves with X. These infinities can be eliminated

by simply adjusting y y(A) in C in such a way that the singularity
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remains fixed at the physical Fermi surfaces as X varies. This is

implemented in section VI using renormalization methods from quantum field

theory. The formal power series expansion for y(Ä) is chosen so that

every two point subgraph T(k) of every graph G arises in combination with

a new two-legged vertex:

k{T(k)V-^- - T((0, |k|=V2iy)-*-»-&-

y (T(k) - T(0,|k|=V2my))}.
[ikQ-e(k)r

The zero of T(k)-T(0, |k|=V2my) regularizes the singularity in _e(kn •

Unlike the problem of ultraviolet renormalization y(X) remains finite
order by order in perturbation theory. When the periodic potential U,

determining the independent electron approximation, is non-constant so

that e(k) is not spherically symmetric it does not suffice to adjust just

y with X. The entire Fermi surface must be held fixed. Clearly this

complicates the analysis and so for pedagogical reasons the more general

case is considered in another paper.

We shall show in section VII that each graph contributing to the

renormalized perturbation expansion is finite. Let us briefly consider

the size of the coefficient X in the expansion of S„ We have already
2

seen that there are (n+2m)! - (m!) graphs in the sum

^$m th £ val<G>-
m ordergraphs

Even if Val(G) - C for all G one would expect the sum over m to diverge.

However the situation is still worse. There are special graphs like

-*—t— • • • —t—*—t—«-

whose magnitude grows like m!. Nonetheless we shall show in section VII

that
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I. „ m i

-^- (^)m th £ Val(G) S CnIMm Al
m order

grapns
and consequently the formal power series is locally Borei summable. That

is the Borei transform
oo ni

B<Sn}E £ f^(|)m thZ Val,G,
m=o m!) m order

grapns
has a strictly positive radius of convergence. This of course does not

suffice to prove the existence of functions S n i 1 having these formal

power series as asymptotic expansions and satisfying the appropriate

positivity and regularity conditions. To do so requires an appropriate

version of asymptotic freedom, stability and the Pauli exclusion

principle.

In section III we discuss perturbation theory at positive temperature

and show that the value of every graph is finite and indeed exponentially

bounded. In a forthcoming paper we discuss the limit temperature T -» 0.

One constructs two perturbation expansions: one at T 0 as above and the

other by taking the limit asT-»0ofaT>0 expansion as in [FW] It is

shown that these expansions are the same. In the spherically symmetric

case this was claimed in [KL,LW]. The approach in this paper also applies

to the nonspherically symmetric case and leads to the same result i.e.

the T 0 expansion is graph by graph equal to the limit of the positive

temperature expansions as T -» 0. This procedure avoids the anomolous

diagrams introduced in [KL, FW p.281].

In section VIII we discuss a condition, motivated by perturbation

theory, for the existence of an interacting Fermi surface. There is an

important difference between one and higher dimensions.

J.F. would like to thank the Forschungsinstitut für Mathematik at ETH

and E.T. would like to thank UBC.
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II. Length Scale Expansions and Properties of the Covariance

Our analysis of graphs requires that we resolve the singularity in

C(k). This is done by decomposing momentum space into shells around the

Fermi surface. There is also an ancillary decomposition that will be

explained in a moment.

Without loss of generality we shall suppress spin. This is possible

since each spin sum can be majorized by a harmless factor of 2. There is

one spin sum for each closed loop of particle lines. Consequently there

are at most 2m spin sums for a graph of order m. Thus the total effect of

spin sums is majorized by a factor of 4m in the final bound of Val(G).

For notational simplicity we set the mass m=l. Thus

-1

C(k) [iko- <r-">] (II.1)0 l2

The primary scale decomposition is introduced in the following way.

We start by constructing a particular C partition of unity on (0,°°) Fix

a number M > 1 which will control the slice width. Let h be a montone C

function obeying

h(x)
for x. <. 1

for x £ M

and let

f (x) h(x)
I

1 - h(x/M2)J |
(x/M2)

for x £ M

for x £ M

Then
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Set

u(u ;

A3)

1 h(x) + £ f (xM 2l) for x > 0.
i=-co

.d+1, i<k,|>d k e '*
(2ti; d^ik-e(k) h(ko + e'^)2)

,d+l
CU'(Ü) J k ei<k^>-

(2iT)d+l ik0 - e(k) t2j [ k2 + e(k)2

We have

where

C(C) U(Ç) + I(|)

.(3)

j<0

KI) £ CU,(S)
j=-00

Recall that the covariance C as defined in section I is a convolution

operator. So we have written it here as a function of the single argument

\ (t,x) e R x R

The estimates on C contained in the following Lemma will be used

repeatedly.

Lemma II.1 Fix an integer Nil. Then for all j < 0

1-d -1
A3

1) |CVJ'(?L)I <¦ const Ma[l + |x|]
2 Tl + (MJUI)NJ

1-d

2) |ame(*V)n C(j)(SL)| ï (const)m+nMj(1+m+n)[l+|x|] 2 [l+(Mj|||)N]

3) |ame(ìv)n C(j) * C(j+1) |

1-d

S (const)a+ß+m+V(2+m+n-a-ß) [l+|x|]
2 [l+ (Mj|||)N]

(3,) (3,) (j
4) C * C *.. .* C 0 if |j -j ,|>1 for any a,a'

aHere the constant depends on N,y and the dimension d and 0* denotes the
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convolution 0*0*...*0 with a 0's. Recall that e(k) y so that

e(vV) - |A-y.

Proof We first bound

ic«» co i < j ^^ nr-érwi t»2i»l+ *<k>2]>
(2TT) 0 —

^M-^;^|^f(M-^[k2 + e(k)2])
(2tt)

<. const M~3 M
3 const M3

_2"i 2 2 2 isince in the support of f(M J[k + e(k) ]) we must have |k I £ M M and

|e(k)I £ M2M3 i.e. V y ^ M2M3Ikl ,—J—L - V y
V 2

Next we bound, for any even N,

d+1. f(M~23[k2 + e(k)2])
(M3UI)NC(3»(Ç, =;^—jjj ik° _ e(k) x

(2ir)a X 1K0 el-'

M3N(_dL_A)iei<k,P_
dko

r
dd+1k i<k,|>_MJN, d2 J f(M"2J[lc20+e(k)2])

J dTT e M
2 - A) ik - e(k) (II,2)

(2n)d+1 dk2 lk0 e(k)

As above the support of the integrand has volume const M and

2

|ik -e(k) | <, M 3. Further, the Laplacian A acts as —- + —, p |k|
dp P P

since the quotient in brackets is spherically symmetric. Observe that

each derivative -r-, T,— yields an extra M If r- actsdp' dkQ
* dp

d •, -n —n-1
-j- [ikQ-e(p)] -n[ikQ - e(p)] p

the additional [ik - e(p)] (-np) is bounded by const. M since

0 < const <, |p| S const. If 3— actsdp
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4rf(n)(M-23[k2 + e(p)2])
dp

f(n+l)(M 2j[k2 + e{p)2]) M 23e(p)2p

the additional derivative on f has no effect (since n < N) while

12 e(p)pM | £ const M 3on the support of f. The action of -tj— is
aK0

similar. Altogether

I (M3UI)NC(3) (I) | <. const M23M 3

When d 1

„, dk„ dk„ ik„x -ik.T
(M3UI)NC(3)(U =;^^e ^e ° M3N

d2 d2 N/2 f(M~23[k2 + efk^2])
x r r)

dk2 dk2 iko - e(ki»

and the right hand side is estimated in essentially the same way as

above.

Now make the change of variables k pk', |k'I =1 in (II.2) to

yield

(M3UI)NC!j)(|)
°° dk. =o -ik.T
r 0 r. d-1 r j lpk'-x 0 „3N

J "TT Jdpp j do(k') e H- - e MJ

-co (2n) 0 d-1
s

di. dL d - i d J £(M"2J[ko + e(p)2])

dk2 dp2 P *>' ik0-e(k)

For d £ 2

1--; do(k')elk 'P- const (p|x|)
2

J (p|x|)
Bd-1

- - fl
f"1 dwhere the constant is 2 r(-)u).. Thus
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(M3UI)NC(j)(ü)

d

const J" dkQ /dp pd_1e ° (p|x|)
2

Jd (p|x|) MjN

-» o --1
d2 d2 d-H.! f(M-2j[k2 + e(p)2])

dk2 dp2 p dp ik0-e(p)

We bound the right hand side as above using, in addition,
1-d 1-d

2 2
(p|x|) £ const |x|

(p|x|)1/2Jd (p|x|)
2_1

It follows that

£ const.

1-d
|(Mj|2U)NC(j)(Ç)| * const Mj|x| 2

Combining the estimates

|C(3) (Ç) | <; const M3

|(M3UI)NC(3)(^)| s const Mj

and

d-1

|x|
2 |(Mj|||)NC(3)(|)| S const M3

yields the first part of the Lemma.

To prove the second part it suffices to observe that
i<k,|>_ i<k,Ç>_8 e * -ìk.e '*t 0

,1„. i<k,Ç>_ i<k,Ç>_e(-V) e ^ e(k)e ^

and that, on the support of f, |k |,|e(k)| 5 const M

The convolution

«l1 (j2> {im] .dd+1k ei<k,Ç>- m "2ja 2 2
C

X
*C 2*...*C m

(Ü) P L_S n f(M a[k2+e(k)2]
(2ir)a A

[ik0-e(k)]m a=l

~2ja 2 2
Part four is an immediate consequence of the fact that f(M [kn+e'-' ' '
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~2ja' 2 2
and f(M [k +e(k) ]) have disjoint support when |j -j ,|>1. The

estimate of part three is proven just as the estimate of part 1 with the

one difference that [ik -e(k)] is replaced by [ikQ-e(k)] This

results in the replacement of M
3 by M 3 p in the estimate. I

-1
The decomposition of the covariance C U + £ C yields a

j=-00

decomposition

0 £ 0(3)
j=-00

0
_

0 £ 0 J)

j=-00

of the Grassmann variables and also a product decomposition

-1
dyc(0,0) =dyu(0(O),0 (0)) n dyc(j) (0(3),0(3))

j=-00

of the Grassman gaussian measure. The factor dy is the ultraviolet end

-1
of the model and the remaining product H dy (j) is the infrared end.

j=-co

This allows us to isolate and study problems in the two regimes

separately. In the next section we shall investigate perturbation theory

in the ultraviolet end.

We could of course decompose the ultraviolet regime into slices
00

U £ C 3
as we have done in the infrared regime. But as we shall see

3=0

the real problems are at the infrared end. For the study of perturbation

theory this decomposition is not necessary.

On the other hand at the infrared end a finer decomposition than the

one we have just introduced is necessary. Each C must itself be

expanded into j pieces. Roughly speaking this is done to take in to

account the asymmetry in the dependence of C on t and x that one sees, for

example, in the three dimensional asymptotics
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cos V2y|x| + /iy -j—r sin V2y ix|

|x|2 + 2yt2
C(t,x) - const

We do this in detail in Section V.

Ill Ultraviolet bounds

In this section we replace the full covariance C by its ultraviolet

end U and prove that for any connected graph

||Val(G;U)|| £ (const) |G'.

Here Val(G;U) denotes the value of the graph G as defined in the

introduction, but with C replaced by U; INI is the L norm (but with one

external vertex fixed at 0 to break translation invariance)

llfll.J-d^ d^ Ift^.q Çn)lvo
and |G| is the order of G i.e. the number of interaction squiggles.

First, we derive such bounds in any dimension d and for any regular

1 d ^\ °° d
two-body potential VeL (R )flL (E )• Then, using a different technique,

e-m|x|
we obtain the same bound for the screened Coulomb potential —;—j—, m > 0

in dimension d k 2.

We began by separating U into a regular part R and singular part S.

Lemma III.l
U(£) R(£) + S{%)

where

BW .^<«(*«)-«'w*a'<™ j0 ; TT^°.

Here g is a smooth function of compact support. The regular part

R U - S is in J (Rd+1)

Proof.

Define g(£) to be a C function that is 1 for |^| < 1 and zero for

ICI > 2. We first show that (1 - g(Ç))U(£) is in J (Rd+1). To do so it
Nsuffices to show that A U(£) is bounded and rapidly decaying for all N,
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I£1 > 1. Write,

1 dd+lk h(kg+e(k)2)
U(Ç) ~2 N' J dû ik - e(k) (~V e

(r)M (2Tt)a x 1Ko el-f K

i r
dd+1k i<k,ç> A

»• h(ko + e^)2)

<ç2)N'
J

(2*)d+1 k iko - e(*

If N" is sufficiently large the integrand is L so that U(£) is bounded

Nfor |Ç| > 1 and rapidly decreasing. To prove the same for A U(Ç) we

observe that
2

»r -, jd+1, _v „, h(k„ + e(k))
AN _

N 1 r d k i<k,£> ,N' 0 -A U(U " A
,S2,N'

; ^^ e ("Ak> iko-^>
is bounded for |Ç| > 1 and N' sufficiently larger than N. It follows that

(1 - g(Ç))U(Ç)e J(Rd+1) We place (1 - g)U in R.

We further decompose

,d+lk ei<k,^>_
g(C)u(5) g(Ç)J*-

(2n)d+l ik0-e(k)
ndd+1k ei<k'^- 2

+ ^>J^fe fk-^F [h(k0 + e(k,,-l]

The first term above is

m rdd+1k ei<k-^>- ,rirddk ik.x -e(k)rj-x(e(k)» T>0

^l-—^ ik0 - e(k) =g(5)P^e e | x(-e(k))«0

g(Ç)J^ eik*x e-e(k)Tx(-e(k))
(2Tir

^ ,t, rd k ik-n v2 H' )-l if x > 0
+ g(C)J J e e

(2w)d » ° if T * °

r d k ik'X -e(k)Tg(5) J 7 e e
(2TT)a

|k|</2y
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2
_x

yr,. ,-d/2 2t 1 if t > 0-g(UeM (2irr) e j0 if T s 0-

j i. r d k ik-x -e(k)Twe now need only observe that g(£) J e e and
(2iT)a

|k|<V2y
rdd+1k ei<k,5>- 2

9(£)j TT7 Tv—-*iv\ th(k + e(k)) - !] are Schwartz class since
(2iT)a X 1K0 e(-' U

[ikn - e(k)] is locally integrable. I
Recall that the 2n-point Schwinger function restricted to the

ultraviolet regime has the formal asymptotic expansion

oo mm
m=0 G

Where the sum £val(G;U) is over graphs having n external particle
G

vertices, n external hole vertices and m interaction squiggles. Each

connected component of G must contain an external vertex. For

convenience let r be the set of such graphs that are connected.

As mentioned above

Val(G;U) sgn(G) /ltdd+V it J(t - E II 0(E - I
v Jlel„ x x JleP„ î x

G G

where the product II is over all internal vertices of G, I_ is the set of
uv

all interaction squiggles, P„ is the set of all particle lines, u. and w.
G xxare the vertices at the two ends of x and

(|((X,T)) V(X)Ô(T)

THEOREM III .2 For any Ger"1
1 n

J"dÇ1dÇ2dÇ2-..<iÇI1dÇn |Val(G;U)(0,q,.--Çn,Çn)| S (const)1

where the constant const depends on n,y,V.

