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Abstract

An arbitrary quantum system in a KMS state on a C*- (or W*-) algebra is cou-

pled to the Bose field in thermal equilibrium. The treated interaction is of the form
m

> (Bx ® a(fi) + B} ® a*(fi)), where the By, are elements of the C*- (or W*-) algebra
E

, a1_1<1f1 the a(fi), a*(fx) are (smeared) annihilation and creation operators of the bosons.
Perturbation theoretical methods are used in the GNS-representation of the compos-
ite non-interacting system. With some additional conditions for the boson field and if
the C*—algebra is finite dimensional, the perturbed equilibrium state is shown to be
Fock-normal and the associated density operator is calculated by a Dyson expansion
in Fock space.

1 Introduction

The basic idea of a perturbation expansion in the GNS-representation is easily understood
in the finite dimensional case. Let H be a finite dimensional Hilbert space and K and P
two selfadjoint operators on H. For some § > 0 (the inverse temperature) let us define by

tr(e=PUK+F))

tr(e= PR X)

w(X) = W

and wP(X) =
two Gibbs equilibrium states on £(H). Because of the trace property one can express the
perturbed state w? in terms of the state w

w(egxe-g(K+P)Xe~§(K+P)e§K) 9
(e AR TP PR : (

WP(X) =

By an usual Dyson expansion one gets

e~ g(K-I-P)e gK Core?

= 1+ Z(—l)”/ dty - -dt, e 1K pe-(z-t)Kp  o=(ta~tn-1)K p otnK
= 0Kt < Stn<

REY
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If (Il,, H,, Q) and (I 2, Hyr, Q,») denote the associated GNS-representations, because
of equation (1) we may choose §,» such that

IL (e~ +PlesK)q,,

e = “Hw(e_g(]{+P)e§I\’)Qw”.

In this way one can deduce an expansion of the cyclic vector €, of the perturbed state
wP. The same result is obtained by renormalizing the operator II, ().

Of course in the finite dimensional case the series are well defined and uniformly con-
vergent. In the much more general case of a C*— or W*-algebra, in which the perturbation
operator P is an arbitrary element of the algebra, one needs the KMS property of the un-
perturbed state w and the renormalized unperturbed hamiltonian to get the necessary
estimations (cf. [4, Theorem 5.4.4]).

In the present work are considered unbounded perturbation operators, where the un-
boundedness arises from the annihilation and creation operators of the bosons. More
precisely, a quantum system, given by a KMS state on a C*— or W*—-algebra A, is coupled
to a boson field system, described by a quasi-free gauge-invariant KMS state on the Weyl
algebra W(F) not including condensation phenomena, and by the interaction

P = Y (Beoalf) + Biog(h) @)
k=1

where m is finite, the By are elements of .A and the a,(fi), a;(fx) are annihilation and cre-
ation operators associated with the GNS-representation of the boson state. The main part
of this paper is devoted to the convergence of the corresponding perturbation expansion
of the cyclic vector.

As far as we know, there exists no rigorous result for this general class of models.
However, the special case of the spin-boson model (A := M; the 2 x 2-matices, E := {f €
L2R) | S u—%’:—fﬁdk < o0}, m=1and By = B}) is discussed in [7] using methods different
from ours.

The results of the present investigation apply to a very wide class of models. Of special
interest are material lattice systems coupled to a radiation field (Bose system) in thermal
equilibrium. The boson spectrum may be choosen to be discrete or continuous. The
testfunctions f in the interaction operator P (cf. (2)) represent the coupling constants to
the different modes of the radiation field. If the boson spectrum is continuous the f; can
have some kind of singular infrared behaviour (for more details, see Section 2), which may
lead to some interesting phenomena. With the present perturbation theoretical methods a
treatment of the temperature states of the spin-boson model (a two-level atom interacting
with the radiation field) is done in [10]. Further applications we have in mind are the Dicke
model and the Josephson junction weakly coupled to the microwave radiation, where both
the lattice system and the boson field are taken in the infinite volume limit. Observe
that in the thermodynamic limit of the material system the Bj should remain bounded.
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This kind of limit behaviour of the B; is then a kind of weak coupling. In an extensive
coupling the perturbation expansion would not converge and would leave the equilibrium
representation of the free system.

In Section 2 the considered class of boson fields is introduced, which in Section 3
are coupled to the KMS quantum systems. In [8] a restricted class of models has been
discussed. There, an equilibrium state of the interacting system has been defined by
a density operator in Fock space, for which the trace-class property was derived by a
Dyson expansion also with the perturbation term P but in the Fock representation. The
connection of this Fock-normal temperature state and the one of Section 3 in the GNS-
representation is given in Section 4. In Section 5 all the proofs are done, which generalizes
arguments in the proof of [4, Theorem 5.4.4] and some of [2].

2 The Bose System

Let us consider the Weyl algebra W(E) over the complex pre-Hilbert space E, generated
by Weyl operators W(f), f € E [4, p. 20]. Let S > 0 be a selfadjoint operator on the
completion E of E, not having zero as its eigenvalue and satisfying for some 8 > 0 (the
inverse temperature)

. 1
eS(E) C E VteR and E C D(TE), (3)
where T3 1= e #5 (11 — e~P% )—1. We define the boson equilibrium state w, on W(E) by
1,0 101 |2 |
wW(f) = ewd-7I0F - 3|Ths| ¢ VreE. @

wp is gauge-invariant and quasi-free. The field, annihilation and creation operators corre-
sponding to the GNS-representation (IIy,H, ) of w, are denoted by ®4(f), as(f) and
a;(f), respectively, where f € E (see e.g. [4, p. 25]).

