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Perturbation theory is analysed for a class of standard many Fermion

systems.

At positive temperature we show that perturbation theory is

finite to all orders and exponentially bounded. At zero temperature an
expansion is developed whose coefficients are bounded by c®n!. The Fermi
surface is studied in perturbation theory.
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I. Introduction

In this paper we study perturbation theory about the spherically
symmetric independent electron approximation for a crystal at temperature
zero.

We start by describing the d-dimensional independent electron
approximation. Imagine a finite crystal with "ions" fixed at the points

d L Ld . . . . .
of Z f][— 5,5] (with L a positive integer) and with N freely moving
electrons. Each electron moves in a common electric field - VU(x) which

is periodic with respect to Zd. Imposing periodic boundary conditions on

the Laplacian, the Hamiltonian for this system of electrons is

3 1

.)j [- 5o A+Ux)].

i=1
In this paper, we shall, for pedagogical reasons, consider only the
spherically symmetric case in which U = 0. The general case will be
treated in another paper,

The independent electron approximation is the limit of these finite

systems as N and L tend to infinity with the density p = EE held fixed.
L

This limit is described by a statistical mechanical Fock space

F= P F

n,m’
n,m=0 '

Fo 0= C is identified with set of, all multiples of Q, the fermionic
’

ground state. The state Q, normalized by |IQ|l=1, should be thought as the
Fermi sea in which, by the Pauli exclusion principle, each single particle

2/d
electron state of energy less than or equal to u = iﬂ [:% P(%)E] is

filled with two electrons. The bounding sphere is called the Fermi

surface. For each k € Rd and o e{+,-}, a is the operator which when

k,o
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k2 2

im < u creates a hole of momentum -k and spin o and when %; >

annihilates an electron of momentum k and spin o. Conversely, the adjoint

2 2

+ . :
a annihilates a hole when E < u and creates a particle when E. > M.
k,o 2m 2m

. . + .
To be technically precise we should smear ak o and ak o with Schwartz
! ’

space test functions ¢0(k) and specify the domains of the resulting

+

operators ) [ g (k) a,

(o]

. but these details do not play a role in our

formulation of the model and so are neglected. The anticommutation

relations are
+ +
{ak,orak',O'} - {ak,orakiyc'} -

+ L]
{ak,d’ak',o'} = 6010,6(k~k ¥

Now, Fn # is the closed span of all states of the form

’

+ +
a oiw @ a iae A Q (1.1)
P19 Pn%n hl’Tl hmrm

(suitably smeared against test functions). Here Ipi[ > Y2um for 1 £ i < n

and Ihjl < ¥Y2um for 1 £ j £ m. The Hamiltonian describing the independent

electron approximation is
d

o =ce{§,—} I(:nfd ei(k] a;,c %k, 0
e(k) = k2/2m
We have
a%k

HQ = 2 ' -
|k|<¥2mp (2m)

and (I.1) is a generalized eigenstate of eigenvalue

elk) @

d

n m 4%

Y elp;) - I ety +2 [ 5 €(k)

i=g j=1 |kl<V2mp (2m)

The number operator
d
d 'k +
N= )} [——=a _a
oe{+,-} (2n)d k,o k,0



Vol. 63, 1990 Feldman and Trubowitz 159

also has (I.1) as a generalized eigenstate with eigenvalue

4%

|k|<v¥2mp (211)d .

As usual it will be convenient to deal with correlation functions

n-m+32

like the Schwinger functions, that is the imaginary time Green's
functions, rather than operators. The free Schwinger functions are

defined as expectations of the free field operators

d 4
»(x,0) = d kd ak . elk-x
{2m) !
+ ddk + -ik-x
¥ (x,0) = ["—7a _e
(21151 !
Kt -K T d ;
bttt = & 2 dlx, o o _ T d’k - a, elk'x o e(k)t
,0
(2m)
- KT -K T d —_ .
Pix,T,0) = e © w+(x,c)e i g_ga a; ikex ee(k)-r
,0
{2m)
where
K, =H - N
and
e(k) = e{k) - = EE -
- IJ - 2m 'J
The free n-point Schwinger function is
£=) (-) (-) (=)
o w doayBld
Sn (gll"'lgn) == ( 1) ( £2I'II d’(al)---\b(gn) Q >
where gi = (xi,ri,oi) . (=) denotes that the bar - may be present or

absent. As usual T is the time ordering operator which orders the
smallest T to the right and introduces a compensating sign (—1)P, the
signature of the permutation required to restore the original order. Wwhen
there are coinciding times the i's are ordered to the left of 's. Note

that if n is not even Sg vanishes identically. For convenience we shall

o
2

Clearly C(El,gz) is translation invariant and therefore is the kernel

also denote the free 2-point function S. by C.
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of a convolution operator. Direct calculation yields

o —

ddk 1k.(x1—x2) —(e(k)—u)(rl—rz)
= 60 o —a°® &
1’72  (2m)
-x(lk|-Y2my) if T,
X
x(V2mu-|k|) if T ST,
- f dd+1k el(k,£1—§2>_ e
9,19, (2")d+1 1ko—e(§)

where

k= (k_k ¢ &1

o'E
<Ck,E> =-k T+ k- x
- o .S
and
1 if t>o
x(t) =
0 if t <o
a1, YRR -1
is the Heavyside function. The integral f d” "k e [iko—e(g)]
is not absolutely convergent so the last equality requires some
-ik_(t.-71.)
. . o1 2" . -1

explanation. For Tl - Tz # 0, the integral I dko e [1k°—e(g)]

is conditionally convergent and a contour integration yields the previous

expression. The special case T T, = 0 is defined by the limit

Tl - 12 - 0 with Tl - Tz < 0.

Observe that the (partial) Fourier transform

I ddx e_lk.x C((xlrfol)fiololoz))

2 2 '

is supported in {k!%a > u} when t > 0 and in {kl%ﬁ < u} when t £ 0. The
kZ

discontinuity in the partial Fourier transform at the Fermi surface o, =

is reflected in a singularity of the full Fourier transform

~i<k, £

Ck,0,,0,) = J Pxdre C(E, (0,0,0,))
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1
01,02 1k0~e(5)

=93
on {ko=0,e(g)=0}. Thus the singular support of C has codimension 2. It
will follow that the behaviour of the infrared end of the model is largely
independent of dimension in contrast to conventional field theory models.

The Schwinger function Sz is easily expressed, using the

anticommutation relations, in terms of C,

(o]

Son (ByrEy By By ELE) = det [CLELEN]. (1.3)
Consequently, Sgn may be represented as the Grassman integral:
N (=) () (=) =) -
Sy (BpoeedB) = J 0 (E) 0 (E) dug(b,¥).

The Grassmann "measure" dpc(w,ﬁ) is a linear functional on polynomials in

- (=)
Y and ¥, where now by abuse of notation ¢ (§), & € R§+1 x{+,-} are the

generators of an infinite dimensional Grassmann algebra and no longer
refer in any way to the field operators introduced above. The measure is
defined by requiring:

(a) that (I.3) be satisfied

1#) (=) -
(b) that [ ¢ (8)) ... % (E) du,(¥,9) = 0 if the number of $'s differ

from the number of E's

(=) (=) (=) (=)
{c) that 9 () $ (Z) = -¢ () ¢ (E) and

(d) that [ - dp, be linear.

We consider a spin-independent two-body interaction with potential

A Vi(x-y) 6qa’6pﬂ’ (where a,a',p and B’ are spin indices). In general, V

is assumed to be an even function in Lw(Rg)r\Ll(Rg). However, as we shall
-m|x]|

see, the screened Coulomb potential V(x) = % is also admissable in

two or more dimensions.

The interacting system is described in the Fock space representation
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by the Hamiltonian

da
s g%,
H=Hy + % ) [ —; (2m 9 &4 (k, +ky—k, k)
a,Bel+, -}  i=1 (2m)
A Vik.-k.) a ¥

a a a .
371 kl,a kz,ﬂ k4,ﬂ k3,a
Similarly Ko is replaced by K = H - uN. To get the interacting Schwinger
functions the free measure dpc(w,g) is replaced by the formal interacting

measure

_%1}

l —
7 © au. (9, %)
where

W= I Jdtdoadxdy ¢((x,7,0))9((x,7,a))8(t-0) V(x-y)
a,p

¥ ((y,0,8)) ¥ ((y,0,B)).

and

z2=[e du b9
o

Since e2 is not a polynomial in ¥ and E it is far from clear that
integrals against this formal measure exist. As a first step towards the
construction of this measure we study perturbation theory for the
Schwinger functions. The most naive perturbation expansion is derived by
expanding

A2V o 1, Aaem
e = }: H;' (-'Z"'U‘) ‘
m=0

Then the numerator of the interacting Schwinger function
SZH(El,Cl,...,Enfin)

n -_— - — —
= I oweE) v @1 e Y an v
i=1

75 - (I.4)
5 ™M au )

becomes the formal power series
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o m n
-1 A ol T m ==
p S MM ) v @ v™ duLw )
~  m! 2 s i 1 c
m=0 i=1

The coefficient of A™ is then the integral of a menomial and consequently
can be evaluated explicitly in terms of C. The result is conveniently

represented in terms of labelled Feynman graphs.

An mth order labelled graph contributing to the integral

n
e a  m _
J JowE) v IV dus(#.9)

is constructed from three kinds of vertices. There are n external hole

vertices labelled gl,...,an, n external particle vertices labelled
21""'25 and m internal generalized vertices which are represented as
.= (X.,T.,0, .,0.,B.) =N,
X5 ( 374 J) LNANL (yJ 3 BJ) Ny

The intermediate squiggle v~ is called an interaction line. These
vertices are then connected by particle lines —>— in such a way that
a) each external hole vertex is connected to precisely one line and
the arrow of that line points towards the external hole vertex
E, <
b) each external particle vertex is connected to precisely one line
and the arrow of that line points away from the external particle
vertex -—<—e Zi
c) each end of each «~~s is connected to precisely two lines, one

incoming, one outgoing

x)\CiJE?/ n.

J J
An important graph contributing to the second order term of the

perturbation expansion of SZ(Z,E) is
3 X1 ny Xy n, z -

and an important graph contributing to the second order term of

8, 12, ooy ByeBo] 48
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Altogether there are (n+2m)! such labelled graphs G. The value Val(G;C)

is by definition

m m
val(G) = sgn(@) N (2fa¥ . Ya¥ g 1 wvoe-na 8 o8t
i j - i i i N
j=1 J=1
T Cl(x,,Tt,) +» (X,,7T,))
rep, 2Ty 9’y

Here by an abuse of notation V(xj—nj) is the potential evaluated at the

difference of the spatial (RQ) components of Xj and nj; (xg'rg)e R_d+1 and

+ ; ;
(xg,rz)e Rd 3 are the space-time components of the end-points of the

particle line &
0—'(—-0____
g/ Ty %) (XgrTgiy)
and P_ denotes the set of all particle lines of G. Each (xl,rg,al) is a

G
E. or or n. and each (x,,t,,a,) is a E or or Each ) f dd+1

(x

integrates over the space-time components of xj and sums over the spin
component of Xj' The sign sgn(G) is determined as follows. Consider the
auxiliary graph G' gotten by replacing each \Z\Ayby\/ \/ . Permute
the vertices of G' to write it as a graph of the form &<= s<= - =
Then sgn(G) is just the signature of this permutation. When n =1 i.e. we
are considering a 2-point Schwinger function sgn(G) reduces to (—1)b where
b is the number of independent loops of G i.e. the first Betti number of
G'

It is important for us to reexpress Val(G) by taking its Fourier
ransform

—~ n -i<E,,p.>_ S R
Val(G) = T [:fdd+1gj e I3 fdd+1cj e 3 37| val(a)
5=1
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Then
~ ; dd+1kg :
Val(G) = sgn(G) n : _
2eP, (2m L 1tky) g — etky)
d+1
m d He
T )
j=1 (2m)
+
n (2n)d ¥ (Y W) (I.5)
veN fel
G v
Here, NG is the set of all vertices (nodes) of G and Lv is the set of all

particle and interaction lines attached to the vertex v. The way to
interpret this formula is the following: Momentum pj enters the graph
through the jth external hole vertex; momentum qj enters through the jth

external particle vertex; k, is the momentum flowing through the particle

2
line &; ”j is the momentum flowing through the jth interaction line and

the d+l-dimensional delta function &{ } wR) enforces conservation of
el
v

momentum at the vertex v.

Expression (I.5) can be simplified by eliminating most of the delta
functions. The result is interpretted as follows. Choose a maximal set
ZG of independent closed loops of G. That is, a basis for the first
homology group of G. Select a distinguished external vertex. Construct a
set of 2n - 1 paths each joining a different external vertex to the
distinguished one. View momentum M, as circulating in the loop L € ZG and

momentum pj(qj) as flowing in the path connecting the jth hole (particle)

vertex to the distinguished external vertex. Then

Val(e) = sgn(6) (2m% 1 5 (T p.+ ¥ q.)
j:l J j:l J
du m
fn —E g - 1 T V). (I.6)
Lez, (o) 4 fep ilkg) melky) 5o 73

Here, k2 is the signed sum of those mementa {uL,pj,qj} flowing through the

particle line % and pj is the signed sum of those momenta flowing through
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the interaction line j.

Using (1.3) it is easy to see that the integral

n —_— —
[T wEIPE IV (v, 9) = T Val(e)
i=1 G

where the sum runs over all labelled graphs of order m described above.
The formal perturbation expansion for the numerator of (I.4) is now
complete.

However, we are really interested in the perturbation expansion of
SZn itself. One can show that taking the quotient of the two formal power
series has the effect of restricting the class of graphs to those for
which each connected component contains at least two external vertices.

Note that in any connected graph the number of external particle and hole

vertices are the same. Thus

o m
=1 A
s, ~ ¥ 2 ™y val (e (I.7)
2n m! 2

m=0 G
where the sums are restricted to those described above.

There are a number of questions concerning the formal power series
(I.7). 1Is each Val(G) finite? If so how big is it? These questions
cannot be immediately answered because the covariance C defined in (1.2)

is a rather complicated function: in three dimensions for |x| and/or =t

large

|x|+V2p (t/1x]) siny2u| x|
2 2
x|"+2uT

C((x,t,a),(0,0,B)) ~ =& 2/2u  cosy2p
I

The first question is easily answered. One can construct graphs G
for which val(G) is infinite. 1In fact let G be any graph containing a

subgraph of the form

2’1:12: :21

n+

with n 2 1. Suppose furthermore that the lines 21""’2n+1 lie on a

closed loop L in G. An explicit example of such a graph is
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Choosing L as one of the elements of ZG' G;i(G) becomes an integral of the

form

dd+1k

T wes | : 1 £k, ,onn).
@m® ik e ™t E

- (n+1)

The function [iko—e(g)] has a nonintegrable singularity on the Fermi

surface ko =0, |kl = ¥2my when n 2 1 for all dimensions d. This follows

from the observation that near the singularity [iko—e(_}_c_)]_wl behaves like

1
<H -
Iy 1+/22 | 11— 2m|

It turns out that there is no obstruction to the finiteness of Vval(G)

other than that above. This is true even for the singular, screened

-m| x|
Coulomb potential E—T;T— in dimension 4 2 2.

Roughly speaking there are two complementary mechanisms for
_generating infinities: the large (ko,g) behaviour of [iko——e(_lg)]-1 (the
ultraviolet regime) and the singularity of [iko—e(l_c_,‘,]_1 on the Fermi
surface ko = o, |kl = Y2my (the infrared regime). We will consider these
two regimes separately. We shall see in section III that, for all 4,
there are no ultraviolet divergences at all.

On the other hand we have already given an example of an infrared
divergence. There is a good reason for this divergence. We are
attempting to expand the physical Schwinger functions, in particular S

in terms of C = Sg. The latter has a singularity at ko = o, (k) = p.

2'

The divergence above reflects the fact that the singular surface, i.e. the
physical Fermi surface, moves with A. These infinities can be eliminated

by simply adjusting p = p(A) in C in such a way that the singularity
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remains fixed at the physical Fermi surfaces as A varies. This is
implemented in section VI using renormalization methods from quantum field
theory. The formal power series expansion for p(A) is chosen so that
every two point subgraph T(k) of every graph G arises in combination with

a new two-legged vertex:

.Ji(Z::)JE* — (0, k| ={7m) EeKs

= —L —— (r(k) - (0, Ik|=VZm0))).

lik -e (k)]

|
[ik e (k)]

The zero of T(k)-T(0, |kl=Y2mu) regularizes the singularity in
Unlike the problem of ultraviolet renormalization p(A) remains finite
order by order in perturbation theory. When the periodic potential U,
determining the independent electron approximation, is non-constant so
that e(k) is not spherically symmetric it does not suffice to adjust just
M with A. The entire Fermi surface must be held fixed. Clearly this
complicates the analysis and so for pedagogical reasons the more general
case is considered in another paper.

We shall show in section VII that each graph contributing to the
renormalized perturbation expansion is finite. Let us briefly consider

the size of the coefficient A" in the expansion of S We have already

2n’
seen that there are (n+2m)! ~ (m!)2 graphs in the sum
(-11m Am
=r 21 Y val(e).
m __order
graphs
Even if Val(G) ~ c™ for all G one would expect the sum over m to diverge.

However the situation is still worse. There are special graphs like

< -
- .

whose magnitude grows like m!. Nonetheless we shall show in section VII

that
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-(—)— > Ayl _th ¥ val(G) | < cnlMm 'm!

grapger

and consequently the formal power series is locally Borel summable. That

is the Borel transform

® m
Bs ) = I 2L 4" th): val(G)

m=o (m1) ™ grSpist

has a strictly positive radius of convergence. This of course does not
suffice to prove the exigtence of functions Sn‘ n 2 1 having these formal
power series as asymptotic expansions and satisfying the appropriate
positivity and regularity conditions. To do so requires an appropriate
version of asymptotic freedom, stability and the Pauli exclusion
principle.

