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Phase Space Analysis of the Charge Transfer Model

Gian Michele Graf

Institut fir theoretische Physik
ETH-Honggerberg
8093 Ziirich, Switzerland

(8.V.1989)

Abstract. Geometric methods are used to establish completeness of scattering for the
time dependent Hamiltonian

H(t) = 25* + > Vilz — 2i(2))
=1

The motions z;(t) of the centers are asymptotically inertial and diverging from each other;
the potentials Vj(z) are short range. No assumptions are made on the spectra of the
subsystems. Intermediate results of some interest concern the time boundedness of the

energy, a RAGE theorem and the asymptotics of some observable.
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1. Assumptions and Results

The Charge Transfer Model has been devised for describing the motion of a light particle in
a collision between heavy ones, e.g. an electron in the field of heavy ions. In the model only
the light particle is subject to quantum dynamics, while the heavy ones follow assigned

classical trajectories, which are asymptotically inertial. This leads to the Hamiltonian
1 n
—_— 2 —_
H(t) = 2p + lél Vi(z — zi(t)) . (1.1)

The problem of asymptotic completeness of scattering has first been solved by Yajima [16],
using Howland’s formalism [10] and time independent scattering theory. Subsequently
Hagedorn produced a proof based on the study of some Faddeev-type equations [8], and
he also suggested an ‘Enss type’ proof [9]. In fact, as we shall see, the ideas developed by
V. Enss in a series of papers (among them [2]-[6]), turn out to be very useful for proving
completeness in the present context. During the typesetting of this manuscript, we were
informed about an independent proof of Wiiller [15], working under weaker assumptions on
the potentials. Although both his and our approach are examples of ‘phase space analysis’,
they seem to be quite different; we therefore believe that our work also sheds some light
on the problem. For instance, in [15] completeness is established by a detailed analysis of
the multiple scattering processes the ‘electron’ can undergo, whereas our basic dynamical

property of the scattering states is an estimate on certain time averages (RAGE theorem).

Assumptions: In the course of this work we will use various assumptions on the classical

trajectories and on the potentials. The strongest conditions, which cover all the results
are

(T1) For anyl=1,...,n, z; € C'(R,R”) and there are u;,a; € R” such that u; # up
for 1 £ k and, setting Azi(t) = zi(t) — (wit + ar),

|Azy($)|(1+ 27, |Azy(2)|(1+ [¢]) P

are bounded for some 3 > 0 and large t.
(P1) Vi(z),l =1,...,n are real valued functions satisfying

DVi(z)(1+ |z])"** € L=(R")

for some € > 0, where D is any zeroth or first order distributional derivative.

However, many intermediate results are derived from less restrictive assumptions. To
construct the propagator we use

(T2) For any l=1,...,n, z; € C*(R,RY)
(P2) Vi(z),l = 1,...,n are real valued functions satisfying

Vi € LP(R") + C(R") with p>v/2,p>2, p<
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(Coo denotes the continuous functions vanishing at infinity), and
DVie L*(R*)+ I®(R*)  with  p1>v/3, p24/3 ,

where D is any first order distributional derivative.

To prove time boundedness of the kinetic energy we assume (T1), (P2) and impose one of
the following conditions on the forces and on the trajectories (resp. on the forces only):
Forl=1,...,n

(F1) z; € C*(R,R¥) with |%,(t)|(1 + [t])**# bounded for some B > 0 and large t;

DVi(z)F(ja| > R)(1 + [])*** € LP(R*) + L®(R")

(F2) DVi(z)(1 + |z[)'** € L*(R*) + L=(R”)
for some e, R > 0 and p > v/2, p > 2, where D is any first order distributional derivative.

Existence of the wave operators is proved assuming (T1) and
(P8) Vi(z),l =1,...,n are real valued functions satisfying

DVi(z)(1 + |z|)*** € LP(RY) + L(R") with p>v/2,p>2

for some € > 0, where D is any zeroth or first order distributional derivative.

Remarks: 1. The short range assumption on the potentials allows for simple asymptotic
dynamics (see [15] for the long range case). Boundedness of both the potentials and the
forces (instead of p?-boundedness) is used in Section 6 (Asymptotics of observables).

2. (P1) or (P3) imply (F2), and (P3) implies (P2). (P2) and (F1) allow for Coulomb
singularities in ¥ = 3 dimensions.

3. As a rule, the hypothesis of the theorems will be stated explicitely; lemmas and cor-
ollaries hold under the same assumptions on the trajectories and the potentials as the
theorem which is proved in the same section.