For each t € R there is a *~automorphism 7{ on W(E) (Bogoliubov transformation),
such that 8(W(f)) = W(e*Sf) Vf € E. Of course 78 o7 = tb,, and wy 0 7¥ = w; for
all s, € IR. Consequently, by the uniqueness of the GNS-representation up to unitary
equivalence [3, Corollary 2.3.17] there exist unitary operators U; € L(H;), such that
My (r2(Y)) = UL (Y)UF and U; Q = 4. One easily deduces that (Ut),cRr 18 a strongly-
continuous unitary group whose infinitesimal generator we denote by G, that is U, = e#Gs.
Clearly G} is renormalized: G, Q, = 0.

In the GNS-representation of wy, we set My := (IL(W(E))" (" denotes the bicommu-
tant) for the associated von Neumann algebra and extend w, and ¥ to M, by setting
wp(Y) 1= (Q, Y and 72(Y) := U, YU} for each Y € M. The extended wy is a (77, 8)—
KMS state on My. In Section 3 our interest only concerns wy considered as a state on Mj.

Now let us take a look on the testfunctions fi, ¥ € {1,...,m}, appearing in the
interaction operator P (cf. the equations (2) and (6)). By (3) and [12, Theorem 4], E is



142 Honegger H.P.A.

1
a core of T; and hence w; (regarded as a state on W(E)) can be canonically extended
1 1
. to a state on W(D(Ty)) fulfilling (4) for each f € D(Tj) and having the same GNS-
representation (cf. [9]). Hence the operators ®;(f), as(f) and a;(f) are also well defined for
1
each f € D(T; ) and in the perturbation operator P we can take the coupling testfunctions

i ]
fr as elements from D(Tg ). Indeed, as is seen from the estimations in Section 5, fi €

D(Tﬂ% ) is the largest possible choice for the coupling modes fx. This choice allows some
kind of singular infrared behaviour of the coupling constants fi, which will be explained
in the physically relevant example of a radiation field. There one has § := v/—A with
the Laplacian A in the whole euclidean space IR™. Since 'D(Tﬁ%) = D(.S'_%) for 8 > 0,

~ 2
[ dp < w0 (@
denotes the Fourier transform of g € LZ(IR™)), which characterizes the admissible infrared

1
in momentum space the condition f; € D(T;) is equivalent to

behaviour of the coupling contants ﬁ(p) But this condition includes e.g. the infrared

-~ 2
divergence [ Jf';—g),)—l— dp = o0, which may give rise to some infrared collective phenomena,
an example of which is given in 1], where the chirality of molecules is discussed.

3 The Interacting System in Thermal Equilibrium

Let 8 > 0 be the inverse temperature and w, a (7%,3)-KMS state of the C*~ or W*-
dynamical system (A,7%). w, is assumed to be normal in the W*—case. Denote by the
same symbols the extensions of w, and 7° to the weak closure M, := (II;(.A))"” in the
GNS-representation (Il,,Hg, Q) of ws. Then wy(X) = (Qy, X Q) is a (7%, 5)-KMS state
on M, (see [3, Theorem 2.4.24] and [4, Corollary 5.3.4]). Since w, is T%-invariant, by the
same arguments as in Section 2 there exists a selfadjoint operator A, in ‘H, such that

ARy = 0 and THX) = etla)Xe e VieR VX € M, .

Now we couple this general KMS system to the boson field of Section 2. The free
hamiltonian of the composite system is given in the tensor product Hilbert space H,Q@H; by

K = A1+ 118G, (5)

and the interaction operator is of the form

m

P = Y (Bioal) + Biogf) (6)

k=1

1
where B1,...,Bm € Mg and fi,..., fm € D(T3) and m € IN.

The temperature state w of the total non-interacting system is given with £ := Q,®,
by

W(Z) = wa®wp(Z2) = (W@, ZWRW) = (2,290) VZEMBM,.
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For calculating the perturbed equilibrium state w? we have to perform a perturbation
expansion of { with the operator in (6). Despite the unboundedness of P this expansion
is convergent, which is the main result of this work.

Theorem 3.1 In the above situation, the interacting hamiltonian H := K + P 1is essen-
tially selfadjoint. Further, Q € D(e™ H ) and the perturbation expansion

O = e 2HQ = e~3HSKQ —
[e0]
= Q.+ ) (—1)”/ dty---dt, e 1K pe(2-t)Kp ... o~(tn-t-1)K p q
n=1 0<t; <<t < 8

18 converging with respect to the norm of H, ® Hj.

Proof: Using the explicite GNS-representation of w; as stated in the beginning of Sec-
tion 5, the assertion follows from Theorem 5.2(i) and Theorem 5.4. O

Now we define the temperature state w? of the interacting system by
WP(Z) = ”91”2 QP Z ) VZ e MBM, . (7)

Of course w? also can be regarded as a state on the C*-algebra A @min W(E), the injective

C*-tensor product. We mention that M,®M, is the weak closure of the representation
II, ® II4(.A @min W(E)). In a subsequent work the KMS property of w? will be derived.