In section III we discuss perturbation theory at positive temperature
and show that the value of every graph is finite and indeed exponentially
bounded. 1In a forthcoming paper we discuss the limit temperature T - 0.
One constructs two perturbation expansions: one at T = 0 as above and the
other by taking the limit as T - 0 of a T > 0 expansion as in [FW]. It is
shown that these expansions are the same. In the spherically symmetric
case this was claimed in [KL,LW]. The approach in this paper also applies
to the nonspherically symmetric case and leads to the same result i.e.
the T = 0 expansion is graph by graph equal to the limit of the positive
temperature expansions as T - 0. This procedure avoids the anomolous
diagrams introduced in [KL, FW p.281].

In section VIII we discuss a condition, motivated by perturbation
theory, for the existence of an interacting Fermi surface. There is an
important difference between one and higher dimensions.

J.F. would like to thank the Forschungsinstitut fir Mathematik at ETH

and E.T. would like to thank UBC.
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II. Length Scale Expansions and Properties of the Covariance

Our analysis of graphs requires that we resolve the singularity in
C(k). This is done by decomposing momentum space into shells around the
Fermi surface. There is also an ancillary decomposition that will be
explained in a moment.

Without loss of generality we shall suppress spin. This is possible
since each spin sum can be majorized by a harmless factor of 2. There is
one spin sum for each closed loop of particle lines. Consequently there
are at most 2m spin sums for a graph of order m. Thus the total effect of
spin sums is majorized by a factor of 4m in the final bound of Vval(G).

For notational simplicity we set the mass m=1. Thus

= kz B
C(k) = I:ik0 - (—2— . p):l ‘ (I1.1)
The primary scale decomposition is introduced in the following way.
We start by constructing a particular < partition of unity on (0,«). Fix
a number M > 1 which will control the slice width. Let h be a montone C

function obeying

0 for x £ 1
hi{x) = 2
1 for x 2 M
and let
2 h({x) for x < M2
f(x) = h(x) I:l - h({x/M ):I = 9 2
1-h({x/M") for x 2 M
h
e :
1 2 u
f
_/ \ >
1 Mz M4

Then
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1=nh(x) + Y f£(xM %) for x > 0.
i=—00
Set
d+1 i<k, &>
_rd "k e 2 2
ug) = J L ikg — el % * e(k) ")
. d+1 i<k, E>_ .
() _ d k e =23 2 2 p
clE) = [ 7m@*L iky ~ e[ f(M [ko + e(k) :D . 3<0
We have
C(g) = U(E) + I(E)
where

=)
1) = ¥ ¢

j=—o0

Recall that the covariance C as defined in section I is a convolution

171

operator. So we have written it here as a function of the single argument

E = (1T,X) € RX Rd.

The estimates on C(J) contained in the following Lemma will be used

repeatedly.

Lemma II.1 Fix an integer N 2 1. Then for all j < 0
1-4 -1
1) 1c35) ] < const W1 + 1x11 % |1+ (MJIF,!)N]

l=d -1
2) |3Te(%\7)n ¢ (g)| < (const)™Tyd (1) (14 1x)) 2 I:l +(M g DN]
L *a T
3) (8% (2™ 3 o« ¥ T
T 1
14 -1
< (const)a+ﬁ+m*nMJ(2+m+n“a_p)[1+|§|] 2 [:1 + (Mjlil)N:]
(3.) (i) (3.)
4) C U C 2 « oxc ™ -0 if Ija—ja,l>1 for any a,a'

Here the constant depends on N,y and the dimension 4 and ¢*a denotes the
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2
convolution ¢*¢*...*9p with a ¢'s. Recall that e(k) = %— - M so that
1oy - _ 1,
e(iV) = 2A K.
Proof We first bound
. d+1 .
(1) d” "k 1 =23 .. 2 2
I @ < g T — ey £ kg * e(k)])
(2m) 0 =
; d+1 ;
-j 0 d "k -2j .2 2
<M [ ST £ Tk + e(k)7])
(2m)
< const M M%) = const M7
; ; -23 .2 2 2. j
since in the support of f(M [k0 + e(k)”)) we must have Ikol < M"M° and
let)] < w0 ie. v | LEL oy | < wid
v 2
Next we bound, for any even N,
-2 .. 2 2
od 15N ) = g dd+1]§+1 - 1[1]:0 : :tf: —
(2m) 0 =
2 N
MJN(_ Q_E _ A)2 e1<k,£>_
dk0
N =23 .. 2 2
e d®y sae_ v, a® 2 B Tlkyretk) )
=] —ag e i {~ S= — &) T (11.2)
(2m) dk0 0 =
As above the support of the integrand has volume const sz and
; 2
lik -e(g)zl <M I Further, the Laplacian A acts as a_ + a-1 é—, p = Ikl
0 dpz p dp
since the quotient in brackets is spherically symmetric. Observe that
each derivative &, 8. ields an extra M—j If 4. acts
dp’ dk, ¥ ¥ dp
8 e s S _ -n-1
ap Ilko e(p)] = n[lk0 e(p)] P

J

the additional {iko - e(p)]_l(—np) is bounded by const. M - since

0 < const < |pl <€ const. 1If %5 acts
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d ((n)

o’ P 2
a5 £ kg + e(e) D)

n+l -23..2 2 -27
= £ 20 4 e(e)?)) WP e(p) 20
the additional derivative on f has no effect (since n < N) while

|2 e(p)pM_ZJI < const M Jon the support of f. The action of %E_ is

0
similar. Altogether
|(Mji€|)NC(j)(g)l < const szM—j
When 4 = 1
Mm%mm=£?%l¥;%ww
. QEE QEE’NIZ f(M‘ji[kE ;(:(Tl)zl)
dko dkl 0 1

and the right hand side is estimated in essentially the same way as
above.

Now make the change of variables k = pk', lk'| = 1 in (II.2) to
yield

ad 1£1)Ne ) (x)

dk o B -

=] o0
0 da-1 ipk' 0 _jN
= [ —— Jdep [ dok") etPE "X o Vi
- (2m) 0 J4-1
N -23 .2 2
- a2 & a-1 a,? £k + e(p)’])
dkg dpz p dp 1k0 - e (k)
For d 2 2
-4
.. 1k epx 2
[ do(k)e™= M= = const (plxl) I (elxh
g1 51
a4

where the constant is 2 r(%)wd. Thus
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w151 Net3) (g

o © -ik T 1-= :
- N
= const [ dk, [dp o8 le 0 (p1xl) I3 (elxh o
—o0 0 - =1
2
N -2j .2 2
o 32 ) 42 d-14 )2 f£M "k, + elp)])
dkg dpz o] dp 1k0 - e(p)
We bound the right hand side as above using, in addition,
1-4 1-a
(elxl) 2 < const |x| 2
1/2
(plxl) / Jy (elxl) [ s const.
=1
2
It follows that
1-d
|(MJ|£I)NC(J)(£)I < const MJI§I 2
"Combining the estimates
1c3) ()] < const M
Lo 12 Ne ) (2) 1 < const w?
and
d-1
2 j N_.{(j j
1zl 2 101E0 e (8)1 < const w2
yields the first part of the Lemma.
To prove the second part it suffices to observe that
3 e1<k,£>_ = ik el(k,&)_
T 0
e(%V) e1<k,£>_ - e(]_c)e“k'a)—
and that, on the support of f, !kol,le(g)l < const M.
The convolution
(3,) (3,) (3_) d+1 i<k, E>_ m -23
¢ Tae P ae ™™ (g =S8 :;_16 T £(M °‘[k3+e(1_<)2]

(2m) [iko-e(g)]m a=1

__2j
Part four is an immediate consequence of the fact that f(M Ol[k§+e(]_<_)2])
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_zja' 2

and f (M {k0+e(g)2]) have disjoint support when Ija—ja,l>1. The

estimate of part three is proven just as the estimate of part 1 with the

—-Q— g

one difference that [ikO-—e(g)]'—1 is replaced by [iko—e(g)] This

+ ) .
(a+p) in the estimate. [ |

-1
The decomposition of the covariance C = U + ) C
j:—oo

results in the replacement of M by M

(3) yields a

decomposition

0 .
p= 3 ptd)
j:-—-oo

_ 0 _ i)
v= Y v
j=—0

of the Grassmann variables and also a product decomposition

-1
(0) 5 (0), o

j==o

dug 0,9 = au, %% aug ) 1,500

of the Grassman gaussian measure. The factor de is the ultraviolet end

-1
of the model and the remaining product I dpc(j) is the infrared end.

j:—oo
This allows us to isolate and study problems in the two regimes
separately. In the next section we shall investigate perturbation theory

in the ultraviolet end.

We could of course decompose the ultraviolet regime into slices

m -
U= 3 C(J) as we have done in the infrared regime. But as we shall see
3=0

the real problems are at the infrared end. For the study of perturbation
theory this decomposition is not necessary.

On the other hand at the infrared end a finer decomposition than the
one we have just introduced is necessary. Each C(j) must itself be
expanded into j pieces. Roughly speaking this is done to take in to

account the asymmetry in the dependence of C on Tt and x that one sees, for

example, in the three dimensional asymptotics
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cos JE;[EI + JEE TiT sin /EE x|
2 2

Ix|® + 2pt

C{t,x) ~ const

We do this in detail in Section V.

III Ultraviolet bounds

In this section we replace the full covariance C by its ultraviolet
end U and prove that for any connected graph
[lval(G;u)ll < (const)'Gl.
Here Val (G;U) denotes the value of the graph G as defined in the

introduction, but with C replaced by U; ||-ll is the L1 norm (but with one

external vertex fixed at 0 to break translation invariance)

NEll = Jag, ... dE I£(EL.E,, ... 'En)|£0=0

and |G| is the order of G i.e. the number of interaction squiggles.

First, we derive such bounds in any dimension 4 and for any regular

two-body potential VeLl(Ré)r\Lw(Rd). Then, using a different technique,

-m|x|
. . a X
we obtain the same bound for the screened Coulomb potential —T;T—-, m> 0

- in dimension 4 2 2.
We began by separating U into a regular part R and singular part S.
Lemma ITI.1
U(E) = R(E) + S(E)

where

1 , T>0

~d/2 gyt %7/ (21)
0 , T<=<0

S(g) = —-g(&) (2mT)
Here g is a smooth function of compact support. The regular part

R=U-S8 is in,(g(RdH').

Proof.
Define g(E) to be a c” function that is 1 for |§| < 1 and zero for

RFi+1

|[E] > 2. We first show that (1 - g(§))U(E) is in .J { ). To do so it

suffices to show that ANU(g) is bounded and rapidly decaying for all N,
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IEl > 1. Write,

2 2
— 1 [ a4+, hiky + e(k) )(_A N ik, B>
4N e ik - e(®) k
2 2
_ 1 [ a9ty B, N hiky + elk) )
(22)1\' (21T)d+1 k lko - elk

If N' is sufficiently large the integrand is Ll so that U(E) is bounded
for || > 1 and rapidly decreasing. To prove the same for ANU(E) we

observe that
2
N1 [ ke JREE - S ) ik, + elk))

: A Tk e
)N g dtt k' ik - el(k

is bounded for || > 1 and N' sufficiently larger than N. It follows that

aNu(E) = A

(1 - g(E))U(E)e,X(R§+1). We place (1 - g)U in R.
We further decompose

a+1 ei(k,ﬁ)_

d k
g(E)U(E) = g(E) ] T
(2“)d+1 1k0 e(k)
d+1 i<k, &>
d k e — 2
+ g(E) ] e h(k: + e(k))- 1)
(2m &1 ik, —e(k) 0
The first term above is
g(E)Idd+1k JIHE_ g(a)fddk Jikex -e(k)T {‘X(e(k” ©0
(2")d+1 1k0 - e(k) (2")d x(-e(k))t<0

a .
= g fEE= o E T e i)
(2m)
2
Iddk Jiken 7 T HIT %-1 if T>0
d T<0
(2m)

+ g(E)

d .
= glE) f d'k - elk-x o e(k)t
(2m)

lk|<¥2u
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2

X
d/2 5 2t Y1 if T > 0

- HT =
g(E)e” (2nT) 0 if t<0

ddk ikx -e(k)T
g e

we now need only observe that g(g) f 3 and
(2m)
Ik|<i2p

d+1 i<k, &>

Q(E)fd = £ - [h(k2 + e(k)) - 1] are Schwartz class since
d+1 ik, -e(k) 0 =

(2m) 0 =

[ik0 - e(g)]'—1 is locally integrable. [ |

Recall that the 2n-point Schwinger function restricted to the

ultraviolet regime has the formal asymptotic expansion

m

m
1:%1— A % val(s;u)
0 ™ 2 G

2n v

wm
P
ne~18

Where the sum )Val(G;U) is over graphs having n external particle
G

vertices, n external hole vertices and m interaction squiggles. Each
connected component of G must contain an external vertex. For
convenience let FZ be the set of such graphs that are connected.

As mentioned above

val(e;u) = sgn(e) [ma® g m iz -& ) W U, -E )
v ReIG 2 RePG L L

where the product I is over all internal vertices of G, IG is the set of
v

all interaction squiggles, P_ is the set of all particle lines, u, and w

G 2 L

are the vertices at the two ends of % and

dix, 7)) = V(x)8(T)

THEOREM III.2 For any GeF:

= = = = = m
deIdEZdC2-°°dEnan IVal(G.U)(O.Cl,---in.cn)l < (const)
where the constant const depends on n,u,V.

Proof Substitute U =R + S to obtain
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Val(G;U) = sgn(G) Y fndd+1gv n 0 s =& R.

OCPG \'4 keIG leo RePG\o

There are (const)m terms in this sum so it suffices to bound them

individually. So fix any oc:PG.
The factors S and R are bounded

d-1 2

IR(E)| < const [1 + |x|] 1+ |t

-d/2 e-le(ZT) 1 ,T>0
0 , t<0"°

Now we bound the integrals over the spatial variables followed by the

IS(E§)]| < const g(T)T

integrals over the time (t) variables. We bound multiple integrals by

using the fact that for any tree t we have the tree identity

Jmay mf (x, - z)) = T [fayf,(y)].

VEL et Let
wrE (III.1)
Here the product N runs over all vertices v of the true t except for one
vet
v#r
distinguished vertex r called the root. The product NI runs over all
et
lines of the tree; Xy and zy are the vertices at the ends of % with X,

being the further of the two from the root. For example.

We apply the tree identity to bound the spatial integrals by constructing
a tree t which is a connected subgraph of G (including both particle lines
and squiggles) and which contains all the vertices of G. Such a tree is
called a spanning tree for G. It is important to observe that if G
contains a closed loop of S-lines, i.e. lines feo, the integral is zero.
This is because the sum of the time differences for neighbouring vertices

around the loop is zero. Hence one time difference must obey
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T, — T. < 0. But then S('ci - T

= g i 1
i i+1 ) 0. So we may assume the integra

i+l
is non-zero. Then include all S-lines in the tree t. Add enough particle
lines and squiggles to get a spanning tree. Designate the external

particle vertex corresponding to El to be the root.

For all lines of G not in t bound the x-dependence by
-d-1 &

[1 + Ixn - znl] 1 for 2 € PG\(cut)
IV(xx = zg)l < const for % € Id\t.
We can now use the tree identity and
d
fd vIV{y)| £ const
fddY[l + IYI]_d—1 < const
2
fddy e ¥ /12T) ¢ congt 1%/2
to estimate the spatial integrals by
lfndd+1gvn A TS nm R
v ReIG feo QePG\o
m 1 -2
< const  [md T, U8ty -t )Ng(t, -T )W L+ I, -1, 1177,
v £eIG 2 L Rec L L EePG\O L L
Note for each 2% € ¢ the lez arising from the integral
2
Iddye y /(27) = const lez cancels the Tt are in S.

Construct another tree t' to perform the t-integrals. This time we
include all interaction squiggles in t'. We add particle lines as
necessary to get a spanning tree. Once again we place the root at the El
vertex. For all lines not in t' we bound

lg{t. - t_ )| < const
Yo Y
-2

1+t -t |1 < 1.
ug WR

Finally, we use the tree identity again and

fdr &(t) = 1

fdt g(t) < const



Vol. 63, 1990 Feldman and Trubowitz 181

fdr[l + I'cl]—2 < const
to obtain

|Indd+1av T @nsn R| < (const)™.

v leIG feo xePG\o

|
We now present a more powerful technique for estimating the values of
graphs. It is essential for sections V-VII. The method we used to prove
Theorem III.2 required that V(x) be bounded and so is inadequate for (the
physically interesting) screened Coulomb interaction. The new technique
is applied to this case by decomposing V(x) into a sum of bounded,

integrable potentials.