The Hamiltonian (1.1) is selfadjoint on H = L?(RY),v > 1 with domain D(p?). Let
U(t,s) be the propagator from s to t for the corresponding Schrodinger equation (see
Theorem 2.1). One expects that the large time behaviour of a particle under the evolution
U(t,s) can be described as a superposition of the following:
i) the particle is free
il) the particle is bound to one of the centers, say [, i.e. up to the Galilei transform
z+— z— (uit + a;)

(1.2)
p—p—u

it is a superposition of bound states of

1
m=§#+wu). (1.3)
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To formulate this we introduce the projection P/* onto the bound state subspace of (1.3)
and the operator implementing (1.2), namely

‘2 s
Gl(t) = ei"theiP(“lf+a|)e—tuxz

Here is our main result:

Theorem 1.1. Let s € R. The following assertions hold under the assumptions stated in
brackets:

i) Ezistence of wave operators: (T1), (P3)

The limits

Q,(s) = 5—, BEI U(s,t)e—"’;(t_") |

O (s) =s— EglwU(.s,t)G;(t)"le“H'(“‘)PI”PGl(s) I=1,...,n
ezist.

i) Asymptotic orthogonality: (T1), (P3)
The ranges RanQ; (s),l =0,...,n are closed and orthogonal to each other.
iii) Asymptotic completeness: (T1), (P1)

H= @ Ran 0 (s)
=0

An essential step in the proof is time boundedness of the kinetic energy:

Theorem 1.2. Assume (T1), (P2) and in addition (F1) or (F2). Then for any s € R
there ts a C > 0 such that

s (U(t,)¢,p*U(t,s)¥) < C(3, (1 +p*)%) (1.4)

for all ¥ € Q(p?), i.e. ¢ in the form domain of p*.

Remarks: 1. Analogous statements hold for the past.
2. Write

H()= 2+ Y Wlz - (1)
I=1

where Vi(z) = Vi(z—a;) and (1) = z;(t)— a;. These translated trajectories and potentials
satisfy the same hypothesis as the original ones, with 4; = u;, @; = 0. The corresponding
Galilei transforms are G,(t) = e™*{*/2¢iPu1te=i®1z Because of

Gl(t)-—le—iH;(t-—:)PlppGl(s) - G'I(t)—le—ipa.ge—iH;(t—s)PIpPeipa;él(s)
= é;(t)'"le_iﬁ'(t_‘)pfpéz(s) ;

where H; = 1p? + Vj(z) and PP is its bound state projection, we shall restrict ourselves
(dropping the tildes) to the case a; = 0.



Vol. 63, 1990 Graf 111

2. The Propagator

Sufficient conditions for the existence of the propagator for Schrédinger operators with
general time dependent potentials have been given by Yajima [17]. Since in our problem
the time dependence is given through the trajectories, we are led by his Theorem 1.3 to
state Assumptions (T2) and (P2).
Theorem 2.1. Under the Assumptions (T2), (P2), there is a family of operators U(t, s)
on 'H, t,s € R, satisfying

i) U(t,s) is unitary

i) U(t,s) = U(t,r)U(r,s)
i) U(s,8)=1

i) U(t,s)D(p?) C D(p?) and U(t,s) is strongly continuous in H and in D(p?) with

respect to (t,s)
v) For ¢ € D(p?), U(t,s)¢ is continuously differentiable in H with respect to (t,s):

2 U(t, o) = H(U(t,s)b (21)

—i%U(t,s)zj; =U(t,s)H(s)p . (2.2)

The family U(t,s) is uniquely determined by

vi) U(t,s) is bounded

vii) For ¢ € D(p?) : U(t,s)y € D(p?), U(s,8)¢ = ¢ and U(t,s)y is differentiable with
respect to t, the derivative being given by (2.1)

As an application, we prove the domain invariance property which is implicit in (1.4):

Corollary 2.2. U(t,s)Q(p?) C Q(p?) and U(t,s) is strongly continuous in Q(p?) with
respect to (t,3).

Proof: By Theorem 2.1 iv) and by the uniform boundedness principle,

I(* + 1)UL, )¢l < const[I(p* + 1)l , ¥ € D(p*), t,s €1

for a compact interval I. Interpolation ([13], Proposition IX.9) between this and
lU(t,s)¥|| < const ||¥]l, ¥ € H, t,s € I gives U(t,s)Q(p?*) C Q(p*) and

I(7® + 1) 72U (2,8)9|| < const ||(p? + 1)*/%)|, Y €Q(p?),t,s€ . (2.3)

It is therefore enough to know that strong Q(p?)-continuity holds on D(p?), which is a
form core for p?. n
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In Section 6 we will need the following domain invariance property:

Corollary 2.3. U(t,s)D(p* + z2) C D(p® + z?) and U(t,s) is strongly continuous in
D(p? + %) with respect to (1,s).

Proof: We regularize z by u®(z) = z/(1 + ¢2?). We have u{; 5 ijs ufj; S0ase N O,
where indices following a comma stand for partial derivatives. Let ¢,¥ € D(p? + z?).

Integrating d(U(t,s)p,ufU(t,s)¥)/dt = (U(L, s)p, (u§ ;p; — iuf;;/2)U(L,s)¥) we get

t .