4 The Finite Dimensional Case

In this section we consider some special cases of the KMS system and the boson field.

As the (7%, 3)-KMS system of Section 3 we consider a finite quantum system given on
the finite dimensional Hilbert space H with the selfadjoint operator A € L(H) by

(X)) = éhxe A x) = YEORIAA) v pgy 2 4L
tr(exp{—-BA})
The operator A, of Section 3 then is given by the renormalization of II,(A) using the
modular conjugation J, of (M,,Q,): Ag = I,(A)— J,II,(A)J, (see [3, Section 2.5]). One
has II,(7#(X)) = e?4all,(X) e~ 4 t ¢ R, X € L(H). Of course M, = II,(L(H)).

Our boson system we restrict to the one in the recent publication [8]: The one-boson
hamiltonian S is a strictly positive and selfadjoint operator in the one-particle Hilbert
space E := K, such that e=#5 is trace-class. If G := dI'(§) denotes its second quantization
in the Fock space F,(K), it follows that e~#C is trace-class on F4(K) and the boson
equilibrium state w, of formula (4) is given in the Fock representation IIx of W(K) by

_ tr(Ilx(Y) exp{-BG})
wy(Y) = tf(exp{_ 3G VY € W(K) .
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It is well known that in this case the Fock representation Il+ and the GNS-represen-
tation IT; of W(K) are quasi-equivalent. That is, there exists a unique W*~isomorphism
a from (ITx(W(K)))" = L(F+(K)) onto M, such that a(IIx(Y)) = II(Y) VY € W(K).
Since ILr(12(Y)) = *CI£(Y)e *C, in some kind G, is the renormalized representation
of G under a.

With the isomorphism o the von Neumann algebras L(H)®L(F+(K)) = LIH®F+(K))
and M,®M, are *—isomorphic via the W*-isomorphism v = [[,®a.

In [8] the equilibrium state &P of the interacting system is directly calculated in the
Hilbert space H @ F4(K): Let be

—

K = Al + 1®G
P = Y (Beealf) + B @ a(5) |
k=1

where B;,...,Bpn € L(H), fi,...sfm € 'D(egs) and the a(fx), a*(fi) are the usual Fock

annihilation and creation operators. Then &P is defined by

tr(Z exp{—ﬂ(ff+ }3)})
tr(exp{-ﬁ(ﬁ;+ 13)})

G*(Z) = VZ € L(H® Fi(K)) .

If By := I,(By) one may regard P of equation (6) as the representation of P under 7
and K of equation (5) as the renormalized representation of K (renormalized in the sense
that K = 0). Thus one expects the agreement of @” and wP (cf. formula (7)) via 7. That
this is indeed the case is the contents of the following theorem, whose proof is given at the
end of Section 5.

Theorem 4.1 Let all be as introduced above in this section. Then it follows

@Poy = wP.

5 Perturbation Expansions

In this section in the GNS-representation of w, ® w, we calculate the perturbation of the
cyclic vector and afterwards we prove Theorem 4.1. But first we establish some notations.

The Fock space over the Hilbert space K is given by F4(K) = @ P4 (®,K) with the
symmetrisation operator IP, and the n—fold tensor product ®,X of IC with itself. For the

algebraic tensor product we write ®. The Fock field, annihilation and creation operators
are denoted by ®(f), a(f) = a~(f) and a*(f) = a*(f) (f € K) respectively, and by Qr
the Fock vacuum. Moreover a®(f) := 1l. Also we use Segal’s notation dI'(R) for the second
quantization of the selfadjoint operator R in K.
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For the proof of Theorem 3.1 we need the explicite GNS-representation of wp. It is
given with an arbitrary antilinear involution J, satisfying (J f,Jg) = (g, f) Vf,g € E by

Hy = Fr(E)® F(V), whereV = JT;(E),
W = Qr@or,
WW(f) = Wr(I+Ts)}f) @ We(JTS)) VfEE or € D(T]),
where the Wx(f) are the usual Fock-Weyl operators. Especially we choose J such that
JetS = e=#*5J VYt ¢ R. Then Gy = G® 1 — 1® G with G = dT'(S) (remark, Fy (V) is
a reducing subspaces for GG). For the field, annihilation and creation operators associated

1
with wy one gets for each f € D(T3)

o(f) = o(I+Tp)4f) @1+ 18T )
a(f) = a(1+Tp)f)@ 1+ 1®a*(JTSS)
G(f) = (U+Tp)iN) @1+ 18 a(JTES).