Lemma III.3
1) e ™=l 1 = T vl
j=0
. . j
with IV(J)(x)I < const MJe const M [x|
2) ug) = L ul

j=0

. . 2 4 1 0
with 10! (x,7)| < const M37e CONSL (M ~T+NM le)9‘(|c",|) { for j=1
0 <0
and |U(0)(X,T)| < const[l+|r|]_2[1+Ix|1_d_1.
Proof
-m|x]| ikex . © a2 2
1y B o 2 - Ja’k = 2 ; [a’k oiF'* [gq gfk + M)
(2m) k™ + m (2m) 0
) Taa o312 - (x°/40) ~am”
2fm 0
2(1-3)
© 2 2 -] M 2
_ 1 fda ¥ 3/2e (X /40)—om i X 1 I_z- - q—3/2e—(x /4a) —am
2fm 1 j=1 24w M <3
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Now set
(0 _ 1 % ~3/2 -x%/(4a) - om®
\' = — f da a e
2¥yw 1
1 -mx|T, -3/2 -m| x|
£— e mlxlfda a 2 const e ¥
2Vm 1
2(1-3)
i M 2 2
vO) oL Ja o73/2o7%/(4a)-am
2¥m M—ZJ
_ MZJXZ
. . 2
<L w2l - ule W
2Vm
3 —consthIx[
< const M~ e
2
2 (-3 d_z .
2) A2 /(2T) 1 [daa 2 g % o R
ré) o
2
- L2004 a2 &
" 1 fdcxaz e—ate 21’+ ): ‘r daaze_aTe 2T
rd o = (g) u2
2 i=1 T
Let
2 ez X
0 -d/2 1 2 s 2t¥1 >0
ul® (5) = r(&) - gl1zl) (2m) V2P L [ qa a 2 e 2T .
d 0t<0
r() 0
2
So
u'® (g) < const (1 + |t117%01 + 1x1174 + const g(IED)
< const [1 + |t|1 2@ + |x11794 L.
Also set, for j 2 1,
2 (3+1) d=2 X
(3) _ -d/2 pt 1 2 -at -x/2t)1 T> 0
vBlg) = —guign (@m ™t s Jaa @ e e %o ¥ 0
23
M
So
NE) 2 (5+1) (d-2) M2t —x%/2t 1 T > 0
()| s const g(iai)M (M~ - 1)M e e 0 "
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2Jre—l/z w x| {1

0

< const g(IEI)Md:’e_l/2 M > 0

<0
o 21

since 1/2 M3t + & 5M31x| for all T > 0.

¥
Fix a graph Gerﬁ. We now estimate Val(G;u) with the screened Coulomb

interaction by expanding

val(e) = sgnie)fma®™t n g n U
v .QeIG RePG
d+1 o (jﬁ)
= sgn(6)fma” E, m (8t -t ) L V T (x, - x )]
v Rel 2 L j =0 [} ]
G 2
©  {3,)
Tolu g - )]
2ePG 32=0 2 . L
{34) (i,)
= X sgn(G)J'ndd+1£v td Yoot
3220 v 2€IG RePG
ﬁeIGL}PG

where &(j’(g) = 6(T)V(j)(x). We think of each term in this sum as the
value of a labelled graph GJ,J = {j£|£eIGL)PG} in which each particle and
interaction line ReIGL}PG is assigned the scale label jg. The label
designates the covariance (or interaction) assigned to the line.

Let GJ be a labelling of G. We associate a tree t(GJ) to GJ as

follows. The union

F(J)(:F(GJ)) = U {connected components of {ReGJIj2 2 jllu{vertices of G}
320 (III.2)

is called the forest in G determined by J. For each j, {QeGJin 2 j} is
the subgraph of GJ consisting of lines whose scales are at least j. A
vertex is considered to be a trivial subgraph of G. Then {vertices} can

be thought of as the limit as j tends to infinity of the subgraph
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(ﬁeGJIj2 2 j}. The forest F has the property that for all g,h € F either
g< hor he gor hig = ¢. Therefore, partially ordering F by inclusion
one obtains the tree t(J) = t(GJ) whose forks are in one to one
correspondence with the elements of F. 1In general a forest in G is any
set of connected subgraphs of G satisfying the trichotomy above. The
class of all forests is called 7.
For each fork f in the tree t(J) we define the scale

ig = min{jllﬁeGg} (III.3)

where Gg is the element of F corresponding to the fork f. When £

corresponds to a vertex, jf = o, (Clearly, the scale jf increases as f is

moved up through the tree. Notice the first fork ¢ corresponds to

Gg = GJ, the whole labelled graph.

J .. J
f~——'Gf i Jf = mln{Jliler}
J ] — J

oG, , = min LeG

Let us denote by J the set of all trees £ (t), teJ, the set of all
allowed assignments of scales to the forks of t. An assignment {jflfet}
is allowed if jf > jf, whenever f lies above f' in the tree t. Finally,
the assignment of scales on t(Gt) defined above is denoted by
s(J) = s(GJ).

We shall show in a moment that Val(GJ) decays exponentially in jﬂ
with the result that the sum over J in

val(G) = ¥ val(e”).
J

converges and obeys the bound of Theorem III.2. To do this we prove a
lemma which exhibits the exponential decay in a general setting. Suppose

that G is any connected graph at all (arbitrarily many lines joining
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arbitrarily many vertices) and that the line % of G has a covariance C

2
obeying
& 3 aj
72 L d
ICQ(Y)I S KM g(M “lyl) , yeR",
(III.4)
with
Hng <1, ligll, < 1.
With the same notation as before
d
val(G;C,) = jgd Y, r;cgcu2 - W)
(III.5)

Lemma III.4 Let 51""5n be the external vertices of G. Then

L@ | MDf‘Jf"Jn(f)’
fe t(GY)
Gf nontrivial

where L(G) is the number of lines of G, J = {jRIQeG}, w(f) is the fork

d a
fd Eye++d £ IVal(6) (0,8, ..., )| S K

immediately preceeding f in the tree, jn(¢) = 0 and
e — J —
D, = Y 8y ~ ad(viGy) - 1).
ier

where V(G) is the number of vertices of G.
Proof. We start by constructing a spanning tree T in G. This is done
inductively from high to low scale in such a way that T Gg is connected

for each f. Since T is a spanning tree, it has V(G) — 1 lines. It also

has the following important properties:

(1) If fl,...,fp are the forks (including trivial forks) immediately
£
. J J J .
above f in t(G ) then Gf ,...,Gf are connected by Pe - 1 lines of
1 p
f

T. These lines all have scale jf.

(2) Y (p, = 1) = V(G) - 1. As in (1) p, is the number of forks
J f £
fet(G)

immediately above f.
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Vs !4 Vs Vs

%
We bound Iddaz...ddgnIVal(G)l by applying ICn(y)I < KM ird for £ pot in T
and then applying the tree identity with distinguished vertex r = 51 and
6.3, —adj
d L 2
Ja%yic i s e E
Therefore,
8,3 adj., (p;,-1)
d d L{G) LA ] £r 8
Ja £,..-d E |Val(6)| < K I GM glu
The last factor is obtained from property (1) by noting that precisely
(pf, - 1) integrals fddy... are performed using lines of scale jf,.
8,3, —adig, (pg,-1)
The last step is to manipulate NI M M into
feG £
Del3g=3g(g)!
M . To do this we observe that if Gf is the smallest
f |

element of t(GJ) containing % then

Jo =9 = F U= 9 sey)
L f! f<f £ w(f)
L
and that .
—adj., (p.,-1) -ad{p,,~1) (3.3 _(£f))
M f f - M f f'n )
f<f!
Consequently,

5,3 -adj_, (pP./-1)
nM 5 ln M £ L
2eG £
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8 (1= ) —ad(p.,-1) {3 )
=T T JM LE “w(f) M f f “n(f)
£ Rer f'af
where we have interchanged the orders of the products I 1 (note that
2 f<f
L
f < fg if and only if ReGg) and T 1T . Finally, by (2),
f f£<f!
J
L (pg - 1) =v(e) - 1.
fr2f
|
We now apply Lemmas III.3 and III.4 to estimate Val(GJ) for the
-m| x|
screened Coulomb interaction V(x) = %] in d-dimensions. As before let

U be the ultraviolet end of the covariance C. See (I.2) and Lemma 3.1.

Theorem III.2' Let d = 2. For any Gerﬁ

a7 . a% e a7 |val(e;u, Vi1 s (const)™.

Proof As before,
val(G) = Yval(c”).
J
By the estimates of Lemma III.3

j w J
5(T)IV(3)(x)| < [6(7)] [constM e constM |x|}

for jz1

|U(j) Mje—constMZJIrl 1 M(d-—l)je—constmjixi
0

(x,T)| < const| gl{lx|)

T> 0
T<0
and

2 d-1

|U‘0)(X,T)| < const {1 + Tl ¢ 1+ IxI1
The resulting estimate on flVal(GJ)l becomes a product of spatial (x) and

temporal (t) integrals. We now apply Lemma III.4 to each factor. For the

temporal integral the covariance C2 of Lemma III.4 is either

je*constmzjlrl 1 T>0
0 <0
particles lines and &8(t) for interaction lines.

2

M for j 2 1 particle lines, [1 + 111]— for j =0
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Hence, interaction lines effectively have scale « and must be integrated

first collapsing each‘:>quM<:'of G to a point :}{: . The result of

collapsing all particle lines of G is called the quotient graph of G by {~~}

and is denoted G/{~}. So, the temporal factor is bounded by

temp, . i
D (J¢73 )
(const)m I J M £ £ “mig]
where fet(G " /{~v})
D™ = L(G{/(mvD) - 2 V(G]/ () - 1]

Let Vi and Ve dencte the number of :>Aﬂr and e— vertices respectively of

Gg . Let E denote the number of external particle lines of Gg (i.e. the number
of particle lines of G that touch Gg

not have external interaction squiggles.

but are not in it). Furthermore, Gg may

Then,
J 2V, + Ve - E
L(Gg/ (™)) = 5
J Vi
V(Gf/{“ﬂfl) =5 * Ve
and D;emp = 2 - % - % Ve. If jf > 0 it is impossible for Gg to have just two

external particle lines and no external interaction lines. Otherwise, Gg
{3,)

would have a particle line U {(x,T) with ji 21 and t £ 0, in which case
(jl) temp .
U (x,T) = 0. Hence, Df < 0 and the temporal factor is bounded by

(const)m.

The spatial factor is bounded in the same way by

space,. .
D {173 )
(const)m I J M £ £ “nif)
fet(G")

where

space

£ = (#interaction lines) + (4 - 1) (#particle lines)

D

J
= d(V(Gf) - 1)
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v. -1 2V, + V_ - E
1 1 e
2

= = {d - 4}

Here, Vi’ve’ and E have the same meaning as above and I is the number of

- d(Vi + Ve - 1)

external interaction lines of Gg. Simplifying, we obtain
+
(d 1)Ve

szace=d__]2'.v‘_—__;.__(d___l)_E

d -1 I 1

=-d+ 2 - (E+ Vo ~ 4) 2 "3 3V~ Ve .
. space
We now show that, when 4 2 2 and Jg > 0, Df £ -€e(E +1I) - Ve for some
€ > 0. When E + Ve > 4 this is obvious. When E + Ve = 4,
space I Vi 1 I
Df < - 2°3 ~ Ve < - 272 ° Ve and the claim is again obvious.
When E + V_ = 2,
space _ ., _ 1 _
Df =1 5 (Vi + TI) Ve

1_1 -
S-y-p W vI) -V

unless I + V. < 2, Ve = 0. But the only nontrivial graph satisfying

i
E=2,V =0, I+V, <2is —dl 33, . This graph as well as all
graphs Gg having jf >0, E=0 is ruled out by the support property for
U (x,T) =0 for Tt £ 0, j2 > 0.

The temporal factor was bounded by (const)m and now the spatial

factor has been bounded by

—e(E+I+Ve)(jf—jH(f))

(const)m i) I M . Consequently
fet(G)

- (E+I+V ) (j. - 3 )
IfVal(GJ)I < (const)™ = g M o' F T(£)
fet(G)

(III.6)

It remains to sum over J.

First we rearrange the product to get



190 Feldman and Trubowitz H.P.A.

. €, . .
-2enj = b e}
Ifval(c’)| s (const)™  ®n g ¥k
v 2, 2'hooked
to v
-2€enj
¢

where v runs over all vertices in G € rg. The factor M is exactly

—eVe(jt-j"(f))

M for £ = ¢. The other factors are constructed as follows. For

_E(jf—jﬂ'(f))

each fet(GJ) one factor of M is assigned to each external line of

Gf. Fix any vertex v of Gg and let us determine the net factor assigned to

any line % emanating from v. If Rv is the line of highest scale emanating

—e(jf-jn(f))

from v, then % receives factors M from forks in a linear subtree

of t(GJ) starting with jf =

]2v and ending with a fork obeying Jn(f) =Jp-
‘E(JQV—JQ)
The product of all these factors assigned to & is exactly M
Hence,
(3, =3,)
S 2 L
—€(E+I) (j -] ) - v
noM ol g ) M
fet(G ) v R hooked to
v
“Z13 =3
< I Il M L R
v 2,2 hooked
to v

Finally, we perform the sum. This is done by ordering the lines 2 of GJ

such that j2 = (there are at most {const m) choices of such a starting
1

)
line) and 21—1 and Ri share a vertex. Then we bound

. B . .
—-2enj Sy < P PP
|[val(G)| < Y (const)™ M 1 ytrE
J v %, 2'hooked

to v

€
: -s13, -3
58 n(e) 4139 7y
< (const)™ M ' m M B

J i=2
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< (const)™

&,
-7 13l
since L(G) < const m and ) M & < const.
j

IV. Positive Temperature

Let us recall the standard model for electrons in a crystal at
positive temperature. The Fock space as well as free and interacting
Hamiltonians are the same as those of the introduction. Now however the

expected value of an observable A is given by the normalized trace
—B (H-uN)
—B (H-pN)

_ Tr{e

= A
B Tr{e

}

<A>

rather than by the expectation <Q,AQ> in the fermionic ground state Q.

The positive temperature Schwinger functions are formally defined by

) (=)
o oy PP ) (3)
Sl Bpeees ) = DN (2 (B2

As before the free Schwinger functions (i.e. when H = HD) are given

by the determinant

— — — 0 —
o . - .
Szn(gltcllgzlzl ..”E"n'cn’ﬁ) = det {Sz(gilz;jfp)] (Iv°1)
where by direct calculation

d 1k(x1—x2)

Sg(gl'az;ﬂ) = 50 o d kd e e_(e(k)—lJ) (Tl_TZ}
1’72 (2w)
—1+nk if Tl>12
X
nk if 11512

-1
Here, n, = I:eﬁe“" + 1:I , e(k) = e(k)-p and (k) = k°/(2m) is the

dispersion relation for the spherically symmetric independent electron

approximation.

To start with, S0

, is defined for v, € [0,p]. But
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d . -1+n >0
Clx,T) = f d’k = e1k-x e-e(k)t k
(2m) D <0
satisfies
d .
C(x, T+B) = f g_g_a elk'xe_e(k)‘r+5)(~1+nk)
(2m)
% ke —aik)w
= [ —3 e e (-n, )
2m)
= -C(x,T)

: + ; .
for -p < T £ 0. Therefore C extends to a function on Bg : with period 28

in T satisfying

C(x,T+p) = -C(x,T).
Consequently,
0
Sy(8y.85) = 501,02 Clx =%y T17T)
extends to a function on R§+1 b R§+l periodic in v, and T, with period 2.

1 2
It now follows from the determinant identity (IV.1l) that all free

Schwinger functions have periodic extensions of the same kind.

At positive temperature the dichotomy

{—1 + ny ift>o0
nk if t <0
replaces
- x(e(k)) ift>0
{ x(-e{k)) if Tt 2 0

with the result that Cp(x,r) is a rapidly decreasing function of x.
Therefore the large distance, i.e. infrared end, of the model is
completely regular. This is the crucial difference between zero and
positive temperature.

The interacting positive temperature Schwinger functions have the

same formal perturbation theory
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-}

S

on (G)

m! 2

m
{=1) (A)m X val
G

~ 1
m=0 B

as their zero temperature counterparts with the modification that C is

replaced by C_ and "time" is restricted to [0,B). We shall show that the

B
value of each graph satisfies

[Valﬁ(G)I < (const)m
The constant depends on ﬁ'and diverges as P tends to infinity. As
mentioned in the introduction, we shall show in another paper that the

renormalized value of each graph converges, as P tends to infinity, to its

renormalized value at zero temperature.

Lemma IV.1l
.CB(E) = Rﬁ(E) + SB(E)
= T v
j=0
where
B
4 ) xz 1 T mod 2p € (0, 20d] ;
S, (E) = —(Znt)—z euTe—5 T N TR TR Eaa)ﬁ]
B 0 otherwise

. B
1 4if [t]e(O.zod]

. o 23 j
IU(J)(X,T)I < const MdJe constid - [T]H le){

0 otherwise

1'% (x,7)] < const [1+]x]) 972

The constants depend on B. Here [t] denotes the representative of T
modulo B in [-B/2, B/2).

Proof. Since C(x,t+p) = -C(x,t) it suffices to consider Tt € (0,B].

-e(k)t
e nk

hence has a Schwartz class Fourier transform and

For t € (0,B], is a Schwartz class function of k € R@ and
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2
5 1 x”
_ f d’k - elk-x e-e(k)r - —euT(ZNT)—d/Z e 2T
(2m)
We put the portion of this for t € (0, E%E) into SB and the rest in Rg'
m .
Lemma III.3 part 2) is used to decompose Gﬁ into } Ugj). [ |
j=0

At temperature zero the ultraviolet end of the covariance U was
decomposed into a regular part R and singular part S. The latter vanished
identically for T £ 0. This property implied that the value of any graph

containing a closed loop of S particle lines or a string

OO it i - T

of S-lines having two vertices connected by an interaction line is zero.

Now the singular part of CB does not have a strict support property.

It vanishes for T mod P small and negative as in the figure.

ﬁSﬁ(X,T)

Consequently graphs containing ;oops or strings of the above type may have
nonzero values provided the loop or string is long enough. The
decomposition into regular and singular, in particular the choice of the
interval [0, 5%3], ensures that the loop or strings contains at least 204
vertices. There is considerable freedom in the choice of the denominator
204d.