Proof Substitute U R + S to obtain
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Val(G;U) sgn(G) £ J"ltdd+1Ç n J^ n S It R.
oep„ v v iel„ ieo tePAo

G G G

There are (const) terms in this sum so it suffices to bound them

individually. So fix any oCP_.
G

The factors S and R are bounded

|R(Ç)| <. const [1 + |x|]"d_1 [1 + |t|]~2

¦ otti _ - * -d/2 -x2/(2x)|l t > 0
|S(Ç)| S const g(T)T e j0 x ï 0 '

Now we bound the integrals over the spatial variables followed by the

integrals over the time (x) variables. We bound multiple integrals by

using the fact that for any tree t we have the tree identity

J It dyv It f (x - i It t/dyf (y)].
vet iet Äet
v?£r (III.l)

Here the product n runs over all vertices v of the true t except for one
vet
vfr

distinguished vertex r called the root. The product It runs over all
xet

lines of the tree; x. and z. are the vertices at the ends of I with x

being the further of the two from the root. For example.

Zx * X*

t
We apply the tree identity to bound the spatial integrals by constructing

a tree t which is a connected subgraph of G (including both particle lines

and squiggles) and which contains all the vertices of G. Such a tree is

called a spanning tree for G. It is important to observe that if G

contains a closed loop of S-lines, i.e. lines ieo, the integral is zero.

This is because the sum of the time differences for neighbouring vertices

around the loop is zero. Hence one time difference must obey
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x. - x. £ 0. But then S(x. - x. _) 0. So we may assume the integrali l+l i l+l
is non-zero. Then include all S-lines in the tree t. Add enough particle

lines and squiggles to get a spanning tree. Designate the external

particle vertex corresponding to £ to be the root.

For all lines of G not in t bound the x-dependence by

[1 + |xt - Zil]~d-1 S 1 for x e PG\(out)

|V(x - z | £ const for SL e I \t.
We can now use the tree identity and

Jd y|V(y)| 5 const

Jddy[l + |y|]~d_1 5 const

r,d -y2/(2x) „ k d/2Jd y e J 5 const x

to estimate the spatial integrals by

|Jndd+1£v it d n s it r|
v xel„ SLea xeP„\oG G

£ const"1 rnd1x II ò(x -x )ltg(x -x )II [l+|x -x |]~.v. u. w. al u. w„ „ u. w.v £el„ il x SLea x x xeP„\o x x
G G

d/2Note for each SL e a the x arising from the integral

r-ad -y2/(2x) t d/2 _. -d/2 0Jd ye const x cancels the x in S.

Construct another tree t' to perform the x-integrals. This time we

include all interaction squiggles in t'. We add particle lines as

necessary to get a spanning tree. Once again we place the root at the JL

vertex. For all lines not in t' we bound

|g(x - x )I 5 const
Ux V

[1 + |x - x |]~2 <; 1.
Ux Wx

Finally, we use the tree identity again and

/dx 6(x) =1

Jdx g(x) <, const
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/dx[l + |x|] <; const

to obtain

Ijnd Ç II n S II R| ^ (const)1".
v Äel„ ieo xeP„\o

G G

We now present a more powerful technique for estimating the values of

graphs. It is essential for sections V-VII. The method we used to prove

Theorem III.2 required that V(x) be bounded and so is inadequate for (the

physically interesting) screened Coulomb interaction. The new technique

is applied to this case by decomposing V(x) into a sum of bounded,

integrable potentials.

Lemma III.3

1) e-m|x| /|x| £ V(3)(x)
j=0

•..,_ i..(j) i ^ „j -const M |x|with |VVJ' (x) | <, const MJe

00

2) U(ü) £ U(3,(Ç)
j=0

i„(j) i i. ,,dj -const(M x+M |x|) ,i.i. J
cwith |U (x,x)| S const M Je g(IÇI) \ for 3^1

(0 x<!0

and |U(0) (x,x)| <; const [l+|x| ]
~2 [l+|x| ]_d_1.

Proof

e-m|x| 2 r.3, eik'x 2 Pj3, ik-x "r. -a(k2 + m2)
D -rr,— r Jd k — Jd k e Jda e

1X1 (2rrr *- + m W 0

^Jdaa-3/2 e-(x2/4a)-am2
2/rr 0

M 2 00 M
' 3'

1 r. -3/2 -(x /4a)-am v 1 f -3/2 -(x /4a)-amJda a e + £ J aa a e
2/ir 1 j=l 2/Ü M

3
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Now set

„(0) 1 7 -3/2 -x2/(4a) - am2
V —3 J da a e

2Vtt 1

1 -mlxl0?. -3/2 -m|x|
£ —- e Jda a const e

2Vtt 1

M2d-j) o

„(3) 1 r., "3/2 -xV(4a)-aniV J —— Jda a e
2Vn M-2j

„2J 2
M x

,^-M-23[M2-l] M33e 4"2

2Vtt

„j -constM |x|
<. const MJ e

2

2,
T-d/2e-x2/ (2x) Jl_ J da a *f- e-ax fi

r<§) 0

M2 Ûzl JL. M2(j+1) ^ -^
_1 r 2 -ax 2x ^ v _1 7 ,2 -<xt„ 2x
—t- J da a e e + £ —t- J da a e e

r(|) 0 j=l ri|) m'3

Let

M2 â-î x!
U«°'(Ç) >(«) - gdçnunj^/V^-V Jda a

2 .-". 2-)^ > °

r«f, j-" i°^°-
So

|U(0)(|)| ^ const [1 + |x|]_2[l + |x|]~d_1 + const g(|Ç|)

<; const [1 + |x|]~2[l + |x|]~d_1.

Also set, for j £ 1,

2(j+l) dz2
„(3),r, ,„ ,-d/2 yx 1 7, 2 -ax -x /2x 1 x>0UU'(Ç) -g{ |Ç|) (2n) eM p^y Jda a e e j0 xSO

M2j

So

|U<3>(U| * const g, |*|, M23 (M2 - l,M<3+1'<d-2»e-M2JVx2^ |j ^> °Q
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ir,,.,dj -1/2 M23x -1/2 M3|x| il x > 0
<. const g(|Ç|)M Je e JO x <. 0

2

since 1/2 M23x + jj- i. |m3|x| for all x > 0.

Fix a graph Ger We now estimate Val(G;u) with the screened Coulomb

interaction by expanding

Val(G) sgn(G)Jndd+1S II 4 TL U
V

*eIG *ePG

CO (j
sgn(G)Jlldd+1E n [6(t - x £ V

* (x - x )]
v v lei x 4 JÄ=0 x x

CO (j
n [£ u

*
(Ç - ï )]

4ePG jx=0 ux w4

„ d+1 r,(V (3x'
£ sgn(G)Jnda h It -Ji x

n u *

j^O v VÄeIG 4ePG

4eIGUPG

where 4 (|) ô(x)V 3 (x). We think of each term in this sum as the

value of a labelled graph G ,J {j.|xelJJ P„} in which each particle and
x G G

interaction line SLelAJ P_ is assigned the scale label j „. The label
G G X

designates the covariance (or interaction) assigned to the line.

Let G be a labelling of G. We associate a tree t(G to G as

follows. The union

F(J)(=F(G u {connected components of {ieG |j. à j)}u{vertices of G)

3*° (III.2)

is called the forest in G determined by J. For each j, {ieG Ij. ^ j} is

the subgraph of G consisting of lines whose scales are at least j. A

vertex is considered to be a trivial subgraph of G. Then {vertices} can

be thought of as the limit as j tends to infinity of the subgraph
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{ÄeG |j £ j}. The forest F has the property that for all g,h e F either

g ç h or hÇ g or hO g 0. Therefore, partially ordering F by inclusion

one obtains the tree t(J) t(G whose forks are in one to one

correspondence with the elements of F. In general a forest in G is any

set of Connected subgraphs of G satisfying the trichotomy above. The

class of all forests is called 3-.

For each fork f in the tree t(J) we define the scale

jf min{j£|xeGj} (III.3)
where G, is the element of 3 corresponding to the fork f. When f

corresponds to a vertex, jf «>. Clearly, the scale jf increases as f is

moved up through the tree. Notice the first fork 0 corresponds to

G. G the whole labelled graph.

^V^ j.
'f~Gf jf minljjUeGj)

0 ' -0 - n>in(3ÄlxeGJ}

Let us denote by 3 the set of all trees ^J (t) te3 the set of all
allowed assignments of scales to the forks of t. An assignment {jf|fet)
is allowed if j, > jf, whenever f lies above £' in the tree t. Finally,

the assignment of scales on t(G defined above is denoted by

s (J) s(GJ).

We shall show in a moment that Val(G decays exponentially in j.
with the result that the sum over J in

Val(G) £ Val(GJ).
J

converges and obeys the bound of Theorem III.2. To do this we prove a

lemma which exhibits the exponential decay in a general setting. Suppose

that G is any connected graph at all (arbitrarily many lines joining
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arbitrarily many vertices) and that the line of G has a covariance C

obeying

(III.4)
with

(III.5)

ôxjx ajx d
|C£(y)| i K M * * g(M x|y|) yeRa,

UglL £ 1, llgll * 1.
1 °°

With the same notation as before

Val(G;Ct) Jnddyv IIC^ - w^)
V X

Lemma III.4 Let \.,...E be the external vertices of G. Then^l ^n

;d%...d\|Val(G,(0,^ VI,KL'G» It
J

„^V^f,'
fj t(G
Gf nontrivial

where L(G) is the number of lines of G, J {j |ieG), n(f) is the fork

immediately preceeding f in the tree, j =0 and
T1(0)

Df 0y>* " ad(v(Gf'_1)-
xeGf

where V(G) is the number of vertices of G.

Proof. We start by constructing a spanning tree T in G. This is done

inductively from high to low scale in such a way that T G, is connected

for each f. Since T is a spanning tree, it has V(G) - 1 lines. It also

has the following important properties:

(1) If f1,...,f are the forks (including trivial forks) immediately
pf

above f in t(G then G, ,...,Gf are connected by p. - 1 lines of
1 pf

T. These lines all have scale j,.
(2) £ (pf - 1) V(G) - 1. As in (1) p is the number of forks

fet(G
E

immediately above f.



186 Feldman and Trubowitz H.P.A.

Vl v2 VS v4 v5 v6

P. "3, p. -2, p. -3
9 fi f2

t"
- r* » « » *—?—»

V3 v4 v5 v6

GJ - GÌ ¦

«,'

•—»
*4

J'» » «—» >

Vi
We bound Jd Ç .d ^lVaKG) I by applying lCj(y) I S KM for 1 not in T

and then applying the tree identity with distinguished vertex r ^ and

H 6,3o -«dìo
Jdy|C,(y)| SKMllM

Therefore,

* h un 6»3o "«dj., (pf,-D
Jd%...d\|Val(G)| ^1°)^' lnu £ f

The last factor is obtained from property (1) by noting that precisely

(p - 1) integrals Jd y... are performed using lines of scale jfl.
6£3£ _ad3f. (Pf.-1)

The last step is to manipulate JI M n M into
ieG f •

Df (jf-j^-f.)
It M »m To do this we observe that if G, is the smallest
f I
element of t(G containing i then

and that

Consequently,

-adj (p,,-l) -ad(p,,-l)(jf-j (f))
M Il M

tit'

à,3, -adj (p ,-1)
II M It M

ieG f
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°0 (jf-j„,f, -ad(p,,-l) (jf-j ,f.)
It n m

* f vlf) HM f f n(£)

f ieGj fif
where we have interchanged the orders of the products It It (note that

£ fsf,
f i f if and only if ieGf) and II It Finally, by (2),

f fit'
£ (Pf, - D V(G^) - 1.
f'*f r

We now apply Lemmas III.3 and III.4 to estimate Val(G for the

e-m|x|
screened Coulomb interaction V(x) —;—:— in d-dimensions. As before let|x|
U be the ultraviolet end of the covariance C. See (1.2) and Lemma 3.1.

Theorem III .2' Let d à 2. For any Ger"1
* n

Jdd+1q...dd+\dd+1Çn|Val(G;U,V)| i (const)"1.

Proof As before,

Val(G) £val(GJ).

By the estimates of Lemma III.3

i, i i„(3) .i rs >ir ....3 -constM |x|.ô(x) |VlJ' (x) | i [ô(x)] [constMJe ]

for j è 1

|U(3»(x,x)| i const[M3e-constM2J|T| jj ^ J M^"1' Vc°nstMJ |x|g( |x|,

and

|U(0)(x,x)| i const [1 + |x|]
2

[1 + |x|] d 1.

The resulting estimate on J|Val(G )| becomes a product of spatial (x) and

temporal (x) integrals. We now apply Lemma III.4 to each factor. For the

temporal integral the covariance C of Lemma III.4 is either

„j -constM 3|x|)lx>0, ^ „¦¦,-,• r, i i,-2 - „MJe Jo < for 3 * 1 Particle lines, [1 + |x|] for 3=0
particles lines and ô(x) for interaction lines.



188 Feldman and Trubowitz H.P.A.

Hence, interaction lines effectively have scale <» and must be integrated

first collapsing each ^>/VA/v<^ of G to a point y^ The result of

collapsing all particle lines of G is called the quotient graph of G by { ~v }

and is denoted G/(vv). so, the temporal factor is bounded by

„temp...
.^TT Vf (3fa^(f))

(const) II M

where fet(G /{~^})
D^emp L(Gj/Cw}) - 2 [V(G^/{-~-}) - 1]

Let V. and V denote the number of j£»~v and • vertices respectively of

G, Let E denote the number of external particle lines of G, (i.e. the number

of particle lines of G that touch G, but are not in it). Furthermore, G, may

not have external interaction squiggles.

Then,

2V. + V - E

L(g£/{.w}) X

2
e

V.

V(Gf/{-w}) ^1 + Ve

and D,emp 2 - — - — V If j, > 0 it is impossible for Gf to have just two

external particle lines and no external interaction lines. Otherwise, G,

(jt)
would have a particle line U (x,x) with j t 1 and x i 0, in which case

3
£ temp

U (x,x) 0. Hence, D, r i 0 and the temporal factor is bounded by

(const)

The spatial factor is bounded in the same way by

space
t.m „ „ f t3f 3TT(f)'

(const) Il M

fet(G
where

D, (#interaction lines) + (d-1)(#particle lines)

- d(V(Gj) - 1)
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V. - I 2V. + V - E

^— + (d - 1) -±—f - d(V. + ve - 1)

Here, V.,V and E have the same meaning as above and I is the number of

external interaction lines of Gf. Simplifying, we obtain

space _ l _
(d + 1)Ve

_ I _ içLz^L Ef 2 i 2 2 2

_d + 2 - (E + Ve - 4)^ - § - | V. - Ve

We now show that, when d s 2 and j, > 0, D®paoe ^ -e(E + I) - v for someJf f e

e > 0. When E + V > 4 this is obvious. When E + V =4,e e
V.

space I i 1 ID, <,- — -- V S ----- V and the claim is again obvious.
E c. t. Q Z, A Q

When E + V =2,e

„space 1 _ | (Vi + I} _ ^
* - ï - h (Vi + X) - Ve

unless I + V. i 2, V =0. But the only nontrivial graph satisfying

E=2, V=0, I + V. s 2 is rr^T~^> - This graph as well as all
graphs G, having jf>0, E=0is ruled out by the support property for

(J.)
U (x,x) 0 for x i 0, j > 0.

The temporal factor was bounded by (const) and now the spatial

factor has been bounded by

m -e(E+I+Ve)(jf-jn(f))
(const) It M Consequently

fet(G
-e(E+I+V (j, - j

|Jval(GJ)| <. (const)"1 It M
e nl ' (III.6)

fet(G

It remains to sum over J.