Lemma 5.1 Let H and K be two Hilbert spaces. Let D := [ D(I® oV @ o) C
a>l

HQ F+(K)® Fi(K), where N is the number operator in Fock space. For C € L(H), the
multiindez v = (v1,...,v,) withv; € {—,+} and f = (f1,...,fa), 9 = (91,-..,9n) with
fi»g; € K define the operator

n

Q7r = Co [ (e*(fi)® 21+ 1 a*(gs)) -
k=1

It follows that Qi;’ is welldefined on D with QJC.:;’(D) C D and for all @, > 1 and all
¥ € D we have the estimations

[(102¥ @ 8") @y | < lcl (2v0)" vat | (20 (vEa)" @ (v28)") ¥] .
where v i= wax{Lfull- -, Il lgtll .- lgnl} and 8 := max{a, 8},

Moreover, if s - lim Cyp, = C in L(H) and Jim | = fell = 0 and Jim llg7* — gxll =0
for all k, then

Jim |(28 oV ®8Y) (QGaime - @52) 9| = 0 vweD. (8)

Proof: Let 3", &; ® 7; be a finite sum, such that &; € 'D(N%) and n; € F4(K) with n; L #;
for ¢ # j. Using the estimation (see e.g. [4, p. 9])

la* (Dl < Al v+ DEF| Ve e DNE) (9)
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we obtain
(e*(fH)®1) Z‘;& ® m 2 = 21: laE(£)eN lmill?
< AP0V + ke ik
= ||fu’{ (+mien)aen 2
Consequently | t

le*Hen el < IAI|(V+DFen)y| VeeDWioF(K), (10)

and in an analogous way one deduces

l@ea* (Ml < MA@ +12)¢| WeF K oDW. A1)

By multiplying out we get for the multiindex v = (11,...,,) exactly 2" multiindices
(1, M) () = (B1y -+ s lny My e v oy An) With A\ = 0if g € {—,+} and pr = 0if A\x € {—,+},
such that

I[I(a*(fe1+10a™(@w) = > I (a“"(fk) ®aM(g) . (12)
k=1 (1) (v) k=1
Consider now a fixed but arbitrary multiindex (z,A)(v). If #M denotes the cardinality of
the set M, let us define [ := [(, 5y := #{ur | px € {—,+}, k€ {1,...,n}}. Thenn-1I=

#{0 | M € {=,+}, k€ {1,...,n}}. Let Fn(K) := éolP+(®,,IC). If€ € Fin(K)® Fn(K)

for some m € IN, then £ = f: & ; with & ; € P4 (®:K) © IP4(®;K) and for i # ¢ or
.0

1,7=

j # j' we have the orthogonality of the vectors (aN ®ﬁN) ﬁ (a‘“"(fk) ® a’\"(gk)) &

and (QN ® ﬁN) kﬁl (a"“‘(fk) ® a"" (gk)) .f,'r’jf. Therefore

2

(o & %) TT (a*(£0) & ™ (g0)) €

k=1

m T n 2
= ¥, (aN ®BN) (H a**(fr) @ [1 “A"(gk)) §ij
i,j=0 k=1 k=1
m 14 e ?
< 3 oD gAn-l (H a**(fi) ® 11) (11 ® ] a""(gk)) &
ij=0 k=1 k=1
m = ’
(150) 3 QD GAAR=D(G 4 1) (i 4 1) ( 11 |lfk||2) (]1® HaAk(gk))fi,i
"'J.=0 er{_’+} k=1
DS gDy g 1) ( I1 “f"“2) )

1,7=0 ux€{—,+}
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x G+n-0-(G+1) ( II |ng||2) lg:ll?

A€{—+}
< (Vi) (vag) l!(n—n!( Il ||fku2)( Il llgkif) x
x€{—+} A€{—,+}
x z=0( o) (v25)” Il
= (v2a)" (\/iﬁ)z("—”l!(n—l)!( II mn?)( II ugkn"‘) x
nx€{—,+} Ae{=-+}
2
X ((\/ia)NtZo(\@ﬂ)N)C“ ) (13)

where we have used the inequalities (10) and (11) and in (x) the simple estimation
: P
(n+k)---(n+1) = -(%'.'-'—kk-.)—k' ("tF)k! < 2ntkE!. Now let ¥ = Y- ¢, ® & such that
r=0
¢r € H with ¢, L ¢ for r # v’ and & € Fir(K) © Frn(K). We get
n 2
‘(11 ® ol @ a") (C ® [T (e (f) @ a""(gk))) ¥

k=1

2

= Il(c 1 1) (1o @ ﬂ”) (11 ® f[ a** (fx) ® f[ a*"(gk)) ¥
k=1 k=1

2

(0" (T e+ms [T van) &
r=0 k=1 k=1

< ol (v2a)" (vap) t!(n—z)s( II nmﬁ)( I1 ||gk||2) x
pr€{—+} Ak€{-+}

X H (11 @ (via)" ® (\/iﬂ)N) ¢H2

Now use (12). Because 1 ® (\/ﬁa)N ® (\/iﬁ)N is closed and | H O Fn(K)© F,.(K)

ICIE S 16

IA

melN
is a core for 1 ® (\/5 a)N ® (\/5 ﬂ)N, the operator Q?:'; is welldefined on D with
|(ea o) ey v| < lcnzor|(ve (v2a)" o (v25)")
" SDBRVUCER)] (y I1 ”fk")( II ”9k”)(14)
(2, 2)(») k€{—+} M €{—+}

for all 4 € D and all a,8 > 1. This implies Q i “(D) C D. Running through all the 2"
multiindices (u,A)(v) the same number I = [(, ) appears exactly (7) times. Thus, using

)E (HDVTn == v/n! i (’})% < vn! f: (D) = 2n+/n! the stated estimation follows.
1=0 i=0 =0