Theorem IV.2. Let d21 and V be any L” N L1 pair interaction or 4 = 2 and

1 -m|x]|

V= T;T . For any G ¢ FE
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[ 7. i g g c Ival (G)| < {const)™

1 B
Proof. We follow the proof of Theorem I1II.2'. 1In factoring the bound on

f!Val(GJ)l into spatial and temporal integrals we use

. . 3
5(T)IVJ)(X)E < const [&(T)] [MJe constM ]xl]

0,8
1 [T]G(O,zod

0 otherwise -

3)

|U 10 e—constMZJ[r] {

(x,7)| < const[

9 .. ;
x [:(d_IO)J —constMJle
M e

(0) -d-1

|u (x,T)] S const [1 + |x]]

1fver’n il then v¥= 0o for j 2 1. This case is easy, so we

concentrate on d 2 2 and V = TiT o mlxl.

The temporal factor is bounded by
temp
(3.3 )
(const)™ Y M % ks
fet(GJ/{WN})

where now
temp 9 . J _ J -
D¢ = loL(Gf/{Nfb}) 2 [V(Gf/{ﬂf} 1]
w2 L _ 31
=255 10 Y " 20 Ve

Similarly the spatial factor is now bounded by

space,. .

D (3.3 )

(const)m I 5 M f f “m(f)

fet(G)
where
szace = (# interaction lines) + (d - %6)(# particle lines)
-d (V(Gg)—l)
9
4- 19 1 2 d

i, 2, _ 4,9
d E-3I V. - 5+ 55 Vg

2 2 5 1 2
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g =0
_9 s 100 oy 2, _ 48
=5 - d- (T NEA) — ST -5V - 5 Ve
. temp J .
We now verify that Df < 0 for any graph Gf with nonzero value and
jf > 0 so that the temporal factor is bounded by (const)m. When E > 4
. . _ temp _ 1 1 _ 3l
this is obvious. When E = 4, Df =3 10 Vi 20 Ve but Vi must be at
_, ptemp _11 1 . _ 31 J
least 2. When E = 2, Df =710~ 10 Vi 20 Ve. Now Gf may have

external interaction squiggles so, as remarked just before the statement
of the theorem Vi 2 20d 2 20. Finally E = 0 cannot occur.

The last step is to show that pSPace o _ e(E+I) - 2 Ve for any graph

f 4
Gg with nonzero value and jf>0. When E 2 4 this is obvious.

When E = 2, pSPace - 2 _ I _ 2, _ (521- + %6) V,. to violate the desired

f 10 2 5 i

bound we must have I + Vi < 2, Ve = 0. As before the only nontrivial

graph satisfying E= 2, V_ = 0and I +V, < 2 is >85> which still takes

space _ . _ 1. _ 2, _ 4 ,9_
£ =d =T =5V - Gy

In order to have E = 0, either Ve 2 2 or there must be a closed loop of at

the value zero. Finally for E =0, D

least 204 particle lines so that Vi =2 20 d. In either case D;pace = - %I
1
4ve'
The proof is completed just as in section III. |
V. Infrared Convergent Graphs

Qur discussion of the ultraviolet end of the model is complete. We
have seen that the ultraviolet value of every graph is finite and
furthermore grows geometrically with the size of the graph. On the other
hand, it was pointed out in the introduction that there are graphs whose
values are infinite.

Let us recall that any graph containing a subgraph of the form
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is infinite. Here the shaded disc denotes any graph having precisely 2
external particle lines and no external interaction lines. Such graphs
are called mass subgraphs. Graphs containing no mass subgraphs are called
convergent graphs. Indeed we shall show that their values are finite.

In addition to divergences there is another important phenomenon
hidden in the infrared end. Convergent graphs are no longer geometrically
bounded. They can grow like nF! where ng is the number of four legged
subdiagrams.

Consider the graph

Y

\
A
\

A
NV V'S
A
P VeV
A |
VoV aVe
A

A

in r?. In the Fourier representation momentum flowing in and out of the

graph is conserved. So we may view it a as a function of three
independent external momenta s,t and q. If we denote the momenta flowing

around the m-1 internal loops k.,...
1 m-1

oL
-

9}

-
%

A

- -

elelk

-+ - _—

A

the value of this graph is

m-1 dk. 5 - m-1 - _
[ m —-——i—HC(%d-s)C(g-s) n V(k.-kj_l)C(%-rkj)C(%-kj)
j=1 (2m) j=1
Vit- G .
Vit-k )T (5+e)E(5-t) (V.1)
where k.:=s and, as before, C(k) = T__l“__—. It is implicit here that
0 1k0‘e(£)

V(x) is rapidly decaying and consequently V is smooth. Thus in the
infrared end, that is when all momenta are restricted to a common ball, V
cannot aggravate singularities of the integrand. So in this example we

take V(x) = 8(x) i.e. V(k) = 1. Then the integral factorizes to yield
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m-1
E(g+s;6(%—s)6(g+t)5(§—t)[:IQK——d+1 E(%+k)§(%—k)]
(2m)
|k|<const

To further simplify this example we restrict ourselves to three

dimensions. We have

4
J & E ()
4 2 2
(2m)
4 -1 -1
a d’k . .
= 2 [1(k0+q0/2) - e(k + g/ﬂ] I:l(qOIZ ~ ky) —elg/2 - k):l
(2m)
&’k =
= f 3 [:— sign e(k + gq/2) l:i q, - e(k + g/2) - e(k - g/z):l
(2m)
e(k+q/2)e(k-g/2)>0
|[k| < const
Explicit calculation yields that for small g
4 _ _ iq
f Q—E—Z C(% + k)C(% - k) = const 1n {|g| + —f%::——————} + 0(1) (v.2)
|k|5coA§E) 2/ 2u - gl

has an integrable logarthmic singularity at the origin. This does not

affect the convergence of our graph, which is to be regarded as a

tempered distribution. However applying this distriubtion to test

: F (9 F 9 _ ¥ 4 F (9 _ :

functions fl(2 + 8) f2(2 s) f3(2 + t) f4(2 t) results in a value of
1q0 m-1

the order of m! because of the singularity [:ln{igl t ] ;
24

}
2p - gl
Such m!'s are typical of strictly renormalizeable field theories.

For constructive purposes it is essential to understand the behaviour of
four legged graphs in great detail.

Our first step towards bounding infrared graphs is to modify and
refine the tree of subgraphs of a labelled graph.

The infrared end of the covariance C is
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()
I(g) = Y ¢ ()
j=—
where by Lemma II.1.1
1-d
19 (&) | < const M1 + 1x11 % s gl
with ¢ € Lo N Ll. Infrared divergences arise when covariances and/or

interactions decay too slowly to be integrable. Thus, there is no need to
decompose the interaction &(t)V(|x|) since it is L1 even when V(|x|) is
the screened Coulamb interaction (for 4 = 2). The interaction should be

thought of as being of scale zero.

Expanding, as in Section III, we obtain

d+1 g (3]
val(G;I) = sgn(G)/nd g, 4 n [‘Z c (E, —E, ):I
v EeIG RePG I L 2
d+1 (jk)
= I son(G) [ md gvn&nc (5, - &)
Jgs—l v 2€IG RePG 2 2
RePG
where «f (E) = &(t)V(x). Once again Val(G;I) is the sum of values of

labelled graphs GJ, J = {jkllePG}. The forest F(GJ) and t(GJ) determined

by J are defined as before. Namely

F(GJ) = u {connected components of {QeGJljkzj}}L){vertices of G}
3<0
J, . . .
and t(G ) is the set of elements of F(GJ) ordered by inclusion.
We now slightly modify trees and forests in order to simplify the

combinatorial structure by preventing the formulation of two-forks i . To

the contrary suppose the fork f e t(GJ) lies at the top of a string of two

J

f

forks. Then GJ CG
£ 1

@
Hh
1
[
ooy
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all have the same sets of vertices. The graph Gg is formed by connecting
1
one or more pairs of external legs of GJ and so on. The lines formed in

f

this way are called Wick lines.

Consider the equivalence classes of labellings J of G which generate
the same set of Wick particle lines and assign the same scale j2 to each
non-Wick line 2. The labellings differ only in the scale assigned to each
Wick line. For each such equivalence class we construct a new kind of
labelling 9‘ of G. Pick any representative. Each non-Wick line is given
the scale j2 common to every element of the class. Each Wick line % is
given the soft scale which is one plus the maximum of all scales assigned
to this line in the class. Furthermore assign the label s to each Wick

line. Let us define the soft covariance

i) ooy ),
S . .
1°43

It follows that

val(6;I) = ¥ val(ec’;I)

J
= ¥ vale¥ ;1)
8-
where the sum is over all labellings generated by equivalence classes and
j d+1 (jl)
val(ed ;1) = sgn@)fnd® g, m 4 9w oot (5, - )
v s u w
v fel 2eP L L
G G
2 soft
(3y)
Toe (B, B ). (V.4)
RePG 2 L

2 hard
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Here a hard line is one without a soft label.

For each labelling 9’ generated by an equivalence class there is a

forest
F(Gg’) = v {connected components of {ker Ijgzj, %2 hard or soft}}
js-1
u {vertices of G}
and a tree t(GH ), as always, the elements of F(63 ) ordered by inclusion.

Now, t(GB') has no 2-forks. Observe that any fork G{ of t(G! ) is a
connected graph, connected by interaction lines and hard particle lines.

The idea is to block the sum

val (G;I) = 3{: Val(Gd',-I)
=Y ¥ 3 Yy vale? ;1). (V.5)
tel FeF se d(t) '
F=F ()
t=t (¥)
s=s (f)

Here J is the set of all allowed trees i.e. tree without 2-forks, S (t)
is the set of all allowed assignments of scales jf to the forks of t, i.e.
if £ > £' then jf > jf,, f} is set of allowed forests of subgraphs of G
and F(d’), t(} ), and s(}) are functions giving the forest, tree and
scale assignments generated by the label]jxmyg'. Note that for any given
graph the number of possible trees, forests and assignments of hard/soft
labels is finite. The only infinite sum in the blocking is that over

s e‘](t). It will be controlled by exponential decay between the scales
as in section III.

The size of a graph must be measured differently in the infrared end
because its value is typically not an integrable function of its external
vertices. For convergent graphs we shall bound the integral of Vval(G;I)
against L1 test functions. to do this we need an infrared version of

Lemma III.4.
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Suppose G is a general connected graph, not necessarily arising from
our model. It contains external vertices, that are integrated against
; ; . ; da .
test functions, internal vertices that are integrated over R, internal

lines, but no external lines. Internal lines % may be hard lines, which

carry covariances C2 satisfying
3,3 J
'}
ENCTIER I TR MT PRI S (v.6)
lgll, < 1, ligll, s 1.

Or they may be soft lines carrying covariances obeying
3,3
A}
ICoty) ] < kM ™ 7, 8,50
The bounds on C2 induce a hard/scoft labelling of G.
¥

By definition a subgraph Gf is nontrivial if it isn't a vertex. Each
subgraph Gf must be connected by hard lines. A line R of G is an external

B'but is not a line of G&: For

line of G% if it is hooked to a vertex of Gf £

instance

®
1]

external vertex

-]
1]

internal vertex

- L1

——

The external lines of Gg are

} Gl O
Lemma V.1 Let G be a general graph as above with external vertices gj,

j £ n. Suppose that each internal vertex v is dimensionless in the sense

that

% 3 5, = d.
2 hooked to v
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This is the case for our model.
. ; 1,.d
Let fj' jJ £nbe in L*{(R"). Then

[ ijfj(aj)daj val(G;Cy) (§ ..., E )|
D_(3.-3)

< T Hf.HlKL(G) I M f'Yf m(f)

j fet (%)

£t> 0
r
G
no external vertices

nontrivial and contains

Af(Jf—Jn(f))
n . M
fet(Gk )

t>p

¥
C¢
an external vertex

Af(O*jn(f))

nontrivial and contains

I M
fet(GJ)

e

£ an external vertex

Here,

- -1 )} 8
Be = = 3 external lines * (V.7a)

% of G?

and as before

Y 8, - d(V(Gi)—l) (V.7Db)

L
keGg

Since internal vertices are dimensionless

o
]

Df =d + Af (V.7¢)

The distinction between the ultraviolet estimate and this one is the
integration of external vertices against L1 test functions yielding better
exponential decay. Indeed, a decay rate proportional to the number of

external vertices, since A_ is always strictly negative. Roughly speaking

f
we may use the estimate fddylf(y)[ = 0(1) in place of the estimate

fddy g(MleI) = O(M—dj) {j < 0) whenever j is the position of an external
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vertex.

Proof We follow the same strategy as in Lemma III.4 but, construct n
connected tree Tj' j £ n, of hard lines, each containing precisely one
external vertex, rather than a single spanning tree. They are constructed
by induction in the following way. For each maximal element f € T(G?)
choose any connected tree of hard lines whose union contains all the
vertices of Gg such that each of these trees contains precisely one
external vertex of Gg. If G% has no external vertices choose one tree.
Extend these connected trees working down through the forks f € t(Gg).
There is no obstruction to this inductive procedure because closed loops
are never formed and because, by hypothesis every G%’is connected by hard

lines.

Apply

843
le 1 s me t

to every line not inleTj. Apply the tree identity to each Tj' with Tj's

external vertex as distinguished vertex, to perform the integrals

H.I dy LI B
J veTj v

This yields

If '|T f(E’J)dEJ Val(G;CQ) (F’l'“"gn)l

3
. e
8,3 -dj., [p,,—max(1,p_,)]
< w Hf:Hl KL(G’ ™M 4 ™ M S £
j 2 £
As in Lemma III.4 Pe. is the number of forks immediately above f' (i.e.

obeying w(f") = £') in t(Ga

). In addition p?,is the number of those forks
that are external i.e. for which the corresponding graph Gy“ contains an

external vertex.
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632 -djf|[pflo..]
We must now manipulate T M T M into the desired
fl
form. We do so in two stages. The first stage mimics the corresponding

step of Lemma III.4:

d.3 6,37 8,7 - s
M ULy VI e y 2 f )
¢<E<fy
-dj., [p.,-1] -dj, [p,.,-1] -d[p.,-1]1 (3.3 )
g B RE oy Ot t " £ f “n(f)
p<F<E"
a3, pe,-1] d3 . [pe,-1] alpS,-11 (G.~3_ ¢ )
w £ Of t oy ot - v £ +'Jf Y (f)
d<f<f’
where [x]+ = max(x,0). Consequently
e
6,3 -dj., [p,,—max{0,p_,)]
Y O T e ¢ £
2 £'
e
0,3 -dj, [p.~1-(p.-1) .1
- mym 279 I vy o°f £t
LeG f,nontrivial
8, (3,3 ,c1) ~dlp,,~1] (§,=3_ 1) dpe,~1), (3.=3_ )
" ooy AP o £ £omif) o f +'f T (f)
O<E ReGg frof £rof
f'nontrivial f'nontrivial
| Jggra (BN L G g) DB ]
=M £56 M

f nontrivial
where Ef is the number of external vertices in Gg. The result of this
manipulation is not helpful. Those exponents having Ef > 1 will typically

be positive since jf - j"(f) > 0 and usually Df > -dEf. On the other hand

the exponent j¢[D¢+d(E¢—1)] is very negative.

+d (E -1)]

¢

j¢[D¢ ;
The second stage redistributes M up the tree t(GJ).

Note that, since all internal vertices are dimensionless
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D, + d(E,-1
o ¥ dEy)
- - ¥y _
=Y 8, = d(v(e") E¢)
2
1
= I { I 38)-d4 I 1
vertices v & hooke internal
to v vertices

= ¥ ot ¥ 184,

external 2 hooked
vertices to v

= —Z A
v € t(Gy) ¥
v,trivial,external

Now, for each trivial, external v e t(Gy), i.e. for which G{ consists of a

single external vertex,

3.8 = ¥ (3.3 )A_ + (0-3 )A_.
o v B<f v f “m(f) v m(v)' v
Hence,
j,[D +d(E,-1)] {33 ) [D+d(E_-1) ]
M ¢ ¢ (0} " M m(f) f f +
£>¢,
f nontrivial
- D -3i_, A
- M(3 R . " Iav) v
>0 v trivial,
f not trivial, external
not external
(373 (g)! (Dgrd(Eg~1)+ L A}
v external
v € Gf
Xx I M
f>¢

f nontrivial
f external

and the lemma follows from
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D, +d(E-1) = L () lgy-a ¥ 1
f f 2 2 ¢
v vertex Re internal
veGg 2 hooked vertices
to v of
£
1 i
= X { X S8, - X (Y 58,}
veGg QeGg 2 % veG% QeG* 2 2
v external 2% hooked v internal 2¢Gf
to v 2 hooked to v

We now wish to apply Lemma V.1 to estimate Val(Ga}I) in preparation

for our bound on Val (G;I). The bound of Lemma II.1.1 is not of the form
1-
(V.6), because of the [1 + [x]|] 2 , S0 we cannot immediately apply Lemma

V.1. This is easy to correct even without foolishly discarding the
1-d

[1+1x1] 2 -

Lemma V.2 For d > 1
——— -1

1) [1+]x]] ¥ 2 Y const M

k=—

1-d d-1
KT asexn

a-1
(3) - kT2 ok .
2) e (E)] £ ¥ const MM g(M Ixl)gM |t|)

k=j
with gl < 1, llgll; < 1.