First we rearrange the product to get
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-2enj. -Tlj„-j0.I
|Jval(GJ)| i (const)^ VII II M*

v £,£'hooked
to v

-2enj
where v runs over all vertices in G e r The factor M is exactlyn

-eve(jt-j
M for f 0. The other factors are constructed as follows. For

j -e(jf-j.f))each fet(G one factor of M is assigned to each external line of

Gf. Fix any vertex v of Gf and let us determine the net factor assigned to

any line £ emanating from v. If £ is the line of highest scale emanating

-e(jf-j.f))from v, then £ receives factors M from forks in a linear subtree

of t(G starting with j, j and ending with a fork obeying j j..
-«(j, -jt>

The product of all these factors assigned to £ is exactly M

Hence,

(3, "j,)
-e(E+I)(j-j v

It j M
r ^11' It II M

e

fet(G v £ hooked to

£ It II M

v £,£' hooked
to v

Finally, we perform the sum. This is done by ordering the lines £ of G

such that j. j. (there are at most (const m) choices of such a starting
£1 0

line) and £. and £. share a vertex. Then we bound' l-l i
m _2en3rf, -fl3o-3,.l

|Jval(G)| i £(const) M 9It II M

J v £,£'hooked
to v

-j£ L(G) ~4"'3£.-3£._ '

<, (const)m£ M
x

n M iiiJ i=2
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i (const)
e.

r. ~4l31
since L(G) <. const m and £ M i const.

IV. Positive Temperature

Let us recall the standard model for electrons in a crystal at

positive temperature. The Fock space as well as free and interacting

Hamiltonians are the same as those of the introduction. Now however the

expected value of an observable A is given by the normalized trace

_ -ß(H-yN).,
__ Tr{e H' H 'A]

ß' m -ß(H-yN),M Tr{e K> M }

rather than by the expectation <Q,AQ> in the fermionic ground state Q.

The positive temperature Schwinger functions are formally defined by

v'i-'i <-Dn/2<*(*0 <v-(*i (V>ß
1 n r

As before the free Schwinger functions (i.e. when H H.) are given

by the determinant

82n(*l'*l'*2«2 WP1 det ES2^i'^j;P)] l"-1»
where by direct calculation

q°IP F -Al - « ^ ik(X1-X2) (e(k) )(T T

S2(W> - ôa.,o, ;777e e X 2

1 i (2TT)
'
-l+nk if Tl>x2

x
nk if VT2

Here, nfc
eße(k) + 1 e(k) e(k)-y and e(k) k2/(2m) is the

dispersion relation for the spherically symmetric independent electron

approximation.

To start with, S is defined for x. e [0,ß]. But
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r d k ik-x -e(k)x I kC(x,x) J - e e {
(2T!)a nk x<S0

satisfies

C(x,x+ß) =J^eik-xe-e(k)(x+ß)
(2TT)d

r d k ik-x -e(k)x,j e (_v
2n)

-C(x,x)

for -ß < x i 0. Therefore C extends to a function on R with period 2ß

in x satisfying

C(x,x+ß) -C(x,x).

Consequently,

Sl{h'h] Ô0l,o2 C<Xrx2'VT2»

extends to a function on R x R periodic in x. and x. with period 2ß.

It now follows from the determinant identity (IV.1) that all free

Schwinger functions have periodic extensions of the same kind.

At positive temperature the dichotomy

-1 + n, if x > 0
k

n. if x s 0
k

replaces

- x(e(k)) if x > 0

X(-e(k)) if x ï 0

with the result that C (x,x) is a rapidly decreasing function of x.

Therefore the large distance, i.e. infrared end, of the model is

completely regular. This is the crucial difference between zero and

positive temperature.

The interacting positive temperature Schwinger functions have the

same formal perturbation theory
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oo m

S2n~ \^-^m paVG>
m=0 G v

as their zero temperature counterparts with the modification that C is

replaced by C and "time" is restricted to [0,ß). We shall show that the

value of each graph satisfies

|Val (G) | <. (const)"1

The constant depends on ß and diverges as ß tends to infinity. As

mentioned in the introduction, we shall show in another paper that the

renormalized value of each graph converges, as ß tends to infinity, to its
renormalized value at zero temperature.

Lemma IV.1

£ up'tu
3 0

where

2
1 x mod 2ß e (0, ^]

q ,n „ fat yx"H -1 *«*»>« (-M-l + sfe»«
V*> "(27TT) e • 0 otherwise

(J) _„_„dj -const (M23[x]+M3|x| (f1 if ™e<0'20d]
|U1J' (x,x) I i const M Je

[o otherwise

|U(0)(x,x)| <. const [l+|x|]~d_1

The constemts depend on ß. Here [x] denotes the representative of x

modulo ß in [-ß/2, ß/2).

Proof. Since C(x,x+ß) -C(x,x) it suffices to consider x e (0,ß].
-e(k)x d

For x e (0,ß], e n, is a Schwartz class function of k e R sind

hence has a Schwartz class Fourier transform and
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lx2
r d k ik-x -e(k)x yx,_ ,-d/2 2 x
J t e e -eH (2ttx) e

(2tt)

We -fi-, I,put the portion of this for x e (0, r^-r) into S and the rest in R

Lemma III.3 part 2) is used to decompose G into £ U. I
P j=0 p

At temperature zero the ultraviolet end of the covariance U was

decomposed into a regular part R and singular part S. The latter vanished

identically for x i 0. This property implied that the value of any graph

containing a closed loop of S particle lines or a string

of S-lines having two vertices connected by an interaction line is zero.

Now the singular part of C does not have a strict support property.

It vanishes for x mod ß small and negative as in the figure.
4^g (x,r)

Consequently graphs containing loops or strings of the above type may have

nonzero values provided the loop or string is long enough. The

decomposition into regular and singular, in particular the choice of the

interval [0, r«"â), ensures that the loop or strings contains at least 20d

vertices. There is considerable freedom in the choice of the denominator

20d.

co 1
Theorem IV.2. Let dil and V be any L fl L pair interaction or d £ 2 and

1 -m|x| „ „ jnV t~Te • For any G e r|x| * n
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Cjd+l-= ,d+l_ ,d+l-= i„ ,„,i „ ..roJd Çr..d |nd Çjval (G)| i (const)

Proof. We follow the proof of Theorem III.2'. In factoring the bound on

J|Val(G3)| into spatial and temporal integrals we use

6(x) |VJ' (x) | S const [ô(x)] [MJej -constM3|x|

(j)|U*J'(x,x)| i const
„103 -constM 3[x]
M e

]

è—,
'20dJ

0 otherwise

._9_,la 10)3 -constM3 |x|
M e

|U(0)(x,x)| i const [1 + |x|] d 1.

If V e L fl L then V 0 for j i 1. This case is easy, so we

concentrate on d £ 2 and V -,—r e|x|

The temporal factor is bounded by

(const)

„temp,.
°f (3f-\(f)>

fet(GJ/{-w}]
where now

DfSmP föL(Gf/{'v/v'}) " 2 [V(G3/{^}-l]

2 _ 9_E _ 1_ v _ ll
20 10 i 20 e

Similarly the spatial factor is now bounded by

space,.
„m m

°f (3r3TT(f)'
(const) n M

fet(G
where

Df (# interaction lines) + (d - —)(# particle lines)

- d (V(Gj)-l)

-la E _ ij _ I _
d 9_

2 2X 5 i K2 20' e
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d - —
9 10. ,_ 1T 2 „ ,d 9 .„¦ 5 - d - (~1 ' (E"4) - - Vi - «I + Irj'V

We now verify that D, p i 0 for any graph G. with nonzero value and

j, > 0 so that the temporal factor is bounded by (const) When E > 4

this is obvious. When E 4, D^emp | - ^r V± - || Vg but Vi must be at

least 2. When E 2, D'emp 7^-77: V. - ir V Now G1? may havef 10 10 1 20 e t
external interaction squiggles so, as remarked just before the statement

of the theorem V. 2: 20d £ 20. Finally E 0 cannot occur.

The last step is to show that n^pace 5 - e(E+I) --V for any graph

G, with nonzero value and jf>0. When E 2 4 this is obvious.

When E 2, D^Pace i__I_lv.-(^ + ^T)V. to violate the desiredt 1U l 3 1 l iti e

bound we must have I + V. i 2, V =0. As before the only nontrivial
1 e

graph satisfying E 2, V =0 and I + V. i 2 is >***> which still takes

the value zero. Finally for E 0, D^pace d - |l - |v. - (— +2Ö_)^ •

In order to have E 0, either V i 2 or there must be a closed loop of at
e

sDace 1
least 20d particle lines so that V. £ 20 d. In either case D, - tI

4 e

The proof is completed just as in section III. I
V. Infrared Convergent Graphs

Our discussion of the ultraviolet end of the model is complete. We

have seen that the ultraviolet value of every graph is finite and

furthermore grows geometrically with the size of the graph. On the other

hand, it was pointed out in the introduction that there are graphs whose

values are infinite.
Let us recall that any graph containing a subgraph of the form-
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is infinite. Here the shaded disc denotes any graph having precisely 2

external particle lines and no external interaction lines. Such graphs

are called mass subgraphs. Graphs containing no mass subgraphs are called

convergent graphs. Indeed we shall show that their values are finite.
In addition to divergences there is another important phenomenon

hidden in the infrared end. Convergent graphs are no longer geometrically

bounded. They can grow like n where n is the number of four legged
r F

subdiagrams.

Consider the graph

in r In the Fourier representation momentum flowing in and out of the

graph is conserved. So we may view it a as a function of three

independent external momenta s,t and q. If we denote the momenta flowing

around the m-1 internal loops k,,...,kr 1 m-1

< <¦ < < <—j—*—j—*-

') - © ©10
_« 1 ¦£. i Ì « \ *-

the value of this graph is
m-1 dk. m-1

J H ±rr C(fts)C(f-s) IT V(k -k )C(f+k )C(f-k
j=l (2tt)Q ¦"¦ ' l j=l 3 3 1*3*3

Vtt-k^JClS+tlCfS-t) (V.l)

where k„:=s and, as before, C(k) —, tt-t. It is implicit here that0 ik.-e(k) r

V(x) is rapidly decaying and consequently V is smooth. Thus in the

infrared end, that is when all momenta are restricted to a common ball, V

cannot aggravate singularities of the integrand. So in this example we

take V(x) ô(x) i.e. V(k) 1. Then the integral factorizes to yield
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m-1

C(f+s)C(f-s)C(2+t)C(f-t)[j^-d+1C(f+k,C(f-k,]
|k|£const

To further simplify this example we restrict ourselves to three

dimens ions. We have

J^-CI^ClS-k)
(2tt)4

;A
(2TT)4

i(kQ+q0/2) - e(k + g/2) i(q0/2 - k0) -e(g/2 B]
-1

;d!k
(2TT)3

i qQ - e(k + g/2) - e(k - g/2)sign e(k + g/2) i q - e(k + g/2) - e(k - g/2)

e(k+g/2)e(k-g/2)>0
|k| i const

Explicit calculation' yields that for small q

4 iq
J ^-r C(f + k)C(f - k) const In {|g| + —~ } + 0(1) (V.2)

Iaconi?' 2V 2» - '3'

has an integrable logarthmic singularity at the origin. This does not

affect the convergence of our graph, which is to be regarded as a

tempered distribution. However applying this distriubtion to test

functions f (^ + s) f-(, - s) f,(, + t) f.(, - t) results in a value of

r iq0 I"1"1
the order of m! because of the singularity ln{|g| + —33 }

L 2V2y - |g| J

Such mi's are typical of strictly renormalizeable field theories.

For constructive purposes it is essential to understand the behaviour of

four legged graphs in great detail.

Our first step towards bounding infrared graphs is to modify and

refine the tree of subgraphs of a labelled graph.

The infrared end of the covariance C is



Vol. 63, 1990 Feldman and Trubowitz 199

-1
KÇ) £ cl3,(U

j=-co

where by Lemma II.1.1
1-d

|C(3) (Ç) | <, const M3 [1 + |x|]
2 0(M3|C|)

co 1with 0 e L O L Infrared divergences arise when covariances and/or

interactions decay too slowly to be integrable. Thus, there is no need to

decompose the interaction ô(x)V(|x|) since it is L even when V(|x|) is

the screened Coulamb interaction (for d £ 2). The interaction should be

thought of as being of scale zero.

Expanding, as in Section III, we obtain

Val(G;I) sgn(G)Jndd+1£ It *!? II
v V£el„ £eP_,

G G

"I (j.)
1 c (V^.'.3.=-» * *

,d+U _ n - J^]£ sgn(G) J IIda \ II 4 n C (|u - ^V"" " ""' """
£eP„

j.^-l V £el. £eP„ £ £
x G u

G

where Jl (£) ô(x)V(x) Once again Val(G;I) is the sum of values of

labelled graphs G J {j |£eP }. The forest F(G and t(G determined

by J are defined as before. Namely

F(G u {connected components of {£eG I j.^j)} \J {vertices of G)

j<0 *

and t(G is the set of elements of F(G ordered by inclusion.

We now slightly modify trees and forests in order to simplify the

combinatorial structure by preventing the formulation of two-forks j To

the contrary suppose the fork f e t(G lies at the top of a string of two

forks. Then G,. C G,f fl

°?=fa> °fa<fa °fafa>
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V
tfl

f2

all have the same sets of vertices. The graph Gf is formed by connecting
1

one or more pairs of external legs of G, and so on. The lines formed in

this way are called Wick lines.

Consider the equivalence classes of labellings J of G which generate

the same set of Wick particle lines and assign the same scale j to each

non-Wick line £. The labellings differ only in the scale assigned to each

Wick line. For each such equivalence class we construct a new kind of

labelling k of G. Pick any representative. Each non-Wick line is given

the scale j common to every element of the class. Each Wick line £ is

given the soft scale which is one plus the maximum of all scales assigned

to this line in the class. Furthermore assign the label s to each Wick

line. Let us define the soft covariance

c(3) £ c(3).
S

j'<3
It follows that

Val(G;I) £ Val(GJ;I)
J

£ Val(GÜ' ;I)

where the sum is over all labellings generated by equivalence classes and

Val(G(T;I) sgn(G)Jltdd+1E H d H C
*

(£ - I
v v lel„ £eP„ £ £

G G

£ soft
(j.)

It C (Ü -Ç (V.4)
£eP„ £ £

G

£ hard
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Here a hard line is one without a soft label.

For each labelling fr generated by an equivalence class there is a

forest

F(G<' u {connected components of [£eG'' |j.£j, £ hard or soft}}
JS-1

u [vertices of G}

and a tree t(G0 as always, the elements of F(G° ordered by inclusion.

Now, t(G* has no 2-forks. Observe that any fork <3& of t(G* is a

connected graph, connected by interaction lines and hard particle lines.