Let’s prove (8). If ¢ € H and £ € Fir(K) ©® Fin(K), then

[(1e o™ 05") (@fz5m - @7) s ] <
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< (Cm=C)dll

("‘N ® ﬂN) ﬁ (a*(fr)®1+10 o™ (g7)) g” +

=1

k
(O‘N ® ") (a”’(fl) ®1+1®a™(g1)) -

+ licell 3
k=1
(@ - )@ T+ 10 ™ (g — g8)) -

(e (f) @1+ 1@ a™(g)) €

?

which converges to zero because of (13). Thus (8) is valid for all ¥ € H © Frr (K) ® Fir(K)
and all m € IN. Now use the fact that |J H© F.(K)® F(K) is a core for the operator

me

N N
1® (\/ﬁa) ® (\/5 ﬂ) , equation (14) and an §-argument. O

Theorem 5.2 Let H and K be Hilbert spaces and R a selfadjoint operator in K and
dT'(R) =: G the second quantization of R in F4+(K). Let A be a selfadjoint operator in H,
Biy....Bm € L(H) and f1,..., fmsG1s---3s9m € K. Furthermore let

K = AQI@ I+ 1®(G® 1-1®G) and
F = % (B,c ® (a(f,,)@ i1+ 1I® a*(gk)) + By ® (a*(fk) @ I+ 1® a(gk)))
k=1
be operators in H ® Fy(K) ® Fy(K). Moreover let D := (| D(I® oV @ o). It follows:
a2l

(i) The operator H := K + P is essentially selfadjoint. D(D(K) is a core for H.
(ii) Define U; := e*X and fort € IR and i € IR"
FM(@) = U4 PUy_;PUsy_y P+ -Us,_y—4, PU,, .
Then D C D(F™(@)) and B 5 i — F™(¥)y is continuous for each ¥ € D. If
UM = in L _odty [P dty ... [in2d dt, F )y, then

¢ty = U+ Y UMy  VpeD VieR,

n=1
where the series converges in norm. Moreover Ut(n)(D) C D and e (D) C D.
(iii) For each £,n € K we have (I®@ Wx(§) ® Wx(n))(D) C D. Defining (X) =
etX Xe= K gnd tP(X) := etH Xe " for X = P or X € L(H @ F4(K) ® F(K))
one has for each 1y € D and each C € L(H)
1(C® Wx(€) @ Wr(n) ¥
= n(COWr()@Wr(n) v +

+ \2 [ty [t [, (P L[ (P) 7(C © Wr(€) @ W) .

1=0
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Moreover it is for 1 € D
| ()L [ (P), (€ @ Wr(€) @ W(m))].. N1 | <

< @ mbyy VRl |[C] g6 m | (20 @)Y © (25)V)
where b := max{|[Bu ... |Ball}, 7 = max{|lfill,- -, Ifill, Ngall - -, lgnll} and
a6, = 5 Jp (25 maxlill Inl}) "

Proof: For a better survey we first prove the Theorem for m = 1 and later on we consider
the general case. Thuslet P = B® (a(f) @ 1+ 1®a*(g))+ B*® (a*(f) ® 1+ 1 ® a(g))-
We set Bt := B* and B~ := B.

(i) and (ii). Using the well known relation e#Ca*(f)e "G = a*(eRf) and setting
Bf := e 'AB*e'4 we get by multiplying out 2" multiindices v = (vy,...,v,) with
vg € {—,+} such that

FM@) = 4,3 (ﬁ B;’:) ® (f[ (e R o1+ 18 a-”k(e“kRg))) . (15)
v \k=1 k=1

From Lemma 5.1 and (]l Qo ® ﬁN) U = U (11 ®a ® ﬁN) follows the continuity of
R™ 3+~ (]l ®a ® ,BN) F,(n)(f')gb and the estimation

||(11 ® o™ @ gV )F}”’(i‘)«p” < (25)|B|lv¢) V! (11 ® (V2 a)N ® (V2 H)N)zb”,(lﬁ)

Thus U;" (") is well defined on D and because of ft _odt1 ftz,,o dy... [,"= 3 dt, ‘! one
obtains the estimation

(22 1Bl17614)" I

(20 0 a7)uy v

o (v2a)" o (vs)" )], an

from which Ut(n)(D) C D follows. Since Z 7— < oo for k > 0 for ¥ € D the expression

n=1

Vi = Upp + E U ") ¥ is well defined and by similar arguments as above we conclude

n=1
Vi(D) C D Now calculating with convergent power series, one easily shows that U; ()™ 2
v and z Ry = Ul vs,t € R. Consequently (Vop, Vith) = (¢, Vi) Yoo, 9 €
D. Since Vb C 1l each V; extends to an unitary. Using (17) with @ = # = 1 and an
s-argument it is immediate to check that (V;) «IR is a strongly continuous unitary group.
Now similar to [5, p. 69] one obtains from (17) that “ LVeyp — ) — H(Uep — ¥) — 1P¢" —0
for t — 0 for each ¥ € D. If V; =: e"H_ then the above calculation implies Hy =
(K+P)p V¢ € D(K)ND and D(H)\D = D(K) D. Since M := Ej éna P, (OrD(R))
is a core for G, D(A)O M @ M C D is a core for K. Beca.usemoﬁf1 J;Z?D(H)QD) -
D(H)N DVt € R (i) follows from [11, Theorem VIII.10].