.d-1 4 . d;l

3) IC;J)(E)I < const MM 2 4+ Y const M M
k=j+1

g(MkIXI)

Proof

1) As usual
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14 . a3
[1+1x1] 2 = const [ at t ? o [¥lxllt
0
=3 e BR % d4-3
= Y const [ e dtt 2 ghlxhe | [ att 2 [+lxllt
k:—tb M _1
M
- k, k+l d;3 u[1+|xi]mk
< ) const (M-1)M (M ) =
k=—o
=1
+ const o [1¥IxIIM

2) From part 1) and Lemma II.1.1

- k a-1 k
IC(J)(E)I < const M7 Y M 2 e-[1+IEI]M [1+(MJI§I)N] 1.
k=—
When k > j we simply bound [1+(MJI£I)N]_1 < [1+(MJITI)N] 1. All the terms
with k < j may be bounded by
a1
.3 2
const M ¥ M 1+(M3|E|)N] &
j=—co
.d-1
=xa
< const WM [+ 12T,

since d > 1, and lumped into a single term with k= j

3) The soft covariance C;J) is, by definition, Y C‘J)and 80 obeys
==00
1 1-d
e @ s 7 const whizelxl 2 eortizn™
j=—o
1-d

< const MJ[1+I§|]

We may now continue as in part 2) lumping all terms with k < j into a
.1-d

. 2
single const MM . | |

A good way to get some intuition regarding bounds on graphs in the
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infrared end is to consider only the terms with k = j in Lemma V.2 (they

will indeed turn out to be dominant) and to collapse interaction

lines ~~ to points (they are of scale zero and so look like delta

functions to the infrared end). This gives a toy model with

vertex ;><: and with lines having 62 = Q%l' For this toy model a

graph Gg with v internal vertices ;>QT (no external vertices
—>»— 0r +e=— ) and E external lines has

_ @+l AV-E _
D = =~ 7351 (d+1) (V-1)

= c—1%1-(4~E).
This is negative for E > 4, zero (i.e. marginal) for E = 4 and positive
for E = 2. In the infrared end marginal subgraphs do not produce
divergenées, though they do produce m!'s. See (V.1), (V.2). Hence we
call a graph convergent if it contains no internal E = 2 (i.e. mass)
subgraphs.
Lemma V.3 Let G € rﬁ contain no mass subgraphs that are free of external
vertices. Then

; o
IJ I £,(8,)dEVali®d;T) (B, .. B ) |

j=1
1 PR L.
D {33 ) AL (] -] )
S WL k¢ g & £ miE I  F & TiE)
5 3 fet (6d) fet (6¥)
f>¢ £>¢
f nontrivial f nontrivial
f not external f external
1 ;
A (0-3 )

)i g v v (V.8)
vet(Gg)
v trivial

v external
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d d
where Df =3 (4—Ef)
d__d
Be = - 3 Bg
Ef = the number of external lines of G% that are internal

lines of G.

d

We remark that Df £

(V.7) to the toy model in d dimensions having internal vertices ;k(

external vertices e—<— , - and 62 = 5 .

and Ad are specializations of the D

£

and Af of

We also remark that since

mass subgraphs are forbidden (unless they contain external vertices) A? <

0 and Dd

p < 0 with equality only for Ef = 4,

Proof.

We start by applying

" ot
N) N, ytRy)dhy Vall iT) (B, ) ]
n
s T £l suplval(ein) (&, ...
j=1 )

and then Lemma V.2 parts 2) and 3). This yields

¥.
Ival(e®;1) (5,,...5 )|
-1
< ) KL(G)
ko=3,

YK

where the hard particle lines of G have covariance

1 . d 1 .
e B S K k 5 2
2 L7 2 % 2 2
M [M g(M “lxl)] M
. . HK .
the soft particle lines of G have covariance

1. i d 1 (Y
- (k,-j,) Tk k =5
M 2 L -2 [M2 L L

K
Val(GJ, ) (Ell--.

g Mxhm? TH o ifx

)|

B )|

b
] ]
gM “ltl],

g Iy
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and

1 : d 1 .

= (Ka~ls) o E ~B
- 2 -2 2 2 : ;
M M 2]{M2 ] if kz = 32

and the interaction lines of GJ'$( have covariance

1

(0-0)
M2 3% % 1x17 s %) 7.

All the zeroes in the interaction line covariance are to emphasize that

they should be thought of as having j2 = kz = 0. Hence we get the

factorization
- 1k,-5,)
var@d®) - rnw 200 Y yvadin vailig).
)

The final factor Vall(& ) arises from the t integrals. It is the
value of a graph having the same lines and vertices as G} , the same scale

assignment as Gé', the same hard/soft assighments as Gé' but

Iy
artificially living in dimension 1 with 62 = % for particle lines and

62 = 1 for interaction lines. Applying Lemma V.1l to Vall(ar) yields the

D

1,. . 1 \
P ) AT {0-]
factors IIM £°f “w(f)

i)
£'f “n(f) MM

in the statement
of Lemma V.3. 1In this regard note that interaction lines are always of
scale 0 so that they never occur as external lines of any G%. Furthermore
all interaction lines may be placed in the integration trees of Lemma V.1

so that it does not matter that &(t) violates Hé(r)“w =1,

The factor Vald(}() arises from the x integrals. It is the value of

a graph G‘K having the same lines and vertices as GJ' , but living in
dimension d, having scale assignments k2 rather than j2 having 62 = %

(resp. 62=d) for particle (resp. interaction) lines and having as soft
lines only those lines that are soft in Af and that in addition have

k2 = jg. The forest F(G1<) of subgraphs of G1< and the tree t(GK.) can be
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quite different from F(GJ ) and t(G} ). However, because k2 2 j2 with
equality for k-soft lines, each G? is connected by hard lines and we may
apply Lemma V.1 to obtain
d L(G) Dg(kf—kn(f)) A?(kf_kn(f)) Be (0K, (¢!
[val" (X )| < const M T M M

s constL(G).
The last inequality is an immediate consequence of kf - kn(f) 20,
(O—k“(f)) 2 0, D? € 0 {recall Ef > 4 if d?’contains no external vertices)
and A, < 0.

£
Combining the above bounds on Vald(z() and VallQ}-) with

1 .
o =T .)
T M 2 72T ¢ const
ke23g

yields the desired bound.

Theorem V.4. Let G € Fﬁ contain no mass subgraphs without external

vertices. Then

n L(G) n
I m £.(E)dE. Vval(G;I)(E.,...,E )] s K "'n 1 T If.ll
i J ] 1 n 4" .7 J1
J=1 j=1
where
n, = max #{fIGf has four external lines, Gf #F e}
Fe 3

is the maximum number of four-legged subgraphs in any forest of subgraphs
of G.

Proof. Given a labelling G& of G denote by F4(5/) the forest (Gfle has
four external lines, G, # ~ }C F()). Denote by 3-4 the set of all

F4( & )'s for G. We block
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val(G;I) }Val(sg';x)
Y Y. Val(G};I).

F,e3; '
47v4 F4-F4(8)

By [deCR, Lemma A.2] 134| < BL(G) so it suffices to consider any fixed
F4 € :}4.

Furthermore each Gf in F4 must contain at least one line Af whose

scale jf is exactly jf. The sum over choices of {Af € GfIGf € F4}
L(G)

contains at most < 2
IF, |

LiG) terms so again it suffices to consider

any fixed choice of Af's

Another factor of 2L(G)

takes care of the assignment of hard/soft
labels to the lines of G.

The strategy for tackling the sum over scale assignments {jzlleG} is

similar to that used in Theorem III.2'. There are two notable differences
between the bound of Lemma V.3 and its analogue in Theorem III.2'. The
-eV -2enlj, |
e3¢ In(g)! 13,

latter contains a factor M =M (used to sum over the

scale assigned to the lowest scale line j‘Q } that is absent in the former.

—e(E+I+V ) (3
The latter also contains a factor M

)
£ n(f) for every

nentrivial f € t(GJ) while the former is missing such factors for each

The first difference is easily handled. Our graph G = G, contains at

¢

least one external vertex v. Hence the tree Ga contains a connected
linear subtree ¢ = f1 = n(fz) < f2 = n(f3) < s < fp_”1 = n(fp) < fp = v,
Since every Gf , 2 £ 1 £ p contains the external vertex v the bound (V.8)

contains the factors
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. a . .
1 1

4y
i-1 M p-1

1 ;
We can use half of each of these factors to give M

1
) = 2Tl
o _y 879

The second difference means in effect that (V.8) does not contain

exponential decay factors allowing us to sum over the jA 's. But each
i

Ia,

must obey -1 £ jA 4
i i

j¢, so the sum over all values of all the jA 's
i
|7, | n,
contains at most Ij¢l < Ij¢l terms.

The sum over the jl's, L4 Af, L # 21 (where 21 has been chosen so

that j2 = j¢) goes essentially as Lemma III.2'. The only modification is
1

€ F. which does not contain

that we work inductively on F £ 4

4" Select any G

any proper subgraph. As in Theorem III.2' we may rearrange a portion of

=% lg=dpl
(v.8) toget I I M . The sum over jz,
veG 2,%2'hooked to v
£ ;
2,4 er

L€ Gf is then bounded just as in the last paragraph of Theorem III.2'

with the role of the 'first line’ j_2 played by jA (which is being held
1 f

fixed).

To proceed by induction simply collapse G_. to a point and repeat.

f

This ultimately brings us to G,. Here the first line does not have its

¢

scale jz = held fixed. Instead we have

J
1 ¢
By = % |j¢
); Ij¢l M

¢

] n
< const % (n4)! < constL(G)(n4)!

VI. The Formalism of Renormalization

In this section we develop a new (renormalized) perturbation

expansion in which a A dependent portion &u of the chemical potential is
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moved from the covariance into the interaction with the result that every
graph has a finite value. The function 8u is constructed as a formal
power series whose coefficients are finite sums of graphs. The values of
these graphs are also finite. In section VII we estimate the values of
the graphs occurring in this renormalized expansion and verify that they
are indeed finite.

We have already observed in section 1 that graphs containing

two-legged subdiagrams

diverge because [iko—e(_lg)]_2 has a nonintegrable singularity on the Fermi
surface k0=0, Ikl = JEHU . These divergences reflect the deformation of
the Fermi surface with the change of A as we will now illustrate.

Consider a model in which the electron-electron interaction V = 0 but
in which the chemical potential, which we denote u, varies linearly with
A

Mg (A) = W + Aép.

at the rate du. The Fourier transform of the two-point Green's function

|:1k0 -3

and has the perturbation expansion

A e =l
. 1.2 ) 1.2 L n
n=0
=1l
l:iko . “:I (VI.1)

All terms in this geometric series save n = 0, contain non-integrable

in this model is

|-

-1
k* + uo(?\)]

3

singularities. They fail to be tempered distributions even though both
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the "interacting” and "free" Schwinger functions [:iko = Ei Lz + pO(A):]-l
and [:ik0 = Ei 52 ¥ u:]—l are locally integrable and the "strength of

interaction" Adu is finite. The difficulty here, of course, is that the
distributions have different singular supports. Expanding one in powers
of the other is not a good idea.

Let V be any two-body potential and consider the two parameter family
of models determined by the chemical potential (which we now call Ho
rather than p) and coupling constant A. For each Ho and A suppose that
the Fermi surface is given by k0 =0, |kl = JEE;TXTEE).

To circumvent the difficulty illustrated above we parametrize the
models by A and u rather than by A and Mo That is Mo which determines
the position of the free Fermi surface, is replaced by u, which is
determined by the position of the interacting Fermi surface. Precisely,
the function uy = p(A,po) is inverted to obtain Hg = uo(A,p). Define
Su(A,u) by po(h,p) = u + ASH(A,u). The new perturbation expansion is now
generated by taking derivatives with respect to A keeping u rather than Ho
fixed.

The new expansion may be determined without knowing u(h,uo) ahead of
time. One determines &u(A,d) inductively, order by order in A, by
requiring that the inverse of the two point function have a zero at
2

kK™ + p

m =

k0 =0, |kl = Y2mp . If we write the inverse as ik0 -4

- 2(k,u,A) the proper self-energy )} is the sum of all amputated, one

particle irreducible two point Feynman diagrams. "Amputated" means that
the two particle lines hooked to the external vertices are removed and
"one particle irreducible" means that the diagram remains connected

whenever a single electron line is cut. Here are two examples
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e Y

The condition (in perturbation theory) that the Fermi surface is at

Ikl = Y2mp can bé formulated in terms of the self energy as

—~

Tk, M, \) =0 (VI.2)

|k0=0, x| = Y2mp
(as a formal power series in A).

Equation (VI.2) is neatly combined with the decomposition of lines
into scales and graphs into forests through the effective potential and
tree expansion which we now define.

Recall the decomposition of the free two point function given in

Section 2:

0 3
c = Z C(J)
j=-=

where now U:= C(o). As before, there is a corresponding decomposition of

the fields and free measure

0 . y
anew. B = 1 oaw o wghh
j:—oo (o4 (VI-3)
0 ; 0 s
v= 3 ¥, 5= 3 ¥
j=— J=—co

To simplify notation write ®:= (¢,¥).

The effective potential at scale r, -1 2 r 2 -, is, by definition,

)  (VI.4)

HT(0%):= log z_l I} expl:(— %U‘ s 802+ ¥ o)y g dpc(j)(rbj
T

j>r j>r
where Zr is a constant that will be chosen later, {¥ is the usual quartic
interaction and
8V (®):= du(hy) [ a%dr Pix, )% (x, 7).
The term 8 U-(®) is the portion of the chemical potential that has been

placed in the interaction. The coefficient du(A,u) is still to be

determined. The "test functions" @e are Grassmann valued (i.e.

217
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anticommuting) just like the o 's.
Expanding the effective potential in @e {or equivalently taking

functional derivatives) one obtains

oo n
r _e 1 d e r
-43 (¢ ) - n=1n!k£1 (Id ﬁkdrk E @ (ﬁklrk Iak)) Gn(ﬁllrllalr"'lEannlun)
A (VI.5)
The coefficients Gi are functions much like the n-point Schwinger
functions S . In fact, for r = -, G;w is the connected, amputated
n

n-point Green's function. (See [FHRW p.3]) Perturbatively, G;w is
obtained from Sn by (i) dropping all disconnected graphs from Sn (ii)
removing lines hooked to external vertices of Sn and (iii) when n=2

dropping the graph #—>—¢ from S2' The combinatorial coefficients are

unchanged. For example the graph in 62

°°(El.E,z) corresponding to

is

There are simple, explicit formulae expressing the Sn's in terms of the
G;m's and vice versa. For example
s
§,(8,:8,) = Cl&,,8)) + JAg,AZ,C(5,,8,)C(E,,8,)C,y (§).8,)
4

G, (E,EyEy,E,) = [ T

EiciC'l(ai.ci) ] (8,(Zy0 008,
i=1

= SZ(C11C2)82(63rC4) + Sz(cll€3)sz(cilC4) - Sz(C1IC4)Sz(C2ICB)}'

It follows from these remarks that we may consider Gi, n 2 2, rather than
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S, nz 2.
n
The decomposition of graphs into scales arises naturally if we
express ‘:)h inductively:
0, .e A e e
97@%) = - SV @) + sl (o)
Z

) + log EE i (VI.6)
h-1

(h) (h)

4" 16 = log [ expyP (0% ™) )ay ) (@
c

Apply the identity

u (h),  w 1 @T
log [ e” du m® = Lo E.(U,....u) (n arguments)
C n=1
where
ET(M m_):= S log [ exp | IA. n
R T VTN g pl: i i:l
(h)

dp @) . (VI.T)
c(h) l,\

i=...=An=0

with the result that

h~1=ET(‘jh) Y TR L, 9P + const
h 2 h
n=

n!
Successive application of the last identity to the leading terms Ei(ﬂh)

yields

0 ©
'ﬁ - £r+100- éo‘ﬂ ) + z £r+1--- Eh—l Z n! &h(ﬁ '__."g )
h=r+1 n=2

+ const (VI.8)

Introducing a tree notation for Z,E:

L

(LN % ' 9
u\\h/ n ’=r11_! i(nl,...,mn)

m

’k
T T T
h = x(on) €0 hea" " Cp-1 M)
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m T T T
Ih = R Eh+1 h+2“'80(777-)
(VI.8) becomes
4" h
20 9
RS 9. b
4 = D) Y + const
r h=r+1 n=2

r
Iterating (VI.8), ff(ée) becomes the sum of all trees

1]

Jjo _{_’0 _‘_‘jo -‘jo ’ﬂo ‘fj

The root frequency is r, each fork bifurcates upwards into two or more
branches, the fork frequencies hi increase monotonically up the tree and

finally there is a leaf {f(@e + ) @J) at the end of each topmost branch.
j>r

o)
The trivial tree'I is included in the sum. Note that each tree is planar
(e.qg. \f>/;nd\\<*’&re distinct) and has a distinguished root.

The truncated expectation E:’;(ml, Qe ,’7’%) can be evaluated graphically

in the following way. If each'”g is a monomial

) (h) (h)
M =7 dil--.dapi M, (F,l,....z;pl) o ())...0 (F,Pi)

then Z}Tl(h&, . ..,'Mn) is the sum of all connected graphs built from n

generalized vertices. The ith vertex has P legs and takes the value

Mi(gl,...,gp ). The lines of the graph are evaluated using the covariance
i
{h)
¢ (g K.
£ 1
h(ha""'m%) -G, congected I15111$n d‘Ei,k igl M, (E. E. )
o TR T N 18 o
1skspi i
(h)
QEG C (gu ,gw ). (VI.9)

2 L
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The legs of hg are Q(h)'s and hence have all been integrated out to
become parts of lines of G.