The idea is to block the sum

Val(G;I) Y Val(G^;I)

£ £ £
„

£ Val(G» ;I). (V.5)
te3 Fe J sej(t) fr

F=F(jn
t=t(0")
s=s (^)

Here J is the set of all allowed trees i.e. tree without 2-forks, Ji (t)

is the set of all allowed assignments of scales j, to the forks of t, i.e.

if f > f then j, > j,,, j is set of allowed forests of subgraphs of G

and ¥(k), t(^ and s{^) are functions giving the forest, tree and

scale assignments generated by the labelling $f Note that for any given

graph the number of possible trees, forests and assignments of hard/soft

labels is finite. The only infinite sum in the blocking is that over

s e.J(t). It will be controlled by exponential decay between the scales

as in section III.
The size of a graph must be measured differently in the infrared end

because its value is typically not an integrable function of its external

vertices. For convergent graphs we shall bound the integral of Val(G;I)
1

against L test functions, to do this we need an infrared version of

Lemma III.4.
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Suppose G is a general connected graph, not necessarily arising from

our model. It contains external vertices, that are integrated against

test functions, internal vertices that are integrated over R internal

lines, but no external lines. Internal lines £ may be hard lines, which

carry covariances C satisfying
ôjJo 3, d

|Ct(y) | <. KM
x

g(M *|y|), y e Ru, ô^ > 0 (V.6)

llgl^ i 1, llffl^ i 1.

Or they may be soft lines carrying covariances obeying

ô£3£
|CÄ(y)| SKMlx, 0Ä>0

The bounds on C. induce a hard/soft labelling of G.

By definition a subgraph G° is nontrivial if it isn't a vertex. Each

subgraph G, must be connected by hard lines. A line £ of G is an external

line of G° if it is hooked to a vertex of G° but is not a line of G°T. For

instance

G

.f.

external vertex

internal vertex

The external lines of G' are
•—> .a o—> «

Lemma V.l Let G be a general graph as above with external vertices E.,

j i n. Suppose that each internal vertex v is dimensionless in the sense

that

£ hooked to v
6£ d-
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This is the case for our model.

„d,Let f., j i n be in L*(R Then

IJ Kf.iK-id^. VaKC-C^X^...,^)!
3

,it||f.|LKL(G) n „
„Df(jf"j>-(f)

j 3 fet(G*)
f > 0

G"f nontrivial and contains

no external vertices

fet(Gr
t>0
y

G° nontrivial and contains

an external vertex

fet(G^)
v

G° an external vertex

Here,

and as before

f 2 external lines
£ of G^

Df £ öÄ - d(V(G^)-l) (V.7b)
ieG*"

Since internal vertices are dimensionless

D, d + A (V.7c)

The distinction between the ultraviolet estimate and this one is the

integration of external vertices against L test functions yielding better

exponential decay. Indeed, a decay rate proportional to the number of

external vertices, since A, is always strictly negative. Roughly speaking

we may use the estimate Jd y|f(y)I =0(1) in place of the estimate

Jd y g(M3|y|) 0(M (j < 0) whenever j is the position of an external
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vertex.

Proof We follow the same strategy as in Lemma III.4 but, construct n

connected tree T., j i n, of hard lines, each containing precisely one

external vertex, rather than a single spanning tree. They are constructed

by induction in the following way. For each maximal element f e T(G^)

choose any connected tree of hard lines whose union contains all the

vertices of G« such that each of these trees contains precisely one

external vertex of G£. If <P. has no external vertices choose one tree.
v

Extend these connected trees working down through the forks f e t(G°).

There is no obstruction to this inductive procedure because closed loops

are never formed and because, by hypothesis every <H is connected by hard-
<Â iE

lines.

Apply

ô£3£
|C4(y)| <. KM * *

to every line not inU-T.. Apply the tree identity to each T., with T.'s

external vertex as distinguished vertex, to perform the integrals

rr r ^d
ni J d yv •••

veT.
3

This yields

|J tt ftEjldÇj VaMGiCjH^,---,^)!

* „f .MG) Vi -dJf.[Pf.-max(l,p^}]
i 11 11 f |L K it M IT M

j 3 £ f
As in Lemma III.4 pf, is the number of forks immediately above f (i.e.

> eobeying TT(f") £') in t(Gv). In addition pflis the number of those forks
y

that are external i.e. for which the corresponding graph G"„ contains an

external vertex.
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ô£3£ ~d3f [pf'"']
We must now manipulate it M n M into the desired

f
form. We do so in two stages. The first stage mimics the corresponding

step of Lemma III.4:
Ô£3£ ô£3f£ ô£30 ô£(3f~3TT(f)M*=M*=MX<P H M*11111'

0<f<fA

-djf,[pf.-l] -dJ0[Pf,-l] -dtPf.-lKjf-j^f,)
M M H M

0<f<;f ¦

djf.[p*.-l]+ dj [p°,-l]+ d[pe,-l]+(jf-jTT(f))
M M It M

d<f*!f'

where [x] max(x,0). Consequently

ô£3£ -djf, [Pf ,-max(0,p®,)]
n m n m

l f
Ô£j0 "dj [Pf-1-(P^-D+]

n^Mv n mv
ieG f,nontrivial

W^tf)1 ^^f'^^f^nff)' i{vî-~1) + lit~ivlt))it n m
K ' n m l ' n h l '

0<f £eG» f'äif f'*f
fnontrivial fnontrivial

MWd(V1,] n li<jf-jn(f),IDf+d,V1,+1
M

f>0
M

f nontrivial
where E, is the number of external vertices in G~.. The result of thisf f
manipulation is not helpful. Those exponents having Ef > 1 will typically
be positive since j, - j > 0 and usually D, > -dE,. On the other handf it f f f
the exponent j. [D,+d(E,-l)] is very negative.0 0 0

j [D +d(E -1)] j.The second stage redistributes M up the tree t(G°).

Note that, since all internal vertices are dimensionless
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D0+ ^v11
» Z A, - d(V(G*)-E

£ V

£ { X I V " d l 1

vertices v £ hooked internal
to v vertices

£ { £ | 5* }

external £ hooked
vertices to v

'I y \v e t(G»)
v,trivial,external

Now, for each trivial, external v e t(G»), i.e. for which GP consists of

single external vertex,

"Vv= J, (Jf-JTT(f))AV+ (°-JTT(v))AV-
0<f<V

Hence,

30tD+d(E-l)] (j-j )[D+d(E-l)+]
M v v v n M nvtl

f>0,
f nontrivial

(3-J„,f,)Df "3„/„>A„
™ ». "(I) I ™ If (V) V
It M

v ' II M v x
f>0 v trivial,
f not trivial, external

not external

(3f-3T,(f)>{Df+d<Ef-1)+X /v>
v external
v e G»

x II M

f>0
f nontrivial
f external

and the lemma follows from
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D + d(Ef-l) £ { £ | ôx} - d £ 1

v vertex £eG~ internal
veG$ £ hooked vertices

to v of G^

L { £ | ô } - £ { £ I ô }

veGO SLeG° ' * veG* £eG. 'f f f li<£
v external £ hooked v internal r f

to v £ hooked to v

We now wish to apply Lemma V.l to estimate Val(GÖ;I) in preparation

for our bound on Val (G;I). The bound of Lemma II.1.1 is not of the form

ira
2

(V.6), because of the [1 + |x|] so we cannot immediately apply Lemma

V.l. This is easy to correct even without foolishly discarding the

1-d

[l+|x|] 2
:

Lemma V¦2 For d > 1

1) [l+|x|]~ i I const Mk~^e-«Wl]
k=-oo

-1 k ^1
2) |C(3)(S)I* £ const M3M 2 g(Mk|x|)g(M3|x|)

k=j

with ligi I i 1, HglL i 1.
oo 1

¦d-1 k d-1

3) |C(3)(E)| S const M3M 2
+ £ const M3 M

2 g(Mk|x|)
s k=j+l

Proof

1) As usual
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1-d
œ

çK3.

r* i m 2 ^
r°° 2 -[l+|x|] t[l+|x|] const J dt t e -

0

_, Mk+1 ^3 dzi
v * r .*« - 2 -[l+|x|]t r 2 -[l+|x|]t£ const J dt t eL - J + J dt t e '-"

k=-~ M -1
M

-2 .".. Ça k
V *. ,„ J* ,«*+!, 2 - [l+|x| ] M

£ £ const (M-1) M (M e -
k=-°°

t -[l+|x|]M 1
+ const e l -"

2) From part 1) and Lemma II.1.1

|C(3)(E)| i const Mj l M" ~ e-[1+|2l]Mk[1+(M3UI)N]-1.
k=-co

When k > j we simply bound [1+(M3|E|)N]_1 4 [1+(M3|x|)N]-1. All the terms

with k i j may be bounded by

.d-1
¦3 2 • _i

const M3 £ M [1+(M3|Ç|) ]

i=-oo
.d-1

• 3~
i const M3M [l+(M3lEl)N] 1,

since d > 1, and lumped into a single term with k= j.
3) The soft covariance C

3 is, by definition, £ C and so obeys
k=-a>

-1 1-d

|cJj,(Ç)| * £ const M1 [l+|x|] 2 [l+(MiUI)N]"1
i=—oo

i const M3[l+|x|]
1-d

2

We may now continue as in part 2) lumping all terms with k i j into a

.1-d
3"T

single const MM I
A good way to get some intuition regarding bounds on graphs in the
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infrared end is to consider only the terms with k j in Lemma V.2 (they

will indeed turn out to be dominant) and to collapse interaction

lines ~-\^ to points (they are of scale zero and so look like delta

functions to the infrared end). This gives a toy model with

vertex J>£ and with lines having ô ——. For this toy model a

graph G^ with v internal vertices 3^ (no external vertices

•-*— or • < and E external lines has

Df
*±1 [fif, - (d+1) (V-l)

^(4-E).

This is negative for E > 4, zero (i.e. marginal) for E 4 and positive

for E 2. In the infrared end marginal subgraphs do not produce

divergences, though they do produce m!'s. See (V.l), (V.2). Hence we

call a graph convergent if it contains no internal E 2 (i.e. mass)

subgraphs.

Lemma V.3 Let Ger contain no mass subgraphs that are free of external

vertices. Then

|J It f.(Ç.)dÇ,Val(aJr;I){Ç E
•ì—*| J J J J- **

i n llf.IL kl(g)
3

Df(3r3TT(f)'
jj M l '

fet(G*)
f>0
f nontrivial

It „
/WW*

fetfG8)
f>0
f nontrivial

f not external f external

^«^iMv)1
It M l '

vet (GO)

v trivial

(V.8

v external
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where D, — (4-E.)

.d d „Af - ï Ef

A
E. the number of external lines of G° that are internal

lines of G.

We remark that D, and A, are specializations of the D, and A, of

X(V.7) to the toy model in d dimensions having internal vertices

external vertices •—«— —*— and 60 — We also remark that since

mass subgraphs are forbidden (unless they contain external vertices) A, <

0 and D i 0 with equality only for E, 4.

Proof.

We start by applying

n
IJ it f,(E,)dE. val (©*; I )(E, E I

j=1 J J J

i n ||f ,|| sup|val(G^;I) (E ,...,E )|
j=i 3

n
I

j
and then Lemma V.2 parts 2) and 3). This yields

|Val(G*;I)(E1.---En)I

i £ KL(G) val(G^X)(E1 En)l
k£=j£

i K
where the hard particle lines of G ' have covariance

_
1 d 1
7 ' i 3i' 9 11 7 3£ 3i

M [M^ Xg(M ^IxDlfM^ \j(M *|x|],

1 ^the soft particle lines of G"' have covariance
1 d 1
2 ' i 3i' 2 t t 7 3£

M [M" g(M ^xl)]^ *] if k^ > jj



Vol. 63, 1990 Feldman and Trubowitz 211

and

1 _. d 1

- 2 l £ 3£' 2 £ 2 3£
M [U* *] [Kl *] if ki jt

J.«and the interaction lines of G0> have covariance

m" 2 <0"0)[Md0V(M0|x|][M0xlô(M°x)].

All the zeroes in the interaction line covariance are to emphasize that

they should be thought of as having j. k. 0. Hence we get the

factorization

ï«*< - r TT M
2 Ä *Val(G*' [ II M
2 l l ]Vald(K) Val1^).

£

The final factor Val (I arises from the x integrals. It is the

value of a graph having the same lines and vertices as OP the same scale

assignment j- as G<? the same hard/soft assignments as G" but

artificially living in dimension 1 with ô. — for particle lines and

ô. 1 for interaction lines. Applying Lemma V.l to Val {i- yields the

Df(jf"jir(f)) ^f^TTtf)' ^'^TTIV)'
factors n M r r ^11' ÏÏM r z V[Z> UK l' in the statement

of Lemma V.3. In this regard note that interaction lines are always of

scale 0 so that they never occur as external lines of any ofa Furthermore

all interaction lines may be placed in the integration trees of Lemma V.l

so that it does not matter that 6(x) violates Ilo (x) II 1.

The factor Val (^,) arises from the x integrals. It is the value of

a graph G having the same lines and vertices as G« but living in

dimension d, having scale assignments k rather than j having ô. —

(resp. 6.=d) for particle (resp. interaction) lines and having as soft

lines only those lines that are soft in tf and that in addition have
*K K. tik. j.. The forest F(G of subgraphs of G and the tree t(G can be
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quite different from F(G<3 and t(G» However, because k. £ j. with

equality for k-soft lines, each GV" is connected by hard lines and we may

apply Lemma V.l to obtain

T ,„. Dd(k,-k Ad(k,-k A,(0-k
|Vald(*)| SconstL(G) HMf f nl£| HKf £ n(f) H M f n(f)

„„„«„.MG)i const

The last inequality is an immediate consequence of k, - k ä 0,

(0-k ,„.) £ 0, D, i 0 (recall E. ì 4 if Gr contains no external vertices)w(f) f f f
and A, i 0.

Combining the above bounds on Val (K and Val (J- with

v
-1 'VV rf2. M i const

Vj£
yields the desired bound.

Theorem V. 4. Let Gel: contain no mass subgraphs without external

vertices. Then

n i (Gl n
|J II f (E)dE. Val(G;I)(E E I i KMU'n It ||f .11

j=l 3 3 j=l
where

n. max #{f|G, has four external lines, G, f »v/v» }

Feu-

is the maximum number of four-legged subgraphs in any forest of subgraphs

of G.

Proof. Given a labelling G^ of G denote by F.(^) the forest {G,|G_ has

four external lines, G, f r^r^r }C F(^- Denote by ^. the set of all
F ^ )'s for G. We block
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(G^;:Val(G;I) £ Val(G";I)

oMG)

£ £ Val(G^;I).
F e4- &

By [deCR, Lemma A.2] |3 | s 8 so it suffices to consider any fixed

4 ^4
Furthermore each G, in F. must contain at least one line X. whosef 4 f

scale jf is exactly jf. The sum over choices of {X. e G,IG, e F.}

contains at most 1 £ 2 terms so again it suffices to consider

any fixed choice of X.'s.
T IC 1

Another factor of 2 takes care of the assignment of hard/soft

labels to the lines of G.

The strategy for tackling the sum over scale assignments {j |ieG} is

similar to that used in Theorem III.2'. There are two notable differences

between the bound of Lemma V.3 and its analogue in Theorem III.2' The

"^e'3*"3-^«*)' _2en'30'
latter contains a factor M v lv' M (used to sum over the

scale assigned to the lowest scale line j. that is absent in the former.
1

-e(E+I+V )(j -j
The latter also contains a factor M for every

nontrivial f e t(G while the former is missing such factors for each

Gf e F4-

The first difference is easily handled. Our graph G G, contains at

least one external vertex v. Hence the tree G* contains a connected

linear subtree 0 f, ir(f„) < f„ Tt(f,) < ••• < f n(f < f v.1 2 2 v 3 p-1 p p

Since every G, 2 <, i <, p contains the external vertex v the bound (V.8)
i

contains the factors
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p-1 "f Ef.(3f.-3f. > "I (°-jf '

KM 1 1-1 M p-1
_

i=2

-1 <°-v - t'V
We can use half of each of these factors to give M M

The second difference means in effect that (V.8) does not contain

exponential decay factors allowing us to sum over the j. 's. But each
i

j. must obey -1 <, j, < j so the sum over all values of all the j. 's

|F4I n4
contains at most |j.| £ |j,| terms.