149
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k

(iii) Because of (@(E) RN14+1® <I>(f']))Ic = 9% T (H (a"‘(f) I+1Q a“”‘(n))) we

=1
get with Lemma 5.1 for each v» € D

” (18a ") (18 (2 @1+18 *I’(ﬂ)))kzb“

< @79)VHE (18 (VEe)¥ @ (V2B)N) ¥,
where ¥ := max{||£||,||n]|}- Therefore we have (1® Wx(§) ® Wx(n))(D) C D. Further
for all s1,...,8,t,t1,...,tn €ER; l,n € IN and ¢ € D we get
|(18 0™ @ B8Y) 7 (P) - ru(Pr(C @ Wir(€) ® Wir(m))ras(P) -+ 70, (P)Y
2 (25 1BY15)’ \/l_'“ (11@ (v2a)" @ (\@ﬂ)N) X
x (€406 4) & Wr(eRE) © Wi(e) i (P) 70, ()]
- (2% IIB[IM)’ \/l_'" ((e"‘ACe""A) 1 11) (11 ® (\/§a)N ® (\/iﬂ)N) X

x (18 W) ® (e ) 7,(P)+-1i, (P

0o 1

< el (25 1Bl1v8) VA (E -1

) [(16 e & (281" ra(P)--- 7 (P

7
o0 -
2

(16)

< lcli(2? 11Bllv6)’ (2

)(22 1Bllv6)"Val|(1® (22a)™ @ (258)V) |

< el (28 1B176)™ i+t e (10 @)Y @ 238)) ¥ .
If we calculate the commutators in [7y,(P),[... [, (P),7:(C ® Wx(€) @ Wx(n))]...]] we
get 2" summands of the form 7y, (P)-- -7, (P)7:(C @ Wx(£) ® Wx(n))7s,,,(P) - T (P,
where {t1,...,t,} = {s1,...,8,} and the stated estimation follows. Calculating with

convergent power series one easily checks that

HCOWHO W) = 3 3 U™ (CoWx(e)® We(n) URy .
n=0k=0

By induction one can show, that for all ¢ € IR one gets

Sur(cewHew) By =
k=0

fm‘“f_ f it (700 (P), [ [7,(P), (C @ W(F) @ W())].. ]}

Now let us turn to the generalization for m > 1. By multiplying out we get in (15)

a sum with (2m)" summands with the form as in Lemma 5.1 and the statements follow. O

For a > 0 and n € IN we define
DM = {F=(21,..,2) €EC" |0 < S(21) < F(22) < ... < ¥(2n) < @} .
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The closure of D& is denoted by D{V.

Lemma 5.3 Let K be a Hilbert space, R > 0 a selfadjoint operator in K, dT'(R) := G its
second quantization. It follows for each § > 0 :

(i) For all f = (f1,...,fn) and p = (f1,...,4n) with f; € K and p; € {—,0,+} the
maps

F}‘:D(é") s Fo(K), = (21,0 s 20) —

eiz1 Ga,ul(fl) ei(2.2—21 )Ga,uz (fZ) ei(z;; —z2 )Ga,u,g (f3) . ei(z,,—z,...; )Gaun(fn) e—iznG Q].-

are holomorphic on Dg‘) and strongly continuous on D(;).
2

2

(ii) For all g = (g1,...,94) and A = (A,..., M) with g; € D(e3R) and A; € {-,0,+}
the maps

G): D‘é‘) s Fo(K), T= (21, ..y 20) —

e—z'zl GaAl (91) e—-i(22 -z )GaA2 (92) . e—i(zn-—zn_l )Ga)\n (gn) eiz,,G Q}-

are holomorphic on D(én) and strongly continuous on D(E").
2

2

If #M denotes the cardinality of the set M for all Z € DS;) we have the following estima-
g 2
tions

"F;‘(?T)H < \/l_'( 11 ||fk“) where 1:= #{pr | px € {—,+}, k=1,...,n},

pr€{~,+}

joxal < v ( T

egng”) where m = #{ e | \x € {—,+}, k=1,...,n}.
Ape{-.+}

Proof: For a € R let be U, := {z € C | §(2) > a}.

(i) It is [|e**%|| = 1 Vz € Tp and e** leaves P (®,K) invariant. Moreover £e**C¢ =
iGe'*C¢ ¥z € Uy Yé € F4(K). Thus, using (9) one easily checks the assumptions of [6,
Lemma 3.6] and F} is partial differentiable. Now use Hartogs’ theorem (see e.g. [13,

p.65]). The strong continuity of Z € Dg") — F}‘ (?) follows immediately from that of
— g 2
z € Up — €Y and (9).
(ii) For f € D(e%R) and = € € with 3(z) € [0, ] one has e**Ca*(f)e*C = a*(e~ 2R f)
and e~**%q( f) e"*C = a(e~*R f). Consequently

LA A . An
G;(E) - a/\] (e*:zllel) a)«z (e—uz?Rgz) s a/\n(e—iz.n Rgn) Q}_ , (18)

where for 2 € C is defined 2¥ == Zif v = —, 2¥ :==0if v = 0 and 2¥ := zif v = +. But
LA : An
the vector a)"‘+1(e"”ki‘1ung+1) .- -a)‘"(e“*"3 Rgn) Qr has the form P4 (& ® -++ @ &) for
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somel<n—k+1and § € K. We get

. . A .
aAk (e_tzkkng) a’\k+1 (e“’zk-t-:-l ng'l'l) cen a’\ﬂ (e_'erlnRgn) Qf o

¥ iy o i .
WZ (e Rg ENPL(6H1® ®&E_1Q&1®-+- Q&) if A=-—
=

Pi6&i®--®&) if A=0
VI TP (e R )06 ® - @ &) if A=+ .