We have expressed-{f as a sum of trees and each tree vertex as a sum
of Feynman graphs. To express an entire tree as a sum of Feynman graphs

(h)

view-ﬂP-l(Qe) as being expanded in powers o° and‘ﬂh(é + 8°%) as being

expanded in powers of Q(h) and ¢e with all monomials Wick ordered (for the
same reason as in section V). That is
h-1,.e = h-1 e e
()] = dZ,...d G ¥ o i : @ BN ) :
4 e n);lf SRRRL S N RN (Z,) ()
h, .h e h e e
H@ +@) =Y [ndg, ndg, G (CuveeeskE ) + @ (Z,)...0 (Z):
qipe1 ] k qp 71 P 1 q
. a(h) (h)
: @ (El)...é (Ep)
Wick ordering is always done on the natural scale; Q(h) is Wick ordered
with respect to du and @e, which is thought of as being Y @‘J)
(h) s o
C —w<j<h-1
is Wick ordered with respect to I du ..

-=¢jsh-1 7

To do this we must rewrite the interaction as a sum of Wick-ordered

monomials. Observe that

o

A — - —_
s RS R DY AR SN - T N
where the coefficients of the crossterms in
(E¢)(E¢) = (: E¢ : +const) (: Ew : +const) is absorbed into du and the

constant is discarded. Discarding another irrelevent constant,‘jO has the

form

(o]

4°=-2Jar ar, : BENVE) L (BENVENVIE,)
- . D (<0) g _ . ;
NS aE dE, s (E)) CT (B EYMETENVIE,) ¢
+ 8p B B(E)P(E)
The three Wick-ordered terms are represented by the graphs }ﬂﬁﬂw4s,-<{:::}*-

and —s< where the line -\ is the soft covariance C(SO)(al—Ez) of
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scale zero. Each leaf‘bo at the top our tree is a sum of these three

graphs.

(h)

When (VI.9) is applied to (VI.8) the ¢ (C )'s of-ﬁ (D +¢e) become

the external fields of‘j (¢ ) and appear as external legs of the graphs in
(VI.9). The G(h)'s of~4P(¢(h)+¢e) are integrated out to form the internal

lines of the graphs of (VI.9). The Wick ordering: Q(h) ..¢(h)

(E; ) (5; )

graphs that are not only connected, but also have every internal line

joining distinct generalized vertices. Hence

is not allowed.

4 ; T .
When (VI.9) is applied to gh(ml, we .,’Mn) with
P

q. .
= [ mag,  maz, Gg o %z, MEE o @‘h’(gi L)
! 14 §.=1 *-i k,=1 i
i i
n 9 e
the result has external fields T : 1I° @ (Ci . ) :. There are terms
i=1  §.=1 34
i
for which qq = .. =9 = 0, that is there are no external fields present.

We now define Zr inductively so that the sum of all these terms cancels
the constant in (VI.8). Hence,‘ﬂr} expressed in terms of Wick order

monomials, contains no constant term.

Finally, to writefi(h’ll, - ,'Mn) as a sum of Wick ordered monomials
n d. o
the expression I ﬁ o (C /3. ) : must be re-Wick ordered to obtain the
i=1 j.=1
i
- e
desired form: T N ¢ . This is accomplished by applying the identity
i=1 3
n q.
me:nt o%z, L)

i=1 j,=1 i
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C(<h)(C e

u 'Cw ) gn?l

(Z,)
L L ?egs £

=y & .
G

ifthrgel
where G runs over all graphs with n generalized vertices (the ith having
qQy legs) such that every internal line joins distinct gener?iized
vertices. In other words graphs containing Wick bubbles are
excluded. The sign + comes from the usual reordering of anticommuting
fields. For example
P UIVIT,) o BIEIBIT,) ¢ = BUE B IL,)9(85)9(L,)
* ClL,8,) = BIEDBIG,)  + CLL L)) ¢ BIg)¥(L,)
- Clfgely) %81 -

Another effect of Wick ordering is

o
[+ m o () :du . =0
n=1. o

for g # 0 so that

P
- (¢k—1+ ¢h+1+¢e)(§ )
m=1 k
'h
T Poog-1 RS
=1 Chez - Epog b MO THL L OV (E ) 2
P
e
=: N @ (E)
m=1 m

We may summarize the discussion which began with (VI.6) in the
formula

4506% = % ¥ ¥ n =L vaiehy. vr.10)

trees te ] scales jed(t) lgggéﬁgd tet 7t
Here, Jd is the set of all rooted planar trees with each fork f bifurcating
upwards into Pe ¢ 2 branches and j(t) = {{jflfet] I r(jfso, f?f'ﬂjf>jf,}
is the set of all allowed assignments of scales to the forks of t. The

third sum is over all labelled graphs having
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a) one vertex}w\/’{ i -¢®+or <o+ for each leaf of the tree t

b) each internal line if labelled by a scale jf, fet and is also
given a hard/soft label. 1Interaction lines nnrare always hard and
of scale 0.
There are further restrictions on the sum over labelled graphs. They are

most easily stated in terms of

Gg : = {lines QeG& | 2 has scale jf, for some f' 2 f}
and
. I B
gf = Go/(6d, 1 £ > £
Here G/{Gl,...,Gn} is the graph obtained from G by contracting each

subgraph Gi; to a point. The subgraphs VW and'C:j:)of the leaves are
included>in the Gg,'s and are always collapsed. Hence the lines of g? are
precisely the lines of G& with scale jf.

c) g% has P¢ vertices

d) g% is connected by hard lines

e) g% has no Wick bubbles()

The rules defining Val(Gg)(@e) are:

; A
i) each ,wvwwe_  becomes - E‘Q(gu—gw)

5,
each EE::}EW becomes - A(ﬂ(gu_gw) CSO(Eu—gw)

each —e+<¢ Dbecomes &u(A,u)

h) (3.)
ii] each Hazd 1ins ede, besefies € © (5 ~E )
3 E u W
u W
(<3z)
each soft line of scale jf becomes C (Eu—ﬁw)

iii) each external leg gr*— becomes $e(g)

each external leg Evﬁ- becomes we(g)
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the set of external legs are Wick ordered

iv) each closed fermian loop gets a (-1). There are no other signs
arising from the fermion statistics provided the external fields
terminating each fermion string -4F*¢—+Eq-are written side by

. . —-e e L
side in the order v (El)w (ﬁn).

v) the positions of all vertices-.-,),ware integrated over R§+1
By convention all legs in the tf's at the top of the tree are
distinguishable. Thus topologically similar graphs are not identified and
there are no associated combinatorial factors.

Here is an example of Val(Gy)
j2 > jl >r
3g >332 34

X, %1

val(e¥) = (-1)7(=3) Jag,...dE,, : Ee(as)we(all)ie(&14)we(£1)
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7 <3, <3,
Tl ~ By | © Tl - EC T(E, - 2y

3 j 3 4
C(E, - Ey) CNE, - E)CA(E, - E)C N(E,

<y i j

C (515 — &431C (&, — By5)

C (8, - B 0C By - EQIC C(Eg - EgIC C(E -

- Eg)

£14)

H.P.A.

In sections III and V we estimated the values of any graph that does

J
£
containing two-legged subgraphs such as

not contain any two-legged subgraph G

As observed before, graphs

k ::: k _ | fdd+1k 1
LI LI ¥ - L) d+1 .
(2m) (:Lk0 - e(k}))

2

diverge because there is a nonintegrable singularity on the Fermi

surface.

We now continue the discussion preceeding (VI.2} and construct

f (k)

Ou(u,A) perturbatively. The idea underlying the construction is that for

every two-legged subgraph -4—<:}—+-‘6p{p,A) must generate a counterterm

k k
——e+—<¢ so that

£ (ky=0, |k|=Y2mp)

e - e

k k k k
d+1

= [ ...fd §+1 1 7 (k) = £k, = 0, |k}
(2m) = " [iky - e(k)]

Y2my) j

The zero of f(k} - f(k0 = 0,1kl = Y2mu) on the Fermi surface mollifies the

singularity in {iku - ecg)}_z to yield integrability. These conditions

will determine du(u,A) uniquely in perturbation theory.

The first step is to introduce a localization operation L which
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identifies the counterterm corresponding to any given graph. This
operator is defined by
LJAE AE,G (5, - B,) 0" (5,)9°(5,):
= Gk, = 0,1kl = ¥2mn) [dg : $(5)%(5)°: (VI.11)
Lfdgl...dgne(gl,...,gn) :(E)e(gl)...(i’e(gn): =0 for n # 2 for

Wick monomials and is extended by linearity to all formal power series in
¢e,$e. (The fields do carry spin indices, but they have been
suppressed.)

The renormalized tree expansion will express the effective potential
ﬂjr(¢e) as a sum of trees similar to (VI.10} but with the difference thaﬁ

each fork will have an additional label taking the values R (for

renormalized) and C(for counterterm). The meaning of such a fork is
M, L
_ T T 1 T
M =xtk <h<s0) €, ... & (1-LFE (M. M)
k
Mmoo m,
/ 1 T,
\ c = X(= < h k) (LTE M. W)
’ (<h) (<k)
k ¢ -9
Here ¢(<h)ﬂ ¢(5k) means that the external fields ¢(<h) resulting from

(Sk). The output of the R forks automatically

(-L) é"z are replaced by @
pairs each graph with its counterterm. The output of the C forks consists
of parts of du(A,u) f:%(g)w(g):dg that have not been used up renormalizing
the effective potential *ﬁk of scale k. Note that in contrast to plain

and R—-forks the scale h of a C-fork is lower than that of its predecessor:

h < k.

We shall use the notation {i} to stand for the sum of all

nontrivial trees (i.e., not I) with all possible assignments of R and C
R
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labels and scales to the forks of the tree. But the root scale r is not

summed and the leaves are - %'L}(ée + ) ¢J) rather than ‘50. Note that
i>r

du(A,Hd) does not appear in the leaves. Furthermore, all vacuum graphs

(those with no external legs) are discarded. We shall also useg;% to

denote the sum of all nontrivial trees whose bottom fork is labelled C,

and so on.

Theorem VI.1 Define

8v =<|'§ (VI.13)

and
e 1 A e g j 0 j
4 (8%) = log— fexp(- U+ 8U) (% + e) m dp .(2)).
r j=r+l j=r+l C
Then
Ay
r 2
a) -j = 1 + and (VI.14)

b) if Pn (resp P(n) denotes projection onto the nth order (resp. orders
less than n) of perturbation theory in A

P 6v(0°) = -2 L log fexp(-5 U + B, 81%) (8% + 8)du (@)  (VI.15)
Remarks:
1. The counterterm 8V is of the desired form

8V(0°) = u(u,A) JAE:H° (E)Y°(E):.

Since the interaction is spin independent, it is even diagonal in the
(suppressed) spin indices. When the interaction is not spin independent,
this will no longer be the case. This does not violate the requirement
that the chemical potential be spin independent. This requirement states
that the deEe(E)we(E) part of the complete action, including the contri-

bution from the (inverse of) the covariance, be diagonal in the spin indices.
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2. The physical effective potential ‘j_w obeys

Ly

[}
=
c
+
=

To see this observe that the first term is zero because ¢ is a Wick
monomial of degree 4; the second is zero because L(1 - L) = 0 and the
third is zero because of the restriction on scales at C forks.

3. Equation (VI.6) can be regarded as defining a scale dependent map

from ﬁh to ﬁh_l. Remark 2 may be interpretted as a final value

condition at scale h = -», This condition determines &u(u,A) and says
that the fermi surface occurs (in perturbation theory) at |k| = me_u
{e.f. (VI.2]), |

Proof .

a) The proof is by induction on r. When r = 0, then a) reduces to

g 2

2
_ﬁ = l +
by the restriction on scales at R-forks. This is trivially true.

Assume the claim is true for some given r. Then
r-1

%

il

log[exp ( ﬁr) dy _-const

C
= gT(ﬂr) + n' E. (‘jr .. 47 -const
n=2
Ay
T 2
=tr "‘Z J+Z r'-noRorC
i>r label
_—-’l}r'
= ﬂl +):q? +(1—L)<F+19
J>rr jsr r-1

The second and fourth terms combine to formr_f: and the third and fifth
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terms combine to form{;z.

r-1
b) Set r = - in (VI.14) and apply PnL'
A
'21} C}z
PL%Y =PL +PL| +PL
n n- n_ n _
=0
since 1UF is a wick monomial of degree 4, L{(1 — L) = 0 and the sum Z
~0{hg—w
is empty. Thus
A
0=PL logfexp{-zl}'+ Psn619]duc
- A -
= Pncsl} + P L log[exp [ Y+ P<n6(}]duc. B

VII Renormalized Bounds

In this section we estimate the coefficients in the formal power
series expansion of the 2p-point function generated by the effective
potential at scale r, -» < r £ -1, and in particular verify that they are
finite.

Let

r - - i
G2p(cl’al'¢ ,EZ' .. -:Cprap)

p
= T I:é ]ﬂj’w ) (VII.1)

5¢ (E ) 5¢ (C )
be the 2p-point function generated by the effective potential at scale r.

The renormalized tree expansion (V1.14) yields a renormalized perturbation

expansion

erz)\nrn

2p (VII.2)

We wish to bound the coefficients Ggén.

. ; r,n
The renormalized tree expansion expresses Gzé as a sum over the
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r,n i .
2p Here r2p is the set of all labelled

graphs with scale and hard/soft labels on each line and R or C labels

values of labelled graphs in T’

attached to the subgraphs corresponding to forks of the associated tree.
In addition, these graphs must satisfy the conditions a)-e) following
PETC1L09

The localization operator L introduced in the last section
annihilates all but two-legged diagrams. Consequently for a graph without
two-legged subgraphs the operators 1-L and -L corresponding to the labels
R, C become 1, 0 so that the estimates of sections 3 and 5 apply.

The ultraviolet part of the covariance U = C(O)

is integrable but
unbounded. So in section 3 it was appropriate to estimate L1 norms of

Schwinger functions. On the other hand, the infrared covariance

-1 .
Y C(J) is bounded but not integrable. So in section 5 1" norms were

j=—w

appropriate. Here, the ultraviolet and infrared regions are treated

together. The combined norm

l6glly o= sup(faE,...dE 16 “(E,, ... E)E (B ). £ ()| o IIE N IIE 1| s1)
(VII.3)

is natural.

Directly combining the methods of sections 3 and 5 yields
Lemma V1il.1 Let the two body potential V either lie in Ll(Rg), d21or
be the screened Coulomb potential when d 2 2. Let G be in ri'tor e =,

2p

and contain no mass subgraphs that are without external vertices. Then
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i,. .
1,. . A (J.~] )
D - £ =g f
! £>¢ : f>¢
f nontrivial f nontrivial
f not external f external
1 ’

A (0-3 )
) o ¥ T (VII.4)
vet(GJ )
v trivial

v external
The prcof of Lemma VII.1 is ommitted.
Now consider two-legged graphs that have no two—-legged subgraphs.
These graphs arise in three basic ways. The simplest possibility is that
the graph appears at scale r = -», Its value is a term in the "physical"
two point function of the effective potential *amw. In this case the
external vertices £1'52 are integrated against test functions fl(gl),
fz(gé) lying in Lllw L” and Lemma VII.1 is applicable. However, if the
value of Gg is a term in r%jr, r > -=, then there are graphs whose
r-1 &

values contribute to {j that contain G as a subgraph. Wwhen the

Feynman rules are used to evaluate the larger graphs the external legs of
Ga are integrated against expressions that are not necessarily in
Lt N 1° so Lemna VII.i cannot be applied.

The graph GQ corresponds to a fork in a tree of the renormalized
tree expansion. At every fork there is either a C or an R label. If C
occurs the operator -L is applied to Val(th) and produces a two-legged

vertex multiplied by a coupling constant:

- valed 158 = - et s gy

sz(c;éL )i o= fddﬂg val(c? )(o,s;)ei-‘g'K l (VII.5)
|k|=V2my

(This coupling constant is part of &u{u,A, see (VI.13).) If R occurs the

operator 1-L is applied to Val(GA') to produce the renormalized wvalue of
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Gg“. (The essential feature of this renormalized value is that its
Fourier transform vanishes to first order on the Fermi surface.) Hence
the other two ways in which a two-legged graph appear are (—L)Val(GJ') and
(1-L)Val{Gd ).

We now estimate the result of a C-fork.

r,n

Lemma VII.2 Let Gé' be graph in r2 , T 2 —» which contains no proper

two-legged subdiagrams and let ¢ be the lowest fork in t(G&'). Then

[a%* g1z 1% val(ed ) (0.5 |

Ry . ] if J , d=3

L(g). g Igmin(2,1/2(d+1)) Dl(Gf)(Jf-J"(f)) 1341 if 3,¢0

< F ! . n M 1 otherwise

£3¢
In particular

' 1 L

j,min{2,1/2(d+1}) D (G,) (F.~] )

leed)l s kO ? (eligleg ;) mow E LT

¢

Proof

Assume for simplicity that all particle lines have scales in the
infrared end. It is easy to add in the ultraviolet end using the methods
of section 3.

We will be able to follow the argument of Lemma V.3 with one
important exception. The vertex £ is integrated over all R§+l rather than
against an L1 test function. 1In other words, it acts as though it were an
internal vertex. However we may not apply Lemma V.1l as it stands because
§ is not a dimensionless internal vertex.

Fortunately the assumption that internal vertices are dimensionless
was not used until fairly late in the proof of Lemma V.1l. Stopping just
before that point one obtains

Lemma V.1'. Let G be a general graph as in Lemma V.1 but not necessarily

having dimensionless internal vertices. Then, for 2 £ i £ n,
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k
Jag,...dg Ival(G;C,) (0,&,...,E )&,

3D D(3c-3 ) —kj
< gi(Clyy e R e ¢ "(f) u °

£>¢
f nontrivial

The factor [F,iik did not appear in the statement of Lemma V.1. But
this factor may easily be bounded because the vertex 0 must be connected

to the vertex Ei by hard lines of scale at least j¢. Then we may extract
j¢ -k ;
a factor (1 + M Iail} from these hard lines and bound

3 LK
N RN P RPN

We sketch the variant of the proof of Lemma V.3 obtained by replacing

Lemma V.1 by Lemma V.1'.