0 0

The sum over the j,'s, i f X., £ ^ £ (where i. has been chosen so

that j j.) goes essentially as Lemma III.2'. The only modification is

that we work inductively on F,. Select any G, e F. which does not contain
4 f 4

any proper subgraph. As in Theorem III. 2' we may rearrange a portion of

- f 13 Ä-j Ä.
I

(V.8) to get II It M The sum over j.,
veG, i,i'hooked to v

i,i'eGf
i e Gf is then bounded just as in the last paragraph of Theorem III.2'
with the role of the 'first line' j played by j. (which is being held

*1 Af

fixed).

To proceed by induction simply collapse Gf to a point and repeat.

This ultimately brings us to G,. Here the first line does not have its0

scale j j. held fixed. Instead we have

£ |j | 4M 8 * i const
4

(n4)! i const1,(G) (n4)
3a

VI. The Formalism of Renormalization

In this section we develop a new (renormalized) perturbation

expansion in which a X dependent portion ôy of the chemical potential is
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moved from the covariance into the interaction with the result that every

graph has a finite value. The function ôy is constructed as a formal

power series whose coefficients are finite sums of graphs. The values of

these graphs are also finite. In section VII we estimate the values of

the graphs occurring in this renormalized expansion and verify that they

are indeed finite.
We have already observed in section 1 that graphs containing

two-legged subdiagrams

-2diverge because [ik.-e(k)] has a nonintegrable singularity on the Fermi

surface k =0, |k| /2my These divergences reflect the deformation of

the Fermi surface with the change of X as we will now illustrate.

Consider a model in which the electron-electron interaction V 0 but

in which the chemical potential, which we denote y, varies linearly with

X

vQ{X) y + Xôy.

at the rate ôy. The Fourier transform of the two-point Green's function

in this model is

[ik0-2m-^2 + VX)]
'

and has the perturbation expansion

-i-l
-Xôy)n

n=0
[ik0-2m^2 + V*']

1

j0 [ik0-^^2 + ^]
*

(-

[ik0-im^2 + ^]
n

^1'1»

All terms in this geometric series save n 0, contain non-integrable

singularities. They fail to be tempered distributions even though both
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the "interacting" and "free" Schwinger functions Lik. — -r— k + M-(A) J
and (_ ik - — k * y] are locally integrable and the "strength of

interaction" Aôy is finite. The difficulty here, of course, is that the

distributions have different singular supports. Expanding one in powers

of the other is not a good idea.

Let V be any two-body potential and consider the two parameter family

of models determined by the chemical potential (which we now call yR

rather than y) and coupling constant X. For each y. and X suppose that

the Fermi surface is given by kfl 0, |k| V2my(A,y.).

To circumvent the difficulty illustrated above we parametrize the

models by X and y rather than by X and y_. That is yn, which determines

the position of the free Fermi surface, is replaced by y, which is

determined by the position of the interacting Fermi surface. Precisely,

the function y y(A,y.) is inverted to obtain y. y.(A,y). Define

ôy(Â,y) by y (A,y) y + Aôy(A,y). The new perturbation expansion is now

generated by taking derivatives with respect to X keeping y rather than y.

fixed.

The new expansion may be determined without knowing y(A,y.) ahead of

time. One determines ôy(X,y) inductively, order by order in X, by

requiring that the inverse of the two point function have a zero at
/——" 1 2

k 0, |k| V2my If we write the inverse as ik - — k + y

- £(k,y,A) the proper self-energy £ is the sum of all amputated, one

particle irreducible two point Feynman diagrams. "Amputated" means that

the two particle lines hooked to the external vertices are removed and

"one particle irreducible" means that the diagram remains connected

whenever a single electron line is cut. Here are two examples
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a
The condition (in perturbation theory) that the Fermi surface is at

|k| v2my can bé formulated in terms of the self energy as

£(k,y,A) I =0 (VI.2)
'k0=0, |k| /any

(as a formal power series in X).

Equation (VI.2) is neatly combined with the decomposition of lines

into scales and graphs into forests through the effective potential and

tree expansion which we now define.

Recall the decomposition of the free two point function given in

Section 2:

0 ,M
C £ C(3)

j=-00

where now U:= C As before, there is a corresponding decomposition of

the fields and free measure

0 _...
dy„(0,0) II dy (0l3',0l3))

^ j=-oo c13' (VI. 3)
0 0

0 £ 0(J), 0 £ r3i
j =—00 j =—00

To simplify notation write $:= (0,0).

The effective potential at scale r, -liri -<», is, by definition,

•3r«De):= log -1 J expf(- $V + ô/>)($e + £ S(j))II dy...(*3) (VI.4)
Zr L 2

j>r j>r Cl3)

where Z is a constant that will be chosen later, iß" is the usual quartic

interaction and

ôl>(«):= ôp (A,y) J ddxdx 0(x,x)0(x,x)

The term 6 !}-(*) is the portion of the chemical potential that has been

placed in the interaction. The coefficient ôy(A,y) is still to be

edetermined. The "test functions" 0 are Grassmann valued (i.e.
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anticommuting) just like the $ s.
Q

Expanding the effective potential in $ (or equivalently taking

functional derivatives) one obtains
<*> n

>Ar($e) £ i- n (Jdx.dx. £ $e(x. ,x, ,a, Gr (x. ,x. ,a. ; ;x ,x ,o-> v ' ,n!. ,J -k k *¦ (-k k k'' n'-l 1 1 -n n nn=l k=l a,
(VI.5)

The coefficients G are functions much like the n-point Schwinger

functions S In fact, for r -°°, G is the connected, amputated
nn

—00

n-pomt Green's function. (See [FHRW p.3]) Perturbatively, G is

obtained from S by (i) dropping all disconnected graphs from S (ii)
removing lines hooked to external vertices of S and (iii) when n=2

dropping the graph • » • from S The combinatorial coefficients are

unchanged. For example the graph in G (E.., E.) corresponding to

->—» *—*—»¦

There are simple, explicit formulae expressing the S 's in terms of the

G 's and vice versa. For example

s2(E1(E2) c(E1-E2) + Jdqdç2c(E1,çi)C(E2,ç2)G^°(q,ç2)

g-00(E1,E2,E3,E4) J n [dç.c-1(Ç,ç)]ts (ç ç)
i=i "- -1

- S2(Çl'Ç2)S2^3^4» + S2(«1'«3»S2(Ç1'Ç4) " S2 «l'^4)S2 ^2'h]} "

It follows from these remarks that we may consider G n a: 2, rather than
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S n ì 2.
n

The decomposition of graphs into scales arises naturally if we

express *j inductively:

-9 Ve) - |i>($e) + ôu-($e)

z
Jjh_1($e) log J expt)h(*e+*(h))dy ,M(*(h)) + log ^ (VI.6)

Cl ' h-1

Apply the identity

log J eU dy (*(h)) £ ^- g£(tf U (n arguments)
C n=l

where

£h<*i »tn>!- SXfafaaT lQs i" exp [>>i]In u J

dy ,h,(*(h))| - (VI.7)
C1"' 'A =...=A =0

1 n

with the result that

-y-1-^^* I nH^h tlh)+ const
n=2

m y.
Successive application of the last identity to the leading terms £, ^/

yields

y=£L...^°>+£ ér+1-êh-i i^^(i/h 3h>
h=r+l n=2

+ const (VI.8)

Introducing a tree notation for c, ,_ :
h

^xb-^n ._i_(?Tr"'lh -nt^h^l *n>

k

h :=X(k>h) £j+1 tl+r tl_x(H)
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X
(VI.8) becomes

,0 -y
*>

+ £ £-3
h=r+l n=2

==x(o>h) e'e'-.^^i
2. M*-<—n *1-j"'s

+ const

Iterating (VI.8), -y (ft becomes the sum of all trees

j> .0 o ,,0 „ o*f y v y ^ ^

The root frequency is r, each fork bifurcates upwards into two or more

branches, the fork frequencies h. increase monotonically up the tree and

finally there is a leaf -*T(* + £ ft at the end of each topmost branch.
j>r

The trivial tree I is included in the sum. Note that each tree is planar

(e.g. Af and ^r^âre distinct) and has a distinguished root.

The truncated expectation £, {M fltt) can be evaluated graphically

in the following way. If each M. is a monomial

KL JdEr..dE m. (Ç E *«h>(Ç
*i *i

then £. (%,... ,«? is the sum of all connected graphs built from n

generalized vertices. The i vertex has p. legs and takes the value

M.(E1<>../E )¦ The lines of the graph are evaluated using the covariance
i

C(h) (S.,E.).
n

^lA V =G, connected *liìin dÇi,k i?l M. (E. E-

¦*(h,(Çp)
i

lsksp.

II C(h)(E Ei^G SS (VI.9)
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The legs of frr are ft 's and hence have all been integrated out to

become parts of lines of G.

We have expressed *f as a sum of trees and each tree vertex as a sum

of Feynman graphs. To express an entire tree as a sum of Feynman graphs

h—1 e e h (h) eview *j (ft as being expanded in powers ft and -Jj (ft + ft as being

expanded in powers of ft and ft with all monomials Wick ordered (for the

same reason as in section V). That is
00

^h-1(fte) £ JdÇ ...dÇ gJJ"1 (Ç Ç J : ••(?)...•*(?) :

n=l h h h

*jh(Sh + $e) l J „CIE ndÇ. GJ) (Ç E) : *e(Ç .»e(Ç ;

q+pèl J 4,p p *
: •{h,(Ç1)...«(h,(Çp) :.

Wick ordering is always done on the natural scale; ft is Wick ordered

with respect to dy and ft which is thought of as being £ ft
Cl ' -»sjsh-l

is Wick ordered with respect to II dy
-co<jsh-l C3

To do this we must rewrite the interaction as a sum of Wick-ordered

monomials. Observe that

>y
° - | J : 00 :^ : 00 : + ôy J : 00 :

where the coefficients of the crossterms in

(00)(00) (: 00 : +const)(: 00 : +const) is absorbed into ôy and the

constant is discarded. Discarding another irrelevent constant, -*j has the

form

jj° - | J dEx dE2 : 0(E1)0(E1) 4 (E1-E2)*(E2)*(E2) :

- A J dE1 dE2 : 0^) c(s0,(E1-E2)^(E1-E2)V'(E2) :

+ ôy J dE : 0(E)*(E) :

The three Wick-ordered terms are represented by the graphs £'v/v/v/>£ / ~^CZ^y*~

and <¦ » where the line /^""N is the soft covariance C (E-j-E,) of
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scale zero. Each leaf-*J at the top our tree is a sum of these three

graphs.
e h (h) e

When (VI.9) is applied to (VI.8) the ft (Ç.)'s of-^) (*v '+ft become

the external fields of -*J (ft and appear as external legs of the graphs in

(VI.9). The ft' ''s of-Tift' '+fte) are integrated out to form the internal

lines of the graphs of (VI.9). The Wick ordering: ft' '(E- -)•-ft (E-
1,1 i, P •

graphs that are not only connected, but also have every internal line

joining distinct generalized vertices. Hence

M.

is not allowed.

When (VI.9) is applied to il(H ¦ ¦ - >\) with

% J MÇ MÇ Gh
s

21 $e(q : : n1 ft'h) (Ç :i 1,3 i,k q ,p i,3i k x i,K.
Ji l

n q.i ethe result has external fields II : II ft (Ç. :. There are terms
i=l j.=l 1,3i

i
for which q. q =0, that is there are no external fields present.

We now define Z inductively so that the sum of all these terms cancelsr
the constant in (VI. 8). Hence,'t) expressed in terms of Wick order

monomials, contains no constant term.
T

Finally, to write £, (ht,... ,'M as a sum of Wick ordered monomials

n q.i ethe expression II It ft (Ç.,j.) : must be re-Wick ordered to obtain the

i=lji=l
X X

n
desired form: II n 0 This is accomplished by applying the identity

i=l j
n q.
It : II1 fte(Ç.

i=l j.=l X,3ii
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£
G

JI C(<h)(Ç ,<
^ìsis»1 SS externals * (Çi' :

legs of G

.thwhere G runs over all graphs with n generalized vertices (the i having

q. legs) such that every internal line joins distinct generalized

vertices. In other words graphs containing Wick bubbles -»-f \»~are

excluded. The sign ± comes from the usual reordering of anticommuting

fields. For example

: 0(q)0(C2) ^(C3)0(C4) 0(Ç1)0(£2)0(Ç3)0(Ç4) :

+ C(Ç2,Ç3) : 0(E1)0(Ç4) : + CtÇ^Çj) : 0(Ç3)0(Ç2> :

c«2,ç3) c(ç4,çxj.

Another effect of Wick ordering is
q

J : n *3HL
n=l.

dy 0
C3

for q ^ 0 so that

™ ,*k-l, .*h+l «e.,_It (ft +.. .+* +ft (E„
m=l

/»T *T CT „ ,Jt-l, J_*h+1J.*et /r > i^h+l4+2 •••£fc-l': * (* +---+® +* HV :)
m=i

: H ft"(EJ :•
m=l

We may summarize the discussion which began with (VI.6) in the

formula

Xjr(*e) £ £ £ It ~ Val (G5'). (VI. 10)
trees te 3 scales je^(t) labelled fet pf

Here, ti is the set of all rooted planar trees with each fork f bifurcating

upwards into p, & 2 branchas and^(t) {{j£|fet} f r<jf*0, f>f'-»jf>jf,}
is the set of all allowed assignments of scales to the forks of t. The

third sum is over all labelled graphs having
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a) one vertex^va/^C -<"(fay**or <* « for each leaf of the tree t
b) each internal line if labelled by a scale jf, fet and is also

given a hard/soft label. Interaction lines ware always hard and

of scale 0.

There are further restrictions on the sum over labelled graphs. They are

most easily stated in terms of

G° : {lines ieG° | i has scale j,, for some f £ f}

and

0* : gJ/{G*, I f > f}

Here G/{G ,...,G } is the graph obtained from G by contracting each

subgraph G.; to a point. The subgraphs nJ^r and (^J of the leaves are

included in the Gfl's and are always collapsed. Hence the lines of <f. are

precisely the lines of GO with scale j,.
L

c) g' has p, vertices

d) g" is connected by hard lines

e) g« has no Wick bubbles V

The rules defining Val(G«)(ft are:

i) each .wu» becomes - jf^^T^w'
u tu

each fa^V becomes - A Mu~^ C*°'W
u w

each «» < becomes ôy(A,y)

j+ (3f)
ii) each hard line _» < ¦ becomes C (E ~E

E E u w
ni ^w

(<jf)
each soft line of scale j, becomes C (E ~E

—eeach external leg _»-»- becomes 0 (E)

Q
each external leg F»-*- becomes 0 (E)
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the set of external legs are Wick ordered

iv) each closed fermian loop gets a (-1) There are no other signs

arising from the fermion statistics provided the external fields

terminating each fermion string «n »#»<•< are written side by

side in the order 0e(E1)06(E )•

v) the positions of all vertices-»- ,^>«.are integrated over R

By convention all legs in the ^)°'s at the top of the tree are

distinguishable. Thus topologically similar graphs are not identified and

there are no associated combinatorial factors.