Since fe™Rf = iRe™Rf Vuw € U_g Vf € D(e5R) the kth partial derivative 52-G)(%)
2

exists and by Hartogs’ theorem Gs is holomorphic on D(‘Z:)' The strong continuity of G;

on D(En) follows from (18) with (9). The stated estimations are immediate by use of (9).
2
O

Theorem 5.4 Let H and K be Hilbert spaces. Let R > 0 be a selfadjoint operator in
K and G := dT'(R) its second gquantization in F(K). Further let (Mg, 1) be a W*-
dynamical system acting on H such that 78(X) := e X e~"*4 with the selfadjoint operator
A inH, and Q, € H a normalized cyclic vector with AQ, = 0, such that the associated
vector state wo(X) = (e, X Q) is a (7°,8)-KMS state on M, for some B > 0. For
By,...,B, € M, and f1,...,fm € K and g1,...,9m € 'D(e'zgR) let

K = AQI®@1I+ I®(G®1 - I®G) and

m

P =3 (Bk ® (a(fi)® 1+ 1@ a*(x)) + Bi ® (a"(fi) ® U+ 1® a(yk))) ;
k=1

be operators in H @ F4(K) ® F4(K). Moreover for Z = (z1,...,2,) € C" let

'pn(;) - eiz;KPei(zz—n)KP eilm—2)K p . gilzn—m-1)K p g—izaK

The following statements are valid:

(i) Q:= Q0 ® 0 ®Ur € D(Pa()) for all Z € DY) and all n € IN. Moreover the
2

function 7 € D(En) — Pn(2)Q is holomorphic on D(En) and strongly continuous and
2 2

bounded on Dgl) with
2

sup{ [P0 | 7€ D} < @mbly +)" Vi,

where b := max{||Bi||,...,||Ball}, ¥ := max{||A]|,--.,||fll} and
7’ = ma.x{||e2Rgl||, cee ,”ezRgnH}-

(i) R € ’D(e‘gH), where H := K + P. The vector QF := e~ 7HQ s given by the strongly
convergent perturbation expansion

QP = Q + Z (_1)n/ dtl"'dtn Pn(itl,...,itn)ﬂ.

n=l 0<t1<<tn <4
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Proof: For a better survey we prove this theorem in the case m = 1. The generalization
for m > 1 is similar to Theorem 5.2. Thuslet P = B® (a(f)®@ 1+ 1 ® a*(g)) + B* ®
(e*(f)® 1+ 1®a(g)). Again we set Bt := B* and B~ := B.
; n . "
(i) For v = (v1,...,v,) with v € {—,+} it is Qg € 'D(( I1 e‘(zk‘zk-l)AB"k) e""’“‘)
k=1

for each Z € D(n) (see by [2, §3]). Define H(2) := (1'[ eilzk= ”"“I)AB‘*) —tnd o with
20 := 0. By multlplymg out we first get 2"” multiindices » and then for each v we get 2"
multiindices (u,A)(v) (compare the proof of Lemma 5.1) such that with the notation of

Lemma 5.3
Pa(DQ = 3 D Hp(HOF/(HRGHD. (19)
Yo ()W)
Let I := l(, ) as in the proof of Lemma 5.1. Running for fixed » through all the 2"

multiindices (u,A)(v) the same number I = [, y) appears exactly (7) times and by [2, §3]
(compare also [4, Theorem 5.4.4]) and Lemma 5.3 one gets

(%}()HE(Z)@F}‘(?)@G;(E) < nHB(z-')n(Z |Fr@| o)
< 1BIM S VA -0t e8]
(M) (v)
= ||B||"f‘_, (’}) Vi =D 71 e5Re]"
< 1BI" (Il£1 + [e5R)" V!

where at the last inequality sign we have used !!(n — I)! < n!. Because in (19) the sum )
v

has 2" summands, we finally get

P02l < (211BI(
Now (i) follows from [2, §3], Lemma 5.3 and WeierstraB’ theorem [13, p.18].
(i) Let D := {z € €| #(2) €]0,1[} and Ey, := {T€R™ |0 <1 < -+ < o < §}. We have
izl € D‘“’ Vz € DVi€ E, and izt € D‘") Vz € D Vi e E,. From (i) it follows, that the