Just as before

~4 -kj
k
lE] IVal(G& )(0,8)] = X% Val(G&k)(O:E)M ¢
ke=3y
where the hard particle lines in GJ"K have covariance
-1/2(k -j,) d/2 k k 1/23 j
2 -2 s L L
M M g(M “lxl)] M gM “lthi,
the soft particle lines of cd £ have covariance
—1/2(k2—j2) d/2 ki k 1/2 j‘Q
M (M g(M “|x|)] M ] if k2 > j2
and
-1/2(k,-j,) d/2 k 1/2 j
M PP Mmoo T if kg =g,

and the interaction lines of(}J'ﬁk have covariance

M_llz(o_o)[MOdV(Molél)][MOX16(MOT)].

The integral factorizes
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-1/2(k,-3,)
fva1e?™ ) (0,E,) = T M P vard (g vart ()
)

with Vald(K) containing the spatial integrals and Valléf) the temporal
integrals. Applying Lemma V.1' to the temporal and spatial integrals

respectively one obtains
t

1 1,. .
j,D (G) 1510 G )
vall((}) < const” !y ¢ I g £ & TWEN
fet(Gd)
£5¢
f nontrivial
and
d d
k D7{G) D.(k,.~k )
Vald(ﬂj < const”!®ly ® I X m L & TR
fet (G™)
f o

f nontrivial

We want to combine the proceeding two estimates. As in the proof of Lemma
V.3 this is not quite straightforward. The spatial integrals are done on

scales k, with k,_ = j2 while the temporal integrals are performed on the

2 L
jQ scales. Consequently the forest F(G#:) and tree t(G’<) can be quite

different from F(Gé'} and t(G} ). The way around this difficulty is to

d Dcf} ke~ gy!
observe that Df < 0 for all £ > ¢ and hence M < 1 so that

: i d
. J,.[DT(G)+D" (G)—k]
fdd*lﬁizlkhfau(;};[w,&) < constl{Cly P

no,
fet (&)
f>¢
f nontrivial
1 .. ) Y |
DT{G.) (j -] ) -1 ~1/2{k —3,] (k,-j D (G)
Mffu(f)z[nn 22.M¢¢
kQ:JR 2
. o ; .y
-kj, 3 min(2,1/2{(d+1)) DT(G.) (3.3 }
< const®{®ly "¢ gy [ fWiE)
£>¢

LM [ R AN - .
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All that remains is to show that

: a-3
-1 -1/2(k,-3,) (k,-j )min(3/2,d/2) max(0,—5" k,)
¥ M LB PR M 2 ¢

k2=32 2

15,1 if d = 3
< constL(G) { ¢
1 otherwise

To verify the last estimate we first remark that Gé’ must have at
least three lines whose scales j2 = j¢. To see this observe that every
line of g: = G/{Gf|f>¢} has scale j2 = j¢ and, because of the wick

ordering convention, joins distinct vertices of g. Moreover every vertex

of g has at least four legs since G has, by assumption, no two-legged

subdiagrams. Therefore g has at least AVig)—2 2 3 lines. The smallest

2
possible g is ‘*—@—’—

Consequently
-1 —1/2(k£-—j2 (k¢—j¢)min(3/2,d/2) max (0, gég)k¢
Y M M M
kgzj2 2
-1/2(k_-3,) -1/2(k,-k,)
= I ) I M S " 0
k¢23¢ kgzmax(JQ,k¢) ¢g feg
. . . d-3
—1/2(k¢~3¢)|g| (k¢—3¢)m1n(3/2,d/2) max (0, —5-)k¢
X M M M
-1 -1/2(k,-3,) (3—-d) max(0 c-1:"3-)1:
< const®(® Y M L M R since |gl 2 3
k.=j
¢ ¢
j if j, <0, d=23
L) l3¢l if 3,
< const
const otherwise
The proof of Lemma VII.2 is complete. |

We now estimate the value of an R-fork, namely
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re? (&) = var(e?) (0,8) - 2(G536(E)-

If either vertex 0 or £ is external we may apply Lemma VII.1 Otherwise

RGé occurs in a string:

2(G3+1) K(Gs+2) Q(Gs+t) 5
RG/} > . e——
s’ Js+1  Js+2 Jg+t+1
s+t s+t+1 (ji) s
= modg, W oC T (5, -k, ) T (RGN (B, E,.)
i=1 i=1 i=1
t
i¥1 G318 c 0141 50s421)
where 50 = 0 and £2n+2m+2 = £. Condition d) following (VI.10) forces at
(3;)
least one C in the string S to be hard. Furthermore our scale
decomposition was constructed so that E(m)(k)a(n)(k) = 0 whenever
(3.) _
Imn| 2 2. Hence we may suppose that every C is hard and that there
is j for which every ji = j or (j+1). 1In a typical situation the

two-legged diagram Gi of the string S will have scale hi > j, if
1 <1i<s, and scale j if (s+l) < i £ s + t.

We now formulate and prove the Lemma that allows us to estimate
strings of renormalized two-legged diagrams.
Lemma VII.3 Let Gi' 1 <1ix< s+t, be a two-legged diagram of scale hi
satisfying

: a+l
—khi himln(z, 2 )

M M (1+|hi'6d,3)

illalkValts.l)(o,a)nL1 S K

for all 1 i <£s, 0 <k <N'. Then the string of (VII.6) obeys
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1-d
+t ' N'. -1
lval s(g)Is ¢; 7 wd 1+1xl) 2 1+ o 1g))
s himin(z,ggl) —(hi—j) -
i]=T:L K, yM (1+Ih; 184 )n M
) E“Gi”M—jJ (VII.T)
i=s+1

Remark (1) It is useful to regard val S(£) as a "covariance." From this
point of view Lemma VII.3 is the appropriate analogue of Lemma II.1.
Remark (2) We roughly explain how the different powers of M in (VII.7)
arise. Certainly, [val S(£)| includes the convolution of (s+t+1)
covariances. By Lemma II.3.1 withm=n =0, a+ p =8 + t + 1 the

appropriate power of M is
. 8 _: Sstt .z
= n M7 nm M.
i=1 i=s+1

yd (1-s-t)

If Gi,'l < 1 £ s, were not renormalized it would contribute

himin(1/2(d+1),2)
M (1+lhi|6d 3) by Lemma VII.2. Renormalization replaces

(Vval Gi)(ko,k) by

| (Va1 G,) (kg k) - (Val G,) (0, Ikl=V2mp) |
= Ik, dko Val 6, + [kl - {2mp) gl—klﬁl Gil
< Ik b I S— ax Val o, U - fama 11 Gy v 541l o
< const [Iky|+] [kl-2mu [1111E] (Val 51 10,8111 4
(VII.8)

The support of C(j) forces [Ikol + |kl - JZmpI] $ const M7, As in the

proof of Lemma V.1' the [£| in [[|E] (Val Gi)(o,ﬁ)ﬂ 1 produces a factor
L
~h, =(h.-3)
M . Hence the renormalization of Gi gives a M P
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Remark (3)
1-d

The expression MJ[1+IxI] ) [1+(MJ|E,I)N ]_1 is our standard bound on a
covariance of scale j. Its occurrence on the right hand side of (VII.7)

effectively replaces the complicated string S by a single covariance

J
—>—— of scale j.
0 g
Consider the expression
h.min (2, d%zl ~(h;-3) _ L d=1
M _ (1+Ihi|6d,3)M M~ < hi/2
M dz2

For d 2 2 this expression has two somewhat surprising characteristics.

First there is a factor (1+Ihi Bd 3) which is not a power of M. Second it

h./2
is bounded by M ' which is summable over -1 2 hi > —o., In the "normal

situation" of constructive quantum field theory this would not happen.
Rather, as for d = 1, the bound would be essentially independent of hi’ in
which case the sums over scales hi generate powers of j. They in turn
generate factorial behaviour for the graph as a whole. However, such
factorials are weaker than those of (V.I).

Finally the expression [Ii(Gi)M_jI] is bounded by a constant since
the typical behaviour for Q(Gi) is (see Lemma VII.2 and (VI.12))

h min(d,gil)

261 ¢ Lu .

(1+[hld, )
h<j d.3

Remark (4)

. . +
Two-legged graphs have dimension le' One would normally need an
. . . . ’ =
infrared renormalization cancellation of order = (integral part of QEL)_
Here, by contrast, a first order renormalization cancellation suffices

because of the convolution inequality Lemma II.1.3.

Proof of Lemma VII.3. We simply follow the proof of Lemma II.1l. When
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dz 2
3 N - = a-1 kgt 1-d/2 (elxl)
(M7 1E])" S(E)| = const|[ dkofdp p- e (elxl) Jasa-1
—C0 0
2j, a° @ 4-1d ..N'/2=
M (= B = S5 - S 501 1T S (kg k=0 |
dky  dp
lég - ¢ 27, a® a® a-14  N'/2,~
< const |x| [ oak, [ ap (- Rt 35 )1 15 (ko Ikl=p) |
e 0 dk, dp P
(3.)

The support properties of the C Log imply that S is supported in a

region of (ko,p) space of volume const sz. The supremum of S is bounded

by
: ; d+1
. 8 -{h.-3j) h.min(2,=7)
consts+t+1M I{srtady n K...M T M?*t 2 (1+|h. 18, .)
5 i,N 1 dr3
1=1
s+t
I Il(Gi)I.
i=t+1
_j(s+t+1) ""'(ji) S
The factor M comes from the C 's; the product 1T comes from

i=1
the ﬁéi's via (VII.8) and the observation that on the support of ~(J),

{Ikol + |kl - ¥2my ] < const M7 (c.f. remark 2).
25, a2 a® a14. N2
The derivatives [M J(— - - )1 do not materially
2 2 p dp
dko dp

affect the supremum. This may be seen as follows. As in Lemma II.1 a

—~

= OF 2. acting on a C produces, at worst, an M 9. A derivative 2. .,
dk0 dp dk0

d . o~ . . . .
or 35 acting on RGi removes the renormalization, since Q(GQB is a
=(h;-3)
constant, and hence one factor of M from the above supremum but
hy -(h-d)
then adds a factor of M =M M -~ because of the hypothesis on

HIEIkVal(Gi)(O,g)H 1 Thus the derivative puts back the "renormalization
L
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= (hy=3) -j d d
factor" M and also gives the usual M °. As soon as a - Or =—

dk0 dp

acts on EE; the renormalization cancellation disappears. It follows from

~

this observation that at most N' derivatives can act on Gi'

Thus, for d 2 2,
d-1 . s+t

[x| % (MJIF,IN S(E)| s constS+t+lMJ(2“S~t‘1) I Is(Gi)I
i=s+1
s _(hi-j) himin(z, Q%l)
TR M M (1+Ih; 18,4 4).
i=1
To complete the proof we require similar estimates on |S(E)| and
I(MJIE,I)N S(E)|. They are derived in the same way. Finally they are

added together just as in Lemma II.1 to obtain the stated bound. We omit
the argument for d = 1 too. |

We now have the essential ingredients necessary to prove the main
theorem of this paper.

Theorem VII.4 Let Ggén Ve .,gzp) be the coefficient of A" in the

AR

expansion of the 2p-point function for the effective potential-‘br at
scale r, —o £ r £ -1. Then there exist constants Kp (independent of n and

r) and R (independent of p,r and n) such that

r,n n
' !
Gy (ByreeviBpp)lly o s K RO nt

Remark In the introduction we observed that there are approximately (n!)2

graphs contributing to the nth order of perturbation theory, that there is
a factor of %! arising from the expansion of the exponential and that

there are graphs, containing many four legged subgraphs, whose wvalues are
of order n!. One of the consequences of Theorem VII.4 is that there must

be very few of the latter graphs.
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Proof The renormalized tree expansion (VI.l1l4) expresses Ggén as a

multiple sum. The first sum is over rooted trees having a single branch
leaving the root, each fork f bifurcating into P 2 2 lines and n
endpoints at the top of the tree. 'The number of such trees is bounded by
24n' (See, for example, [GJ, page 112].) There is also a sum over the 2n
possible assignments of R/C labels to the forks of a tree T.

For technical reasons it is convenient to add an internal/external
label to each leaf of 1, specifying whether the corresponding vertex is
internal or external, and a label Ef to each fork, specifying the number
of external lines of Gf that are internal to G. There are at most 2"
possible internal/external labellings. It is enough for the proof to
consider a fixed tree and assignment of R/C and internal/external labels
since the above powers of two may be absorbed in R". Later on it will be

necessary to sum over the E_ labellings.

£
Some forks of a tree require special attention. We now list these

forks: (1) C-forks, since they produce a single two legged vertex,

multiplied by a scale—-dependent coupling constant. (2) R-forks with Ef=2

require the convolution identity, see Lemma VII.3 (3) internal R-forks

D

with Ef=4 because the factor M

1,. .
(J¢-3 )
£-f “wif) in (VII.4) fails to provide any

decay with which to control the sum over jf. The strategy will be to

first bound E_=2,4 graphs that contain no E_=2,4 subgraphs; then E_=2,4

f

graphs none of whose E

f
=2,4 subgraphs and so one

f
f=2,4 subgraphs contain Ef
by induction. Once all Ef=2,4 graphs have been treated we can combine the
result with a variant of Lemma VII.1l to bound general graphs. In other

words we shall proceed by induction on the depth of the tree, which we

define to be
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depth(T):= max {D| 3 forks fl""’fD of T obeying

(c) fi internal }.

Before formulating the inductive hypothesis we give some motivation.

To begin with ignore the number of graphs. Suppose that f ..,fF are the

1"

forks of T with Ef = 4 (or when d=1, Ef:2). The value of a graph arising

from t is of the order of F! To indicate why this happens observe that

each scale jf must obey 0 > jf > j¢ and hence can take only |j¢l values.
i i

L e ws

Furthermore M = 1, since E_ =4, and in particular does not

£

D

decay. Thus, the sum over the scales jf is bounded by Ij¢IF. As we
i
ej¢
shall see there is a factor M , €>0, associated with the first fork ¢

of . For example, when there are no E_=2 subgraphs, one can extract the

£
F ¢

factor from the estimate of Lemma VII.1. So the product |j | M

< COI'].StFF 1.

¢

The remark above suffices to prove an n! bound for any single graph.
However, to prove that the sum of the values of all nth order graphs is

bounded by constnn!, that is, Theorem VII.4, is much more subtle. Roughly
1 . .
put, either there are many decay factors M ' Df

i

<0;

controlling the sum over scales and therefore suppressing additional

factorials, or most of the forks have Ef =4 generating, as above, an F!,
i

but in this case there are very few graphs contributing to the sum.

We must measure the relative density of four-legged subdiagrams and
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decay factors. To do this introduce the function

i

A (h):= Y (i+|h|+1)kM
i=1

Here i plays the role of Jf-J"(f) and h plays the role of J“(f). In
i o)
particular 5 {13 |+1)k M ¢°f “nif) < A (] ).
035 53 f k' (f)
T dq(£)

It is proven in [FHRW Lemma 8.2] that

a)

b)

c)

d)

e)

£)

I An {h) < Azn (h) if M is large enough
P P P
-5 (h*-h)
M An(h') < An(h) if M is large enough
h'>h
0
L A (h') = _(h)
h'=h+1 n n+l
P n
I M A (h) < C, n!
h<0
-5 (h-h")
h'éh M A (') < Zhn(h) S A, () if M is large enough
n! < 2 A_(h) (VII.9)
3 ' n

We make an inductive hypothesis on

jntD' - a — -
Cp (Ell"'lgp) = S'U.p | q}J:Ef—P l p—2l4

where the sup is over all trees of order at most n, depth at most D'

having only internal vertices and over assignments of R and C. The first

fork has scale f and Ef=p. The inductive hypothesis is that for all

Osk<d+1, 2<i<4

d+1

k »3j,n,D' n-1 . —kj.min(2, 2 )j .
mel™ & (0,E)1l; $ &7 A (5)M M (2+13184 ;) (VII.10a)
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k ] J1,D = R
ME G ™ 08,8580, s 70w
(VII.10b)

The induction will be on depth. The constant k is chosen later. Suppose
that v has depth D and that either D=0 or that the inductive hypothesis

has been verified for D' < D-1. As above the R/C and Ef labels of T can

be fixed. If the lowest fork has label Ef=2 temporarily drop that fork's

R/C label since the inductive hypotheses is stated without one.
Decompose the tree T into a trimmed tree T and insertion subtrees

o 1O by cutting the branches beneath all the minimal internal E_=2,4

f
=2,4

17"

forks fl""'fm (i.e. each of the forks f

fork having no internal E

,...,.f 1s an internal E
1 m f

¢=2.4 fork, except possibly ¢, below it). If T

has degree m+n. and oi has degree ni then

0

- m
n=mn,+ L omy
i=1

Further more each ci has depth at most D-1. For example, for

= 7 D=3
we have
. Ef's ny = 2
T®" E'-G
Ef'z
Ul. cEflz f| n, = 3 depth = 2
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Op= C,Ef>2<2 n, = 2 depth = 1

Each graph G contributing to Tt may be represented as a graph G, of

order n, associated to T, having 1-10 generalized vertices >«/v\o< 9
*Qand ?12 generalized vertices -——O-v- and 54 generalized

vertices D: with the values of the-O- ' H generalized

vertices being the values of the insertion subtrees © ,...,om. Thus

1

m=n2+n4andn=n0+n2+n4.

The number of graphs that are represented by each of the generalized

vertices»O», H in G is built into the inductive hypothesis. In

order to continue we must estimate the number of graphs G.