Here is an example of Val(GO) :

t •
M

32 > jx > r
U > h > h

Ï-Jr -isoft$oft

»oft f4
ÏWtJ,\\soft r I4I

IffI "2 K>

L 3!iu
6f

gf g
4 4

gf g
2 2

Val(G^) (-l)1(^)7JdE1...dEu : 0e(E5)*e(E11)0e(E14)0e(E1)
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7 1 <32 <32

.y«2i-l * «2i»J C X-^1)C <*4 V

32 31 j2 <jl
c (E2 - E3) c (E3 - E7)C 2(E5 - E4)c (E13 - E6)

33 <33 j3 33
c 3(E7 - E10)c 3(E8 - E9)c 3(E9 - E8)c 3(E10 - E1X)

c'4(E12-E13)C34(E14-E12) •

In sections III and V we estimated the values of any graph that does

not contain any two-legged subgraph G°. As observed before, graphs

containing two-legged subgraphs such as

^d+1,
•• /-J*—fc[ 2 f(k)

(2ir)a x
(ik0 - e(k)T

diverge because there is a nonintegrable singularity on the Fermi

surface.

We now continue the discussion preceeding (VI.2) and construct

öy(y,A) perturbatively. The idea underlying the construction is that for

every two-legged subgraph -f/V<- ôy(y,A) must generate a counterterm
k W k

¦< * < so that

f(k0=0,|k|=V2m^)
...-«-(")—<- - < « <¦¦..

k k k k
,d+l

J" ••••T flT f£(k' - f<kn °'iy ^myJJ ¦
(2tt)U+1 [ik0 - e(k)r

The zero of f(k) - f(k 0,|k| /2my) on the Fermi surface mollifies the

-2singularity in [ik - e(k)} to yield integrability. These conditions

will determine öy(y,A) uniquely in perturbation theory.

The first step is to introduce a localization operation L which
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identifies the counterterm corresponding to any given graph. This

operator is defined by

LjdE1dE2G(E1 - E2):^e(E1)*e(E2):

G(k0 0,|lc| Vär^) JdE : 0(E)e<ME)e: (VI.11)

LjdE1...dEnG(E1 En) :l5,8(tl)...l*,"(Ç&): 0 for n f 2 for

Wick monomials and is extended by linearity to all formal power series in
e —e

0 ,0 (The fields do carry spin indices, but they have been

suppressed.)

The renormalized tree expansion will express the effective potential
r e

&$ (ft as a sum of trees similar to (VI.10) but with the difference that

each fork will have an additional label taking the values R (for

renormalized) and C(for counterterm). The meaning of such a fork is

x(k<h,o)£j+1...^_1(i-L,^,^1 *n,

%>

K

-Xl-<hik|(-L|ir^1 tyn)
$<<hfa $<*k>

Here ft -»ft means that the external fields ft resulting from
«p (^k)(-L) eh are replaced by ft The output of the R forks automatically

pairs each graph with its counterterm. The output of the C forks consists

of parts of ôy(A,y) J:0(E)0(E)=dE that have not been used up renormalizing

the effective potential ^J of scale k. Note that in contrast to plain

and R-forks the scale h of a C-fork is lower than that of its predecessor:

h i k.

We shall use the notation f 3 to stand for the sum of allr
nontrivial trees (i.e., not |) with all possible assignments of R and C
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labels and scales to the forks of the tree. But the root scale r is not

summed and the leaves are - - V~ (*e + £ ft3 rather than -*j Note that
3>r

ôy(A,y) does not appear in the leaves. Furthermore, all vacuum graphs

«9(those with no external legs) are discarded. We shall also use^-rC to

denote the sum of all nontrivial trees whose bottom fork is labelled C,

and so on.

Theorem VI.1 Define

ÔV ¦9
1 n (VI.13)

and

Then

x U.U.-^(*e) W- Jexp(- ^L>+ 5i>) (ft8 + £ ft3) It dy (ft3)

r j=r+l j=r+l CJ

2,*¦ I Hand <VI-14'

b) if P (resp P denotes projection onto the n order (resp. orders

less than n) of perturbation theory in A

P ÔV(fte) -P L log Jexp(-|l/ + P< 6&) (fte + ft)dyc(ft) (VI.15)

Remarks :

1. The counterterm ÔV is of the desired form

ÔV(fte) ôy(y,A) JdE:0e(E)*e(E):-

Since the interaction is spin independent, it is even diagonal in the

(suppressed) spin indices. When the interaction is not spin independent,

this will no longer be the case. This does not violate the requirement

that the chemical potential be spin independent. This requirement states

that the JdE0 (E)'/' (E) part of the complete action, including the contribution

from the (inverse of) the covariance, be diagonal in the spin indices.
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—OO

2. The physical effective potential^ obeys

l<t l AiV + rf
0

To see this observe that the first term is zero because & is a Wick

monomial of degree 4; the second is zero because 1,(1 - L) =0 and the

third is zero because of the restriction on scales at C forks.

3. Equation (VI.6) can be regarded as defining a scale dependent map

from ^ to "ff Remark 2 may be interpretted as a final value

condition at scale h -°°. This condition determines ôy(y,A) and says

that the fermi surface occurs (in perturbation theory) at |k| V2my

(cf. (VI.2)

Proof.

a) The proof is by induction on r. When r 0, then a) reduces to

0 -h*

by the restriction on scales at R-forks. This is trivially true.

Assume the claim is true for some given r. Then

M logJexp(^( dy -const
cr

l\\*f\ + £^7 t\l*f HVconst
n=2

±U

t;
-xt> r

+ £ TR/ j + £ V,3) + far - no R or C

j>r r j£r r / r-1 label

+ £ *9'j + £ 9'j + d - l)9 + faf
r-1 j>r rJ-l jii r-1 r-1 r-1

The second and fourth terms combine to form L and the third and fifthr-1



230 Feldman and Trubowitz H.P.A.

£¦terms combine to form

b) Set r -oo in (VI. 14) and apply P L.

P L ¦*) P L
n J n

0

¥¦ Qk
+ P L

n
+ PnL

since V~ is a wick monomial of degree 4, 1,(1 - L) =0 and the sum £
-«><h£-«>

is empty. Thus

0 PnL logjexp [-| l> + P^nÔL5L]dyc

Pnôl> + PnL logjexp [-|*> + P<nôi>]dyc. |
VII Renormalized Bounds

In this section we estimate the coefficients in the formal power

series expansion of the 2p-point function generated by the effective

potential at scale r, -°° <. r <. -1, and in particular verify that they are

finite.
Let

V*l'Sl'<2,*2 W
P
II

j=lLo0e(Ej) 00e(Ç..) J
-*f(fte)

fte=o
(VII.l)

be the 2p-point function generated by the effective potential at scale r.
The renormalized tree expansion (VI.14) yields a renormalized perturbation

expansion

2p - £ A"G
n=l

n„r,n
2p (VII.2)

We wish to bound the coefficients GA
2p

,r,nThe renormalized tree expansion expresses G ' as a sum over the
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values of labelled graphs in r^'11. Here r ' is the set of all labelled

graphs with scale and hard/soft labels on each line and R or C labels

attached to the subgraphs corresponding to forks of the associated tree.

In addition, these graphs must satisfy the conditions a)-e) following

(VI.10).

The localization operator L introduced in the last section

annihilates all but two-legged diagrams. Consequently for a graph without

two-legged subgraphs the operators 1-L and -L corresponding to the labels

R, C become 1, 0 so that the estimates of sections 3 and 5 apply.
(0)The ultraviolet part of the covariance U C is integrable but

unbounded. So in section 3 it was appropriate to estimate L norms of

Schwinger functions. On the other hand, the infrared covariance
_1 (')£ C is bounded but not integrable. So in section 5 L norms were
j=-00

appropriate. Here, the ultraviolet and infrared regions are treated

together. The combined norm

iißpiij.,00- suP{jdEr..dEpiG rpih EpivE iJ-.-yy i ¦¦ iifiii^iifiii^i}
(VII.3)

is natural.

Directly combining the methods of sections 3 and 5 yields

Lemma Vll.l Let the two body potential V either lie in L (R d i 1 or

be the screened Coulomb potential when d £ 2. Let G be in r.' r k -<»,

and contain no mass subgraphs that are without external vertices. Then
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1

A Tin nj(jf-j /f^f^TTff)'
llvaKG« )IL s kl(G) n m f f n(fl n

M

'" f>0 f>0
f nontrivial f nontrivial
f not external f external

Ai(0-3n(v)'
It M

K ' (VII.4)
vet(Gö
v trivial
v external

The proof of Lemma VII.l is ommitted.

Now consider two-legged graphs that have no two-legged subgraphs.

These graphs arise in three basic ways. The simplest possibility is that

the graph appears at scale r -». Its value is a term in the "physical"

two point function of the effective potential *M In this case the

external vertices En<E7 are integrated against test functions f (E

fp(E5) lying in L D L and Lemma VII.l is applicable. However, if the

value of G' is a term in H r > -oo, then there are graphs whose

r-1 Pi
values contribute to -^J that contain G° as a subgraph. When the

Feynman rules are used to evaluate the larger graphs the external legs of
A

G° are integrated against expressions that are not necessarily in

L O L so Lemma VII.l cannot be applied.

The graph G° corresponds to a fork in a tree of the renormalized

tree expansion. At every fork there is either a C or an R label. If C

occurs the operator -L is applied to ValfG" and produces a two-legged

vertex multiplied by a coupling constant:

[-L Val (G^ )] (E1(E2) - i(G^ )ô(E1-E2)

i(G^ ): Jdd+1E Val(G^ (O.Ele1^*- I (VII.5)
1 |k|=-/2my

(This coupling constant is part of ôy(y,A, see (VI.13).) If R occurs the

operator 1-L is applied to Val(G<3 to produce the renormalized value of
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•J. (The essential feature of this renormalized value is that its

Fourier transform vanishes to first order on the Fermi surface.) Hence

the other two ways in which a two-legged graph appear are (-L)Val(G<7 and

(l-L)Val(G^

We now estimate the result of a C-fork.

Lemma VII.2 Let Gö be graph in r ' r £ -» which contains no proper

two-legged subdiagrams and let 0 be the lowest fork in t(G« Then

Jdd+1ElElk|Val(Grj- )(0,E)l

L(G) "kj0 VÌn(2'1/2(d+1)> Dl(Gf"jf-jir(f)' | lj*' Ìf j*<0' d=3

£K M M J? " x(l otherwise
r>0

In particular

j.min (2,1/2 (d+1)) D1(G)(j-j
|l(Gèr,.| s KL(G)M0 <1+liJôd J û M f f v{f)

9 ' f>0

Proof

Assume for simplicity that all particle lines have scales in the

infrared end. It is easy to add in the ultraviolet end using the methods

of section 3.

We will be able to follow the argument of Lemma V.3 with one

important exception. The vertex E is integrated over all R rather than

against an L test function. In other words, it acts as though it were an

internal vertex. However we may not apply Lemma V.l as it stands because

E is not a dimensionless internal vertex.

Fortunately the assumption that internal vertices are dimensionless

was not used until fairly late in the proof of Lemma V.l. Stopping just

before that point one obtains

Lemma V.l'. Let G be a general graph as in Lemma V.l but not necessarily

having dimensionless internal vertices. Then, for 2 <, i i n.
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JdE2...dEnlval(G;CJl)(0,E2...,Eri)llEilk

MG) J*D* W^TTff)' _k30
S K l ;M * v n M * ' M v

f>0
f nontrivial

The factor lE-l did not appear in the statement of Lemma V.l. But

this factor may easily be bounded because the vertex 0 must be connected

to the vertex E- by hard lines of scale at least j.. Then we may extract

30 -ka factor (1 + M iE-I) from these hard lines and bound

ie/u* (mSeìIìV1^*.
We sketch the variant of the proof of Lemma V.3 obtained by replacing

Lemma V.l by Lemma V.l'.
Just as before

lElk|val(G<4 (0,Ç)| i £ Val(G^)(0,E)M *

ki=3i
i ,/

where the hard particle lines in G ' have covariance

-1/2(k-j d/2 k k l/2j j
M [M g (M |x|)] [M g (M M)],

i K
the soft particle lines of GO have covariance

-1/2(k-j d/2 k k 1/2 j
M [M g(M X|x|)] [M X] if k. > j.

and

-1/2(k-j d/2 k 1/2 j
M [M X] [M *] if k4 il

À V,
and the interaction lines of G1-' have covariance

-1/2(0-0) r„0d,,,„0, ,„0x1.. .„0M [M V(M |x|)][M ô(Mx)].

The integral factorizes
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I1A -1/MKj 3,1 A
Jval(G^'*fa<0,E,) H M

* Vala(^Valx(i)
£

with Val (K) containing the spatial integrals and Val U-) the temporal

integrals. Applying Lemma V.l' to the temporal and spatial integrals

respectively one obtains

j D (G) D (jf-jVal1!).) £ constL(G)M * It M f f n(f)
0 fet(G»)

f>0
f nontrivial

and

a t tr\ k*D<ä(G> Df (k,-k,a„;, - ^L(G)„ 0 „ „ f f TT(r)Val {H) i const M * It ^
M

fet(G*)
f>0
f nontrivial

We want to combine the proceeding two estimates. As in the proof of Lemma

V.3 this is not quite straightforward. The spatial integrals are done on

scales k. with k. 2 j. while the temporal integrals are performed on the

j scales. Consequently the forest F(G and tree t(G can be quite
J- idifferent from F(G° and t(G" The way around this difficulty is to

D (k -k }

observe that D < 0 for all f > 0 and hence M u SI so that

d+1 k 1 Tin 3d)[D1(G)+Dd(G)-k]
Jdd+1ElElk|Val(G^)|(0,E) i constL(G)M 0 It

fetiofa
f>0
f nontrivial

/!Gf"3f-31T(f»> -\
k£=3£L *

"1/2(V3£)
H M

(k-j )Dd(G)
M ^ v

MG) -^ J^in (2,1/2 (d+D) BV (j -j J

5 const l 'M VM v UK ' '
f>0

~* f jj M-i/2«vv -]M«Vj0)mint3/2'd/2,Minax{O'ärik0

k£=3i
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All that remains is to show that

-1
£

k£=3i

-l/2(k4-jt) (k -j )min(3/2,d/2) max(0,^ k
M 9 ç M v

i constL(G) Ij^l if d 3

1 otherwise

To verify the last estimate we first remark that GO must have at

least three lines whose scales j j.. To see this observe that every

line of g: G/{Gf|f>0} has scale j j. and, because of the wick

ordering convention, joins distinct vertices of g. Moreover every vertex

of g has at least four legs since G has, by assumption, no two-legged

4V(g)-2subdiagrams. Therefore g has at least —~— £ 3 lines. The smallest

possible g is —v-

Consequently

-1
£

k£=j£

e
It M

£

¦l/2(VJïh (k -j )min(3/2,d/2) max(0, ^)k
M v v M v

0 0 k^maxlj^k |_ i^g

nM_1/2(kfaJ^
TT

-1/2(kfak*'
It M It M v

ieg

d-3,-1/2 (k-j )|g| (k -j )min(3/2,d/2) max(0, ^lkxM V V ^ V V M f

L(G) -I -l/2<VJ0)(3-d) «n"<0'¥,k*
i const v ' £ M y y M v since |g| £ 3

Vj0

tL(G)
Ij^l if j0 < 0, d 3

<, const'""'
const otherwise

The proof of Lemma VII.2 is complete.