2Rg|))" vl vze DY) .
2

functzon t € E, — Pp(izt) Q is strongly contmuous for each z € D with suB "'P (izt) Q"
¢"v/n! for some ¢ > 0. By (i) the function
D3z — QP(z) := Q + Y (—2) /_Pn(izaﬂ dt
n=1 En

is well defined, it is holomorphic on D and strongly continuous on D. Now using e*KQ = Q
and a suitable substitution and from Theorem 5.2 follows

e SHQ = QP(is) VseR. (20)
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Let ¢ € ﬁ R(E(] — n,n])) =: N, where E(.) is the spectral measure of H and R(Q)
denotes tgzlra,nge of the operator Q. Then ¢ is an entire analytic vector for H. Therefore
the function f, : D — C,z — (e"EgH @, ) — (,§2(2)) is holomorphic on D and contin-
uous on D. By (20) we have f,(z) = 0 for all z € € with R(z) = 0. From the Edge of
the Wedge Theorem and the continuity of f, we conclude f, = 0 on D. Consequently
(e "zéH(,a,Q) = {(p,0?(2)) Vz € D. Because N is a core for each e, w € C, we have
(e _ZEH%Q) = (p,QP(z)) for all p € 'D(e—Eng). Therefore one obtains € D(e_ng)

and QP(2) = e=*2HQ) for each z € D, especially Q7 := QF(1) = e~ 5HQ. O

Proof of Theorem 4.1: For a better survey the proof is given for m = 1. The
generalization for m > 1is immediate. Thus let P = ﬁ@a(f)-f—ﬁ*@a*(f) with f = D(egs)
and set B~ := B and Bt := B*. From [8, Theorem 4.2] follows e~ §R+P) — Z U™ with

n=0

U(O)ze_gﬁ— ‘EA@:e %G and

v = (-1 B DY ( (H e_t"zﬁ”"et"z) i g (H a’* (e_""t"sf)) _EG)
v k=1
: T

where the sum ) runs over 2" multiindizes » = (vq,...,¥,) with vy € {—,+}. Using

Ha(e"’ZXe""z) = e'*4e[[,(X)e "4 ¥z € C VX € L(H), the relation a}(e~?*"Sf) =
e "Goa)(f)e™® ¥r € IR and A € {—,+}, [8, Corollary 3.3] and a suitable substitution,
one easily deduces

(U0 (Co (W) UM) =

- tr(e*ﬂ’?) <(—1)m iy T Pm(i9)0, e @ I(C@W)(-1)" [, AP, () Q),

2

for all C € L(H), W € W(K), Efgm) from [8, Theorem 4.2] and P,, from Theorem 5.4.
Consequently by these theorems ?

tr(e'ﬁ(ﬁ:"'ﬁ) (co nf(W))) - tr(e-ﬁf\" ) (@7, 1L, ® TH(C ® W) Q7).

Especially for C = 1 and W = 1 one gets tr(e“ﬁ(ﬁ""g)) = tr(e‘ﬁﬁ) 1927||%. Now extend
to all of L(H ® F4(K)) and the theorem is proved. m]

Acknowledgements

The author is indebted to Prof. Dr. A. Rieckers for useful discussions and is grateful to
the Deutsche Forschungsgemeinschaft for financial support.



Vol.

63, 1990 Honegger

References

[1] Amann, A.: Chirality as a Classical Observable in Algebraic Quantum Mechanics.
In: A. Amann et al. (eds.), “Fractals, Quasicrystals, Chaos, Knots and Algebraic
Quantum Mechanics”, 305 — 325, Kluwer Academic Publishers, 1988

[2] Araki, H.: Relative Hamiltonian for Faithful Normal States of a von Neumann-
Algebra. Publ. RIMS, Kyoto Univ. 9, 165 — 209 (1973)

[3] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechan-
ics I. Berlin, Heidelberg, New York: Springer, 1979

[4] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechan-
ics II. Berlin, Heidelberg, New York: Springer, 1981

[6] Davies, E.B.: One-Parameter Semigroups. New York, London, Toronto, Sydney, San
Francisco: Academic Press, 1980

[6] Davies, E.B.: Ezact Dynamics of an Infinite-Atom Dicke Maser Model. Commun.
math. Phys. 33, 187 — 205 (1973)

[7] Fannes, M., Nachtergaele, B., Verbeure, A.: The Fquilibrium States of the Spin-Boson
Model. Commun. Math. Phys. 114, 537 - 548 (1988)

[8] Honegger, R.: Unbounded Perturbations of Boson Equilibrium States in Fock Space.
Tiibingen: Preprint (1989)

[9] Honegger, R.: Decomposition of Positive Sesquilinear Forms and the Central De-
composition of Gauge-Invariant Quasi-free States on the Weyl-Algebra. Tibingen:
Preprint (1989)

[10] Honegger, R.: On the Temperature States of the Spin-Boson Model in the Ther-
modynamic Limit. To appear in the proceedings of the International Conference on
“Selected Topics in Quantum Field Theory and Mathematical Physics” at Liblice
Castle, Czechoslovakia, June 1989

[11] Reed, M., Simon, B.: Methods of Modern Mathematical Physics I; Functional Anal-
ysis. New York, London, Toronto, Sydney, San Francisco: Academic Press, 1980

[12] Rigotti, C.: In Algébres d’opérateur et leur application en physique mathematique.
Marseille: Colloques Internationaux du C.N.R.S., No. 274, 307 - 320, 1977

(13] Rothstein, W., Kopfermann, K.: Funktionentheorie mehrerer komplezer
Verdinderlicher. Mannheim, Wien, Ziirich: BI Wissenschaftsverlag, 1982

155



	Unbounded perturbations of Boson equilibrium states in their GNS-representations