The number of unlabelled graphs G is bounded by the standard estimate

27n(ﬁo+ﬁ4-p)+! where (x) = max(n,0). As in [G, Appendix F] the number
of labellings of G consistent with the tree expansion and consistent with
the E_ labels is bounded, for any €>0, by

f
CH n p.! |exp| e ¥ E
fer

fet
Hence the total number of labelled G's is bounded by

- 3 ‘
c. (A, + 1, - p),! |: n~ pf!:| exp l:e )j~ Ef]. (VII.11)
fet fer
We now derive three estimates for the value of an arbitrary G,
assuming that the generalized vertices corresponding to insertion subtrees

satisfy the inductive bounds (VI1I.10,a,b):

a) If G is two-legged and 0sksd+l
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. .. 1 1,. .
~ -kj, j.min(2,=(d+1)) Do(J.-] )
LGy "oy ¢ 4 (1+13,184 ) T M EYE TuiEl g

fet
£>9

IEI® G0, 811, <K

b) If G is four—-legged and 0<k<d+1l, 2<i<4

5 K DF(3 =3 gy)
k=~ G £f'9f f
NEIG 0,5, 8,.500, <k w Pn u mET g (vir.az)
fet
£>¢
c¢) If G has pzl legs
1,. . 1,. .
- & DL (J.~3 ) AZ(3.-3 )
gl , = & (€) p uf fomE R A
fet,£3¢ fet,£5¢
f not external f external
f not trivial f not trivial
1 .
A (0-] )
x I M ¥ Tiv} Q
v trivial
v external
Here
ni—l min(z,ggl) hi -hi
Q = I C. kK A (h,) M (1+]h.|d ) M
. . n.-1"1 i 4,3
insertion tree Oi i
o, two-legged
oi has R label
By min‘z'ggl)hi “In(o.)
n C, « A, (b)) M (1+lhi|6d,3)m i
o, i
i
oi two-legged
0i has C-label
n.-1
I kXA (h.)
n.-2"1

%
ci four-legged
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where hi is the scale of the first fork of the insertion subtree o and
jn(oi) is the scale of the first fork below oi.

Parts a), b) and c) of (VII.12) follow from Lemmas VII.2, V.1', and
VII.1 respectively and two additional observations. First, a key
hypothesis is that there are no proper two-legged subgraphs. This may be

true for G. However Lemma VII.3 eliminates this difficulty. It replaces

[P . P J

each stringw{::ﬁ{::b(:),- by a single covariance —»— ., Second, only

local vertices :>”v’~f\<: were allowed in Lemmas VII.1l, VII.2 and V.1'.

This was unnecessary. Reviewing the proofs one sees that any graph with
four-legged generalized vertices satisfying (VII.10b) obeys the same
estimates.

Combining (VII.1l1l) with (VII.1l2) and estimating the sums over scales
and Ef labels allows us to verify the inductive hypotheses at the Dth

level and finish the proof of the theorem.

First we sum over the scales hi occuring in Q. We have already

; d+1
himln(Z,—E—)
observed in Remark (3) following Lemma VII.3 that the factor M
_hl
(1+Ihi|<5d 3)M of the first product in Q is bounded by 1. Hence
ni—l min(z,ggl)hi —hi
n Y C.k A (h,) M (1+|h. |8, )M
J 1 n.-1"1i i'"q,3
o. two-legged h.>j i
1 1 “(oi)
ci has R label
ni—l
< I L c, A, _q(hy)
0>h.>j i
1" “w(o.)
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ni—l
s I C1 K An.(jn(o.)
o, i i
i
di two legged

ci has R label

) by (VII.9¢)

As for the second and third products we have

n.-1 min(z,gil)h.

-3
) ¥ c.e b oA (h.)M 2 i giints, m TOy)
: 1 n.-1 1 i 4,3
0. 2-legged h.xj i
1 1 n(ci)
C label
n-_l (h-—j )
1 i 1 “mw(o.)
ST ) 5 Cq K Cy Ay _q(hy)H i
h.<j i
i~“mw(o.)
i
min(l,ggl)hi
where C, = 2 max M (1+Ihi|5d 3)
h.<0 !
i
ni—l
< I 0104 K An.—l(Jn(o.)) by (VII.%e)
ci 2-legged i i
C label
and
ni—l ni—l
I Y K A (h,) < i K A (3 )
: n.-2' 1 n.-1"-m(g.)
o, 4-legged 0>hi>3n(oi) i o, 4 legged i i
Combining these three estimates we have
o Zni-m
I Qs (C,C,) « n A (3 ) I S & )
h,) 14 o, 2 legged i WAy} o, 4 legged i 17m(o;)
¥n.-m
s (c,c)™x * I A (3,) I A, _q (3y)
14 oi 2 legged oy ¢ ci 4 legged ny ¢
by monotonicity since l3¢| 2 IJ"(ci)I
Yn.-m

m 1 .
< (C1C4) K hzni_ﬁ4(3¢) by (VII.%a).
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Next we control the factor exp (e Z E ] and the sum over Ef Note
fet
1. .
. _ De(e=In(g!
that in (VII.1l2) every fet, £>¢ has a factor M or
2 T 8
A(Jc.-3 )
£'f “w(f)’ . i
M with g jﬂ(f) 2 1 and
1 1 .
Df < - 12 Ef (since Ef26)
1 1
Af < 1 Ef :
We can use half of each of these factors to bound expl[e Ef] and to
control the sum over Ef. The other half is used to control the sums over
n_+m
jf, f>¢. All of these sums are bounded by CS
So far we have shown
] ~ = —kj
N, 2
a) met® ™20 5, < (1 =3P @.+n -1),! T_p SNt < T
2 1 ~p.! e’ 0 4 o
fer °f fet
j,min(2,1/2(d+1)) n.+m yn,-m
0] m 0 i Ly
by  lig 1" 4J¢'n'D(o £y By Bl 5 (N Zh (@R, 2,0 bt
fet Pr! feT '
ZnM kg o Eo+m Yn.-m
{K & c: Cg K ?\Zn._ﬁ (J‘p)}
14
r n 2n 50|J¢I
c) et ™ sz {nm}{C(nm -p),! I_ p 1] (K2
2p 1, P 4 f
£ fet
I
m_m 50+m Zni—m
C1C4C5 K Azn - (3¢)} (VII.13)

i4

Here the first set of brace brackets { } contains the explicit SLT'S that
¢!

occur in the evaluation of a tree (see (VI.12)), the second set contains
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our bound on the maximum number of G's and third contains our bound on the
maximum value of G.

We now observe that the pf!‘s cancel, that

( j ) by (VII.9f)

(n+n,-p) 'Ay. _~ (3,) € C A= oo~ _ 3N = (3
074 '+ "¥n.-n, "¢ 3 (ny*n,-p) "¢ "In;-n, "¢

0 4 ;
<C Ap = == (3,) by (VII.9%a)
3 Xni n,+(ng+n,-p) ¢
and that in cases a) and b) 50 + 54 - p 2 0. For example in case a) p = 1
so that n, +n, - p > 0 unless n, = n, = 0. In other words the only

0 4 0 4

potentially dangerous possibility is that G is of the form

But in case a) G is to be inserted into a larger graph either as a

counterterm or with the connecting lines of scale ji <

Ig

In both cases conservation of momentum implies that the larger graph has
value zero. There is another possibility: j, = - 1. Then the scale
j¢ is "tied" to ji and need not be summed over. It is a dreary technical
matter to account for this and would only further obscure the central

issues. So, it is ignored. The preceding remarks allow us to conclude

that,‘in case a),

|
™1
=]

|

=R}
+

= 2
+
o B}
I

[y

Zni - n, + (ngtn,-1),

n, + Zni -1

=n-1.

Similarly, in case b), Zni -n, + (ﬁ0+ﬁ -2), =n - 2. Here the

4 4
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potentially dangerous graph is

O—O—C0—-0
O

Once again conservation of momentum eliminates this possibility. Finally

in case c) Zni - n, + (ny+n,-p) < n.

To verify the inductive hypothesis it must be shown that k can be

chosen so that

n.2n_m.m 0 0 4 n-1
CEK C1C4C5 K C3 < K
or, dividing,
~ o~ 1-"1 +m ﬁ +n n. +m-1
n 2n mm_ 0 0 "4 0
C(—:K C1C4C5 C3 £ K

Recall that n =n, + mwithm=n, +n, and n = 50 + Zni.

0 2 4
2 ngm
gide is bounded by (C K"C.C,C_C.) so we may choose
€ 1747573
K—max(l(CKZCCCC)z)sine~+m22
= r Veg® By mvgty e By ’

The proof of Theorem VII.4 is completed by observing

The left hand
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)M < cg n! by (VII.9.d).

0
A (]
A ¢ G
J¢"

sGw

VIII The Interacting Fermi Surface in Perturbation Theory

The average occupation number n of momentum k and spin o is
[

defined by

ik-x

5
lad
a
1

3 =
J&'x <@, %_(x,0)%_(0,0)Q>e

= lim fd3§ sz(g,o,c),(é,r,o))elk'5

-0+
= §(5,r=o+,o) (VIII.1)
where A denotes the spatial Fourier transform. In the free model
S, (k,t=0+,0) = x(/Zmu - IkI)
so that there is a discontinuity at |k |= Y2my . By definition the
interacting Fermi surface is (if it exists) the surface of discontinuity
of §(5,1=0+,c) where S is the interacting two point Schwinger function.
The inverse of the interacting two point function is the difference
of the free one and the proper self-energy )} (see section VI)
S = {sa1 - 2]_1. (VIII.2)

Thus

dw +iwT 1

= (VIII.3)
iw-e(k)-X(k,w,0)
We conclude from (VII.10a) that, in perturbation theory,

: g+l .
k k3 R
MEITLEN, s o) XM e (1+13184 )
J
k<1 ifd=1
< 0(A) when k <3/2 if d =2 (VIII.4).
k <2 idd 23
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Theorem VIII.1

If H(1+!£|)1+€Z(£)H1 < 0(A\) for some € > 0 and (0, |k|=/2mu) = 0 then
for A sufficiently small the limits lim nk o exist and
Ik|+{2mp + =
- e -1
):w( |k|=v2mu,0)
lim nk g™ lim nk & = - 1
|k|=v2mpy - =’ |k|=+V2mp + =’

z2 1= 0(A).

Remark (1) As we shall see the first hypotheses implies that E(g,w) and
all its first derivatives are continuous and uniformly bounded by 0(A).
If the free model is a stable fixed point under the renormalization group
then, by (VIII.4), the hypothesis ought to be fulfilled in two or more
dimensioné. This may never be the case. See [KL2] and [LP, page 222].

On the other hand it will fail marginally in one dimension. This
observation is consistent with [ML] in which the number density of an
exactly soluble one dimensional many fermion system has infinite slope but
no jump at |k| = /55; . In fact direct calculation to second order in the

models considered here yields (for Y2mp = 1)

# & # 3
~ {k.+(k-1) [1+k+2q-2p]} {V(k-pP) V(q-P)-V(g-p) '}
ikw) = A2 :

2w 2m {k0+i[e(p)—e(q)+e(gfq+p)}[e(p)—e(q)+e(1+q—p)]
e(p)e(k+qg-p)>0
e(q) [e(k+qg-p)+e(p)]<0 + regular
So % Zw(g,O) ~ const #n e(k) and

n -~ regular + const ©(e(k)) [1l+const|&n e(_}_c_)l]“1

where © is the Heavyside step function. 1In this case n, is continuous

across the Fermi surface but has infinite slope there.
Remark (2) By (I.2) the free S(k,t,0) is real and invariant under the
reflection k =+ -k. Since the interaction V(k)&(t) is also real and

~

reflection invariant the interacting S(k,T,0) and hence } (k,T,0) have
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these same properties. From this we conclude that

Y(k,w=0,0) = fdr i(g,r.o)

and

9_'~ _ ~
oo Lik,w=0,0) = [dt t¥(k, T,0)

L

are real.

Proof We decompose

S(k,t,0) = 32 M iu-e (k) - Likiw,0)] "
= Il(EIT) + Iz(krt) + I3 (E,T)
where

ikt = [ A ia-paik)] Tt
g = 2n =

lw|<n
Iz(ErT) _ %g eiwt R(k,w) ~

lw]<n®™ [iAw-Be (k)] [iAw-Be (k) -R (k,w)]
I.(k,T) = e
3= 2m =

lwl2n
I, (k7) = I %ﬁ Slwt X(k,w,ol

lwlzn [iw-e (k)] [iw-e(k)-) (k,w,0)]

19 o ——
A=1-7>=L(lkl =J2m,0,0)

|QJ

B=1+ —=— T(lkl = V2mp,0,0)

¥2my

)
I=

R =3 -2 L(kl=/zm, 0,000 - 20— LIkl = Y2mi,0,0) j_@'
K =

8

and n > 0 is a small number to be chosen later. Note that, HIEIZ(E)Hl <

~

implies the continuity of the first derivatives of ) and consequently the
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existence of A, B and R. We still have to show that the integrals

converge. Here the extra € is required

For |k| # Y2mu
lim (k) = lin [ % ™" [inw-pe(k)] T
-0+ ™0+ |w|<n
= f %ﬁ [1‘.1’40.)—13e(_]g)]—1 (since the integrand is Ll)
lwl<n
) dw _—iAw-Be (k)
lwl<n 2™ a%w%+p%e (k)2
__ 1 dw 1
Be(k) |u|¢n 2T a2 5
1+ 2 zw
B%e (k)
cemew f o, &L
wl< n 1+w
Ble(k) |
- _ e 2 -1, A
=~ 2 %9n e(k) T tan (Bie(g)l n)

1 A

. 2 -
As k approachs the Fermi surface - tan (Ble(k)l n}) - 1. Hence,
lim 11(5,0+) = % %K :
|k|-2my *

So we must show that Iztg,0+), I3(5,0+) and 14(k,0+) exist and are
continuous across the Fermi surface.
Now consider 12. It will be shown in Lemma VIII.2 that, for |w| and

le(k)| sufficiently small, |R(k,w)| s C[|w|1+e 1+¢

+ le(k) 17 1.
Consequently
|idw-Be(k) | 2 C' [|wl+le(k)])
liAw-Be (k) -R(k,w) | 2 C' [lul+|e(k) |

and the integrand
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iwT
e

R(k,w)
2" (ia-Be (k)] [iAw-Be (k)R (k,w)]
¢ JulMCle | M*E

<
c'? [lul+le(k) 112

We write

= f + ]
lwl<n  le(k)I<lwl<n lwl<min[n, le(k) |]

In the first region, the integrand is bounded by 2C2 ll—e , which is
¢ lwl
Ll. Thus, by the Lebesgue dominated convergence theorem, the first
integral is continuous across e(k) = 0. The second integral is bounded by
l+e
2le(k) | = 2 e (k) | which goes to zero as e{k) - 0.
' 2
c le(k) |
Now consider I3.
Lk = [, 2™ uek) T - [ e livem) T
1 2w 2
R lwl<n
The second term has already been dealt with (c.f. I1 with A =B = 1) and
obeys
4 s dw iwt,_. -1 _ ., 4
lim lim [ oy € lw-e(k)] © = 5.

lkI*,EE; 2 ™0+ |w|<n

The first integral is conditionally convergent and may be evaluated

explicitly by contour integration. For T > 0
. _ _ 1 e(k)<0
i dw oWt [iw-e (k) ] 1. . e(k)t {

R; 2m

0 e(k)>0
The two jumps cancel.

Finally we consider I4. Observe that
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liw-e(k) | 2 |w]

liw-e(k)-Y| 2 |w-Im } (k,w,0) |

2 lwl - lIm(X(k,w,0)-}(k,0,0)]]
2 lul - lolll & Tikw,0l
aw ' ’ o
1

z 5 lwl
if A is sufficiently small since le[Z(g,t,c)Hl < 0(A). Therefore the
. . 0(A) .
integrand is bounded by 1 9 By the Lebesgue dominated convergence

= U)‘

2

theorem I4 is continuous.

Once Lemma VIII.2 is established the proof of Theorem VIII.1 will be

complete.
l+e
Lemma VIII.2. Let f = f(|x|,t). If [[(1+[E]) le <cC
[E(Ikl w) - f(kF,O} - fw(kF,O)w - f|;|(kp'°’[|5|‘kF]i
< 2MCc o™+ 1kl-k 1O
Proof
f£(lkl,w) - f(kF.O) - fw(kF,O)w - flkl(kFIU)[lhl—kF]
i(tw-lklx,) ~-ik -ik -ik_x
= fddﬁdr[e . e F1 - itwe 1 + ixl[lgl—kF]e ¥ 1}f(§,t)
But
3 1
|gt™ — g - ial £ = a2
2
and
Ie1a -1 - ial s Iela - 1] + |a] < 2]al
so

ia

5 - 1~ ja] = [% a* 1= a1 ¥ = z2jaj e,
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Applying this with a = Tw - [Il_:lw-kF]x1 we arrive at

< J‘dd>_<dr 2|-cw—[ig|—kF]x1|1+elf(§,r)I

1l+e 1+e 1l+e l+e
| [l Ix. |

1 11£(x,7) ]

< 21+€fdd§d'r[|w + ||_]S|—kFi

1l+e

s 271wl + | 1kl-k 11

Remark (3) Under the hypotheses of the Theorem the zero set of

iw - e(k) - Y(k,w,0) is precisely w = 0, |k| = Y2my provided A is

sufficiently small. 1In the course of proving Theorem VIII.1 we showed

that for all w, k |Im[iw-)(k,w,0]] 2 l%l. Now consider w = 0. There is

precisely one zero for small |e(k)| because

aihclzetg)-zts.o,on 4o,
b | k|=¥2mu

There can be no zeroes for |e(k)| large because liZ(g,O,c)Il°° < 0(A).
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