We now estimate the value of an R-fork, namely
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RG^(E) Val((/)(0,E) - KG*') 6(E).

If either vertex 0 or E is external we may apply Lemma VII.l Otherwise

RG" occurs in a string:
o yy yr. ^ ««W *«W »<G.«> 5

s,t"¦ irfavTfa!fa-^ivV. »« -Wl
s+t s+t+1 (j.) s

J it dq n c 1
(E^-E^l .n (RG.) (E2i+1-E2i)

1=1 1=1 1=1

.", A(Gs+i»Ô^2s+2i+r^2s+2i»
1=1

where En 0 and E, E- Condition d) following (VI.10) forces at

(3i»
least one C in the string S to be hard. Furthermore our scale

decomposition was constructed so that C (k)C (k) 0 whenever

(ji>
|m-n| £ 2. Hence we may suppose that every C is hard and that there

is j for which every j. j or (j+1). In a typical situation the

two-legged diagram G. of the string S will have scale h. > j, if
1 <. i <, s, and scale j if (s+1) i i <. s + t.

We now formulate and prove the Lemma that allows us to estimate

strings of renormalized two-legged diagrams.

Lemma VII.3 Let G., Isis s+t, be a two-legged diagram of scale h.

satisfying

-kh. h.min(2,^1
IIIEIVmg.HO.EJII

x i KiN.M xm 1
(l+|h.|ôd<3)

L

for all 1 i i i s, 0 £ k £ N'. Then the string of (VII.6) obeys
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1-d

IVal S(E)l=S C*+t Mj[l+|x|] 2
[1+ (MjlEl)N']_1

s h.min(2,^1) -(h.-j)
.n=1 LKi,N'M <1+lhilôd,3)M M

s+t f _. -i
It |£(G.) |M 3 (VII.7)

i=s+l L 1 J

Remark (1) It is useful to regard Val S(E) as a "covariance." From this

point of view Lemma VII.3 is the appropriate analogue of Lemma II.1.
Remark (2) We roughly explain how the different powers of M in (VII.7)

arise. Certainly, |Val S(E)I includes the convolution of (s+t+1)

covariances. By Lemma II. 3.1 with m n 0, oc+ß s + t + l the

appropriate power of M is
s s+t

M3d-s-t) M3 jj M-3 jj M-3_

i=l i=s+l

If G., 1 s i i s, were not renormalized it would contribute
h.min(l/2(d+l),2)

M (l+|h.|ö. by Lemma VII.2. Renormalization replaces

(Val G.)(k0,k) by

I (Val G.)(k0,k) - (Val G.) (0, |k|=/2nm) |

|ko %r0 ^1 Gi+ "û - V*^ fel ™ Gi'

* |ko' " dV ^1 Gi" »
+ I Ikl - ^i Ml fe[ vi G.ll

mOL L

i const[|k0l + ||k|-/2ÜiJI iJlHEKval G.)(0,E)ll %
L

(VII.8)

The support of CVJ/ forces [IkJ + ||k| - V2my|J i const w As in the

proof of Lemma V.l' the lEI in IIIEI (Val G.)(0,E)|| produces a factor
1

L

-\ -(h-j)
M Hence the renormalization of G. gives a M
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Remark (3)

1-d
i 2 i N' —1

The expression M [l+|x|] [l+(MJlEl) ] is our standard bound on a

covariance of scale j. Its occurrence on the right hand side of (VII.7)

effectively replaces the complicated string S by a single covariance

j
¦ > of scale j
o E

Consider the expression

h.min<2, â±l) -(h.-j) I1 d=1

M (l+|h.|ôd3)M M3 i h/2
IM x d*2

For d £ 2 this expression has two somewhat surprising characteristics.

First there is a factor (l+|h. |5. which is not a power of M. Second iti d, 3

h./2
is bounded by M which is summable over -1 i h. > -». In the "normali
situation" of constructive quantum field theory this would not happen.

Rather, as for d 1, the bound would be essentially independent of h., in

which case the sums over scales h. generate powers of j. They in turn

generate factorial behaviour for the graph as a whole. However, such

factorials are weaker than those of (V.I).

Finally the expression [|£(G.)M 3|] is bounded by a constant since

the typical behaviour for £(G.) is (see Lemma VII.2 and (VI.12))

u ¦ ,* d+1»h mm(d,-r-)
IMG.) | < £ M (l+|h|ô.

1 ~ hij a,J

Remark (4)

Two-legged graphs have dimension ——. One would normally need an

infrared renormalization cancellation of order (integral part of ——

Here, by contrast, a first order renormalization cancellation suffices

because of the convolution inequality Lemma II.1.3.

Proof of Lemma VII.3. We simply follow the proof of Lemma II.1. When
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d 2: 2

|(MJIEI)N'S(E)I consti/ dk /dp p^V^tplxl)1"^^ (p|2l'
-oo 0

,,2 ,2 p dp 0
dkQ dp

1-d
+ const |x|

2 j"dk0 J°°dP [M2j(-S-S-^Ì; )]N'/2|S(k0,|k|=P)|
-oo o dk dp

.(JJ

by

The support properties of the C 's imply that S is supported in a

region of (k.,p) space of volume const M The supremum of S is bounded

-, ._ s -(h.-j) h.min(2,—r—
consts+t+1M-3(s+t+1» n K. H,M l n 1 2

(l+|h.|6„i,N i d,3

s+t
It |i(G)|.

i=t+l
-i (s+t+1) - '3i' s

The factor M comes from the C 's; the product It comes from
i=l

the RG.'s via (VII.8) and the observation that on the support of C

[|k | + |k| - V2my ] i const M3 (cf. remark 2).
2 2

0-1 A A A *\ A M'/O
The derivatives [M (- —- - —- —) 1 do not materially2 2 p dp

dkQ dp

affect the supremum. This may be seen as follows. As in Lemma II.1 a

-r,— or 3— acting on a C produces, at worst, an M A derivative ——
dkQ dp f ^

d — kor — acting on RG. removes the renormalization, since i(Gw) is a

-(hrj)
constant, and hence one factor of M from the above supremum but

then adds a factor of M M
1

M
3 because of the hypothesis on

h. -(h-j)
M 1

Il lEl val (G. (0,E) II -. Thus the derivative puts back the "renormalization
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-(h.-j) d dfactor" M and also gives the usual M
3 As soon as a -r.— or -r-

dkQ dp

acts on RG; the renormalization cancellation disappears. It follows from

this observation that at most N' derivatives can act on G..i
Thus, for d 2: 2,

d-1 s+t

|x|
2 (MjlElN's(E) i const^V2"8-^1' It U(Gi"

i=s+l
s _(hj-J) h.min(2, —)
.^Ki,N'M" M (1+lhilôd,3''

To complete the proof we require similar estimates on |S(E)I and

i N'|(MJlEl) S(E)I. They are derived in the same way. Finally they are

added together just as in Lemma II.1 to obtain the stated bound. We omit

the argument for d 1 too. I
We now have the essential ingredients necessary to prove the main

theorem of this paper.

Theorem VII.4 Let G*'n (£.,...,£, be the coefficient of An in the

expansion of the 2p-point function for the effective potential ¦'b at

scale r, -°° i r S -1. Then there exist constants K (independent of n and

r) and R (independent of p,r and n) such that

l|G2p% V"l,«faKpRnn!
2

Remark In the introduction we observed that there are approximately (n!)

graphs contributing to the n order of perturbation theory, that there is

a factor of —! arising from the expansion of the exponential and that

there are graphs, containing many four legged subgraphs, whose values are

of order n!. One of the consequences of Theorem VII.4 is that there must

be very few of the latter graphs.
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Proof The renormalized tree expansion (VI.14) expresses G ' as a
^P

multiple sum. The first sum is over rooted trees having a single branch

leaving the root, each fork f bifurcating into p, £ 2 lines and n

endpoints at the top of the tree. The number of such trees is bounded by

2 (See, for example, [GJ, page 112].) There is also a sum over the 2

possible assignments of R/C labels to the forks of a tree x.

For technical reasons it is convenient to add an internal/external

label to each leaf of t, specifying whether the corresponding vertex is

internal or external, and a label Ef to each fork, specifying the number

of external lines of G, that are internal to G. There are at most 2

possible internal/external labellings. It is enough for the proof to

consider a fixed tree and assignment of R/C and internal/external labels

since the above powers of two may be absorbed in R Later on it will be

necessary to sum over the Ef labellings.

Some forks of a tree require special attention. We now list these

forks: (1) C-forks, since they produce a single two legged vertex,

multiplied by a scale-dependent coupling constant. (2) R-forks with E,=2

require the convolution identity, see Lemma VII.3 (3) internal R-forks

Df,jf"jir(f))with E=4 because the factor M in (VII.4) fails to provide any

decay with which to control the sum over jf. The strategy will be to

first bound E,=2,4 graphs that contain no E,=2,4 subgraphs; then E,=2,4

graphs none of whose E=2,4 subgraphs contain E,=2,4 subgraphs and so one

by induction. Once all Ef=2,4 graphs have been treated we can combine the

result with a variant of Lemma VII.l to bound general graphs. In other

words we shall proceed by induction on the depth of the tree, which we

define to be
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depth(t):= max {D| 3 forks f.,..., t of x obeying

(a) l% < f2 < < fD

(b) E 2 or E =4
i i

(c) f. internal }.i
Before formulating the inductive hypothesis we give some motivation.

To begin with ignore the number of graphs. Suppose that f.,...,t are the
1 r

forks of x with E, 4 (or when d=l, E.=2). The value of a graph arising

from x is of the order of F! To indicate why this happens observe that

each scale j, must obey 0 ^ j, > j, and hence can take only |j„| values.
I t <p M

1 1

D£ (jf ijW(f )'
Furthermore M =1, since Ef =4, and in particular does not

1

p
decay. Thus, the sum over the scales j is bounded by |j,| As we

i
ej.

shall see there is a factor M e>0, associated with the first fork 0

of t. For example, when there are no E,=2 subgraphs, one can extract the

ej
factor from the estimate of Lemma VII.l. So the product |j.| M

Fi const F!.

The remark above suffices to prove an n! bound for any single graph.

However, to prove that the sum of the values of all n order graphs is

bounded by const n!, that is, Theorem VII.4, is much more subtle. Roughly

DY(jf-^(f.)1
x

put, either there are many decay factors M D, < 0,
i

controlling the sum over scales and therefore suppressing additional

factorials, or most of the forks have E, =4 generating, as above, an F!,
i

but in this case there are very few graphs contributing to the sum.

We must measure the relative density of four-legged subdiagrams and
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decay factors. To do this introduce the function
a.

A. (h):= £ (i+|h|+l)*M 4
K i=l

Here i plays the role of j,-j and h plays the role of j Int TT(f TT(I)

particular £ (|j|+l)kM4 f ïï|fl ^\(fa(f))-
°*jf>jTT(f)

It is proven in [FHRW Lemma 8.2] that

a) II A (h) i Av (h) if M is large enough
n >n

P P P

-f(h'-h)
b) £ M A (h') i X (h) if M is large enough

h'>h n n

c)
h,

ï Vh'> *\i+l(h>
n =n+l

d) £ vT A (h) <. C, n!
h^O n

-f(h-h')
e) £ M A (h') i 2X (h) <, A _ (h) if M is large enough". n n n+lh ih

f) n! i c" A (h) (VII.9)3 n

We make an inductive hypothesis on

6j'n,D'(Ç1 Ep) sup | YJ,Ef=p | p=2,4

where the sup is over all trees of order at most n, depth at most D'

having only internal vertices and over assignments of R and C. The first
fork has scale f and E=p. The inductive hypothesis is that for all
0£k£d+l, 2iiii

d+1

lllElk 65'n'D,(0,*)H1 i icn~1An_1(j)M~kjMmin(2,
2 )3(2+|j|ôd3) (VII.10a)
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lltilkC 4J'n'D'(0,E2,E3,E4)ll1^^-\_2(J)M- •kj

(VII.10b)
The induction will be on depth. The constant k is chosen later. Suppose

that T has depth D and that either D=0 or that the inductive hypothesis

has been verified for D' i D-1. As above the R/C and Ef labels of x can

be fixed. If the lowest fork has label Ef=2 temporarily drop that fork's

R/C label since the inductive hypotheses is stated without one.

Decompose the tree t into a trimmed tree t and insertion subtrees

a.,...,a by cutting the branches beneath all the minimal internal E =2,4

forks f„,...,f (i.e. each of the forks f_,...,f is an internal E,=2,41 m 1 m f
fork having no internal E,=2,4 fork, except possibly 0, below it). If x

has degree m+n. and o. has degree n. then

m

n n + £ n
i=l

Further more each o. has depth at most D-1. For example, for

we have

R.E,-6

T ¦ n 7 D 3

C,Ef-2 R,Ef-6
R,Ef-2

E*-2

Ef-6 n 2

Ef-
Ef-2

n, 3 depth 2
O-, ¦ C,Ef-2

R,Ef-2
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,- C,Ef-K2 n, 2 depth 1

Each graph G contributing to x may be represented as a graph G, of

order n, associated to x, having n. generalized vertices ^^^^"x. >

-«^fafaWand n„ generalized vertices •*-( \t- and n. generalized

vertices T with the values of the-»/ V-, T J generalized

vertices being the values of the insertion subtrees a,,...,a Thus
1 m

m n. + n. and n ii. + n„ + n..2 4 0 2 4

The number of graphs that are represented by each of the generalized

vertices*-/ \~, [ ] in G is built into the inductive hypothesis. In

order to continue we must estimate the number of graphs G.

The number of unlabelled graphs G is bounded by the standard estimate

2 (n.+n.-p) I where (x) max(n,0). As in [G, Appendix F] the number

of labellings of G consistent with the tree expansion and consistent with

the Ef labels is bounded, for any e>0, by

"e f n pf!"| exp |~e ^ Efl
• fex -1 L fex

Hence the total number of labelled G's is bounded by

e (n0 + n4 " p)+! n Pfl exp e £ Ef (VII.11)
Lfex -I L fe^ J

We now derive three estimates for the value of an arbitrary G,

assuming that the generalized vertices corresponding to insertion subtrees

satisfy the inductive bounds (VII.10,a,b):

a) If G is two-legged and 0£k£d+l
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1 1
v t i?\ -kj. j.min(2,-(d+l)) DM3.-3 /f.)

HlElkG(0,E)II^KL(G)M *M* 2

(l+|j^|ôd3) II M f f w(f)
Q

fex
f>0

b) If G is four-legged and O^kid+1, 2iiii
-kj D (j -j

IHE|kG(0,E2,E3-E4)ll1 5 KL(G) M * It Mf f n(f) Q (VII.12)
fex
f>0

c) If G has psl legs

„GI, i^ jj /f'^f-Mf,' jj
M4<3fA(f>>

x1/*"
fex,f>0 fex,f>0

f not external f external
f not trivial f not trivial

x n M l ' Q

v trivial
v external

Here

n.-l min(2,—) h. -h.
Q= n C. k An n(h.) M (1+lh |ô M

1 n.—1 1 1 a, jinsertion tree o. 1
1

0. two-legged

0. has R label
1

n.-l
II

a.
1

Cl ic
1

A ,(h.n.-l 1
1

o. two-legged

o. has C-label
1

n.-l
It

0.
K l An _2(h.)

1

min(2,^1)h. -j
M

2
1(l+|h.|ôd3)M "»«V

o. four-legged
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where h. is the scale of the first fork of the insertion subtree o. andi i
j (o.) is the scale of the first fork below o..IT i 1

Parts a), b) and c) of (VII.12) follow from Lemmas VII.2, V.l', and

VII.l respectively and two additional observations. First, a key

hypothesis is that there are no proper two-legged subgraphs. This may be

true for G. However Lemma VII.3 eliminates this difficulty. It replaces

each string +favT\T j»- by a single covariance —*¦ ¦ Second, only

local vertices J^^^^^C were allowed in Lemmas VII.l, VII.2 and V.l'.

This was unnecessary. Reviewing the proofs one sees that any graph with

four-legged generalized vertices satisfying (VII.10b) obeys the same

estimates.

Combining (VII.11) with (VII.12) and estimating the sums over scales

and E, labels allows us to verify the inductive hypotheses at the D

level and finish the proof of the theorem.

First we sum over the scales h. occuring in Q. We have already

himin(2,—)
observed in Remark (3) following Lemma VII.3 that the factor M

-h.
(l+|h.|ö, )M of the first product in Q is bounded by 1. Hence

n.-l min(2,——)h. -h.
H £ ClK

1
An _1(h.) M 1(l+|h.|ôd 3)M

1

a. two-legged h.>j i '
i aa i tt(o.)

o. has R labeli

*n n>„f ^*' V-l<hi>
0>hi>3TT(o.)
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n.-l
i n O, K

1
A (j by (VII.9c)1 n. jtt a.a. iii

o. two legged

a. has R labeli
As for the second and third products we have

n.-l min(2,——)h. ~3„i„ \
n £ C.K x

An (h.)M
2 1(i+|h. |ô, )M n,°i'

ni ..^. j. n.ii 1U,Jo. 2-legged h.^3 ii a i jtt(o.
C label 1

n.-l (h.-ji ¦J-n{a.)is n £ | Cl k i
c4 V-i^i»"h.^j1 J1T(Oi)

min(l,—)h.
where C, 2 max M (l+|h.|ô.4 h.*0 x d'3

l

i n ClC4
k"1 A (j by (VII.90)

a. 2-legged i i'
C label

and

n.-l n.-l
It £ K

1
A

_ (h.) i II K
X

An _1(Jlf(o
o. 4-legged 0>h.>j ni~ x o. 4 legged i ii i tt(o. ll
Combining these three estimates we have

£n.-m
£ Qi[CC)mK 1

Jt \Uvlaì) * Xn.-l(3n(o.)'
{h.} 1 4

o. 2 legged i "l i' o. 4 legged "i x K i'
£n.-m

* (ClC4»mK
X

„\fa30> " Y-l (V
o. 2 legged i o. 4 legged i

by monotonicity since |j.| £ Ij .1

£n.-m
i (ClC4)mK

x
AIn_- (j by (VII.9a).
u i 4
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Next we control the factor exp[e £ Ef] and the sum over E's. Note
fex

Df,Jrjn(f))that in (VII.12) every fex, f>0 has a factor M
K ' or

^f^Mf)'
M l ' with j.-j £ 1 andf "(f)

Df i - — Ef (since Ef£6)

We can use half of each of these factors to bound exp[e E,] and to

control the sum over Ef. The other half is used to control the sums over

3f, f>0. All of these sums are bounded by C

So far we have shown

j - -kj
a) IHElk

2
*'n,D(0,E)IL * n_ ç^McJjtn0+n\-l) + n_Pf!XK2nM *

fex f fex

j,min(2,l/2(d+l)) mm nn+m £n.-m

b) N^i|k 4J*'n' i°.WV"i * {/~ ^THCe'VV2)+!/- pf!)}
fex "t fex

„- -kj n.+m £n.-m
iir2nM * rmfmr ° fa 1 x (-in{K *M ClC4C5 K ^ni-H4(;l*)}

--—l'I
O llG^nH1/0o <ï II. ^HC^(n0+54-p, + K pf!>(K2V 5° '*

r 3 fex rf fex
0

n +m £n.-m
C1C4C5 K

X

X£n.-S4<30)} (VI1-131

Here the first set of brace brackets { } contains the explicit —r's that
Pf!

occur in the evaluation of a tree (see (VI.12)), the second set contains
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our bound on the maximum number of G's and third contains our bound on the

maximum value of G.

We now observe that the pf!'s cancel, that

<VVp>+!*£n.-;;4<V * s"0*"4 Nno+vp>!VAxVn4<30> by (VII"9f)

V54
SC, Xv - A,~ - (jA by (VII.9a)3 £n.-n4+(no+n4-p) + u0

and that in cases a) and b) nn + n - p £ 0. For example in case a) p 1

so that n„ + n, - p £ 0 unless n. n. 0. In other words the only0 4 0 4

potentially dangerous possibility is that G is of the form

But in case a) G is to be inserted into a larger graph either as a

counterterm or with the connecting lines of scale j. < j,

OMDK)-
J0

In both cases conservation of momentum implies that the larger graph has

value zero. There is another possibility: j. j, - 1. Then the scale

j. is "tied" to j. and need not be summed over. It is a dreary technical

matter to account for this and would only further obscure the central

issues. So, it is ignored. The preceding remarks allow us to conclude

that, in case a),

£n. - n4 + (H0+54-l)+ £n. - H4 + S0 + H4 - 1

nQ + £n. - 1

n - 1.

Similarly, in case b), £n. - n + (nn+n.-2) n - 2. Here the
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potentially dangerous graph is

o
0

0<XX)
Ò

Once again conservation of momentum eliminates this possibility. Finally

in case c) £n. - n. + (n„+n.-p), i n.u i 4 0 4 +

To verify the inductive hypothesis it must be shown that k can be

chosen so that

n0+m £n.-m HQ+S4 n_1

or, dividing,

cVnC^C5 - K
•

C3-
- s

,n 2n n, ™ n0+mrn0+n4 „ V"1"1
CeK C;LC4C5 C3 i K

Recall that n n + m with m n + n. and n n. + £n.. The left hand

2 Vm
side is bounded by (C K C,C.C..C,) so we may choose

e i 4 d j
2 2 -k max(l,(C K CCCC) since n + m ï 2.

fc* A. j ti J U

The proof of Theorem VII.4 is completed by observing
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£ V30)M
5° * * c2 n! by (VII-9-d)

253

(VIII.1)

sGw

VIII The Interacting Fermi Surface in Perturbation Theory

The average occupation number n, of momentum k and spin a is

defined by

n Jd3x <a,0a(x,O)0a(O,O)ß>elk'2

lim Jd x S (0,0,a),(x,x,o)Je1-'2
x-0+

S(k,x=0+,a)

where a denotes the spatial Fourier transform. In the free model

S0(k,x=0+,o) x(^2mT[ - Ikl)

so that there is a discontinuity at |k | 72my By definition the

interacting Fermi surface is (if it exists) the surface of discontinuity

of S(k,x=0+,o) where S is the interacting two point Schwinger function.

The inverse of the interacting two point function is the difference

of the free one and the proper self-energy £ (see section VI)

S

Thus

K1 - D"* (VIII.2)

r dm +io)X 1
n, lim I ,„ e-'° T-0+ (2TT)

IVI :,.iui-e(k)-2,(k,w,o)
We conclude from (VII.10a) that, in perturbation theory,

(VIII.3)

1151^(5)11! * 0(A) £ M kjM

j
min(2,^—)3

(l+l3lôd3)

ik
< 1 if d 1

k < 3/2 if d 2

k < 2 id d ^ 3
(VIII.4)
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Theorem VIII.1

If 11 1+1 £, | 1+e£; £, Il i 0(A) for some e > 0 and £(0, |k|=/2my) 0 then

for A sufficiently small the limits lim n, exist and
|k|-»/äüy" ± -'°

lim n, - lim n,
|k|-/2mü - -'° |k|-/2Üiy + k'°

£ (|k|=V2my,0)
1

1 ;

£ 1 - 0(A)

Remark (1) As we shall see the first hypotheses implies that £(k,w) and

all its first derivatives are continuous and uniformly bounded by 0(A).

If the free model is a stable fixed point under the renormalization group

then, by (VIII.4), the hypothesis ought to be fulfilled in two or more

dimensions. This may never be the case. See [KL2] and [LP, page 222].

On the other hand it will fail marginally in one dimension. This

observation is consistent with [ML] in which the number density of an

exactly soluble one dimensional many fermion system has infinite slope but

no jump at |k| 72my In fact direct calculation to second order in the

models considered here yields (for V2my 1)

2^^ (k0+(k-l) [l+k+2q-2p]}{V(k-p)V(q-p)-V(q-p)2}
£(k,ui) A J2tt 2tt - —

_e
—

+e (^+q+p)} [e (p)_e (q) +e (l+q-p) ]

e(p)e(k+q-p)>0
e(q)[e(k+q-p)+e(p)]<0 + regular

So - £ (k,0) - const in e(k) andi ui — -
n, - regular + const 0(e(k)) [l+const|in e(k) |]

where 0 is the Heavyside step function. In this case n. is continuous

across the Fermi surface but has infinite slope there.

Remark (2) By (1.2) the free S(k,x,o) is real and invariant under the

reflection k -» -k. Since the interaction V(k)ô(x) is also real and

reflection invariant the interacting S(k,x,o) and hence £(k,x,o) have
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these same properties. From this we conclude that

£(k,io=0,o) Jdx £(k,x,o)

and

are real.

Proof We decompose

i f^ £(k,io=0,o) Jdx x£(k,x,o)

where

S(k,x,o) j|^ e1WT[iw-e(k) - £(k,io,o)] *

I1(k,x) + I2(k,x) + I3(k,x)

T ,i % r du iiox,. _ _ ,.-1I, k,x J — e [iAio-Be k) ]
1 | 2TT

|w|<n

dm iuix R(k,to)
I,(k,T) J — e

io|<n2TT [iAu)-Be(k)] [iAu)-Be(k)-R(k,w)]

p du iiox.. -1I,(k/t) J ^T e ìio-e(k)
3 - _

2TT
I io Un

I4(k,x) J geiu,T £ikÄOi
|u,|*n [iw-e(k)] [i(o-e(k)-£(k,u>,o)]

A 1 - j |jj £(|k| V2^,0,o)

1 + fiTT £(lk| V2my,0,o)
V2my d|-'

R £ - |JJ £(|k|=V2my,0,0)10 - fr^- £(|k| V2my,0,o) -^— V2my

and n > 0 is a small number to be chosen later. Note that, IHEl£(E)ll1 < °°

implies the continuity of the first derivatives of £ and consequently the
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existence of A, B and R. We still have to show that the integrals

converge. Here the extra e is required

For |k| f /2my

lim I (k,x) lim J r^ elwT [iAto-ße(k)]
x-»0+ x-»0+ I w | <n

J — [iAui-Be(k)] (since the integrand is L
I i Ztt —

_ r du -iAto-Be(k)
i i, 2tt .2 2,_2 2
ito| <r\ A u) +B e(k)

r dto
J Or,Be(k) ,J,, 2tt .2 „- ItoKn a 2

B e(k)Z

1 r dto- sgn e(k) J
i i A 2tt 2
lu,l< iiMknn 1+w

-^sgne(k) f tan"1 (5^7 n)

2 -1 A
As k approachs the Fermi surface - tan (r-j—,. ; r|) "* 1- Hence,

n B|e(kj |

lim IMk,0+) ± ^r

So we must show that I.(k,0+), I (k,0+) and I (k,0+) exist and are

continuous across the Fermi surface.

Now consider I.. It will be shown in Lemma VIII.2 that, for |to| and

— 1 +p 1+p
|e(k)| sufficiently small, |R(k,to) | i C[|to| + Ie(k) I ].
Consequently

liAto-Be(k) | ï C [|to| + |e(k) |)

|iAto-Be(k)-R(k,to) | i C [|to| + |e(k) |

and the integrand
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2tt
R(k,to)

We write

[iA-Be(k)] [iAio-Be(k)-R(k,to)]

C_ |to|1+e+|e(k)|1+e
C'2 [|to| + |e(k)|]2

J J +
|to|<n |e(k) |<|to|<n M <min[n, |e(k) | ]

In the first region, the integrand is bounded by
2C 1

„, 2 ,1-eC |to|
which is

L Thus, by the Lebesgue dominated convergence theorem, the first
integral is continuous across e(k) 0. The second integral is bounded by

,1+e
which goes to zero as e(k)2|e(k)| -£-al£lSLL-

C'Z |e(k)|2
Now consider I,.

T r dio itox.. ,.,,-1 r dto iiox,. ,,..-1I3(k,x) J — e [ìio-e(k)] - J — e [ìio-e(k)]
R | uj | <ri

The second term has already been dealt with (cf. I. with A B 1) and

obeys

r dio iiox.. ,-1lim lim J ye [iio-e(k)]
X-0+ |io|<n

+ Ì.- 2

|k|-*V2my T

The first integral is conditionally convergent and may be evaluated

explicitly by contour integration. For x > 0

r dio itox ,-1i1 -^ e [ìto-e(k)] e
1 e(k)<0

0 e(k)>0

The two jumps cancel.

Finally we consider I Observe that
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|ito-e(k) | £ | to |

|iio-e(k)-£| * |io-lm £(k,io,o) |

ï luil - |lm[£(k,u),o)-£(k,0,o)] |

;> |ui| - Mil ^ £(k,io,o)Hoo

*§ liol

if A is sufficiently small since |||x|£(x,x,o) || i 0(A). Therefore the

integrand is bounded by
' ' By the Lebesgue dominated convergence

I M2

theorem I, is continuous.
4

Once Lemma VIII.2 is established the proof of Theorem VIII.1 will be

complete.
1+F

Lemma VIII.2. Let f f(|x|,x). If ll(l+lEl) f IL i C

|f(|k|,to) - f(kF,0) - fw(kF,0)w - f|k|(kF,0) [|k|-kF] I

,21+eC[|io|1+e+ ||k|-kF|1+e].

Proof

f(|k|,io) - f (kF,0) - fw(kF,0)io - f|k|(kF,0) [|k|-kF]

d i(Tiw-|k|x "i^i _ikFXl ~ikFXl
Jd xdx[e - e - ixtoe + ix [|k|-k ]e ]f(x,x)1 F

But

and

i ia • i ' 2
|e - 1 - ia| i - a

|ela - 1 - ia| i |eia - 1| + |a| i 2|a|

i ia _ .1 2,6,.,,, 1-e „, ,1+e|e - 1 - ia| i [- a ] [2|a|] 2|a|
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Applying this with a xio - [|k|-k_]x., we arrive atF 1

|f(|k|,io) - f(kF,0) - fw(kF,0)ui - f|k|(kF,0)[|k|-kF3l

i Jddxdx 2|xto-[|k|-kF]x1|1+e|f(x,x) I

i 21+eJddxdx[|«o|1+e|x|1+e + ||k|-kF|1+e|x1|1+e]|f(2,T)l

i 21+6C[|io|1+e + Hk|-kF|1+e]

Remark (3) Under the hypotheses of the Theorem the zero set of

ito - e(k) - £(k,io,o) is precisely to 0, |k| V2my provided A is

sufficiently small. In the course of proving Theorem VIII.1 we showed

that for all io, k | Im[iio-£(k,to,o] | ^ -~-. Now consider to 0. There is

precisely one zero for small |e(k)| because

gj£l [e(k)-£(k,0,c)]

There can be no zeroes for |e(k)| large because ll£(k,0,o)|| i 0(A).

5« 0.
|k|=V2my
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