[ 4 1 &

uiU(t,8)¢ = U(t, s)uly + / dr U(t,f)(uf’jpj - Eu,-‘jj)U('r,s)d) ,
a8

since by the continuity of the integrand, the integral can be carried inside the scalar

product. Furthermore, the integrand is uniformly bounded in € and 7. As £ \, 0, we

obtain that U(t,s)y is Q(z?)-continuous in (2,s), and

z;U(t,8)yY =U(2,8)z;% + /td'r U(t,r)p;U(r,s)¢ (2.4)

by dominated convergence and by the closedness of z;. Now p;U(7,s)¥ € Q(p?) by The-
orem 2.1 iv), and U(¢, s)z;9 as well as the integrand in (2.4) are in Q(p?) by Corollary 2.2
and by z;9 € Q(p?). Since everything just mentioned is Q(p?)-continuous in the arguments
of the propagator, we have z;U(t,s)¥ € Q(p?), Q(p?)-continuously in (#,s). This imme-
diately implies Q(z?)-continuity of p;U(t,s)®. Next, (2.4) extends to Q(p* + z?), because
D(p? + z?) is a form core for p? + z? and because of Corollary 2.2. Thus, still assuming
¥ € D(p* +z?), (2.4) applies to z;9, p;U(T,s)¥ € Q(p* + z?), proving Q(z?)-continuity of
the right of (2.4). We conclude that U(t,s)s¥ € D(z?), with D(z?)-continuous dependence
on (t,s). |

An immediate consequence of the uniqueness of the propagator is the following: let

a2 .
Gz(t) - ez 2 tezpu;te-tu;::

be the Galilei transform to the asymptotic rest frame of center I, where the total Hamil-
tonian reads

HY(t) =

o=

P’ + Y Vi(z — (zx(t) — wit))

Let U'(t,s) be the corresponding propagator given by Theorem 2.1:
Corollary 2.4.

Gi(t)U(t,s) = U'(t,s)Gi(s)
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Proof: For ¢ € D(p?)

'U,2
260 = (% + )G

Gi(t)H(t)¢ = (%(p +u)? +i Vi (z — (za() — uHt))) Gi(t)y
k=1

= GV (2, ) = —(§ + pu)GuB)U(t, 8 + Gi(t) H(E)U (2, 8)9
= B()G()U(t, s)9

Because of G’;(t)U(t,.s)d)lt:’ = G)(s)v and since Gi(s) maps D(p?) onto itself, the claim
follows from Theorem 2.1. n

3. Time Boundedness of the Energy

As a first step to asymptotic completeness we prove boundedness in time of the kinetic
energy.

Idea of the proof of Theorem 1.2: The idea is to look at the expectation values of
K() = 2o 27+ Y ViGe - 20)
2 t -]

Classically, K(t) will decrease if the particle is far away from the centers, since
(p—z/t)? decreases for the free motion. On the other hand, if = remains close to z;(t), then
z/t =~ u; and K (1) is essentially the total energy of the corresponding one-center-problem,
which is constant. The quantum analogue should be a negative semidefinite expression
i[H(t),K(t)] + 8K/dt, apart from ‘junk’ terms which decay integrably in time. Hence
time boundedness should hold for (K(t)), but this result does not carry over (p?). We will
therefore replace the vector field z/t by v(z,t) differing from it mainly by
i) v(=,t) is modified with respect to 2/t outside some big ball {z | |z| < upt}, in order to
make it bounded. Then p? will be relatively bounded with respect to K(t), uniformly
in t.
ii) v(z,t) = u; in an increasingly big neighbourhood of z = u;t, in order to make the
intuitive argument really work.
Proof of Theorem 1.2: By (2.3) it suffices to prove (1.4) for s big enough. Moreover,
it is enough to prove (1.4) for ¥ € D(p?), since by the form closedness of p? this extends
to Q(p?).
Consider a smooth vector field v(z,t) : R” X [s,+00) — R” and let

K() = 5 (p—o(e,0)) + 3 Vilz — 2i(t)) - (3.1)
=1
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Formally

Vi,j + vj,

i[H(t), K(t)] + %Iti = —(pi — vi)’_é_i(P:i - vj)

Lo (ot 2% 4 (v s + 2% o
T35 Di | V4,595 Y Yi,iV5 ot bi

+ v; (’Ui,j'vj + %%) + 'i‘vi,ijj 4 ;(W —z)Vis ,  (3.2)

where

— summation over double indices is understood,

— indices following a comma stand for partial derivatives,

— &y,; is the i-th component of z;.
Provided the vector field v(z,t) and its derivatives in (3.2) are bounded in z and if the last
term is relatively bounded with respect to p?, then (3.2) holds in form sense on D(p?).
Equation (3.2) illustrates what we meant in the heuristic argument: for v = z/t all terms
on the right hand side of (3.2), up to the first and the last one, vanish. The first one is
negative definite. However, the last one is not integrable in time, but it will become so if
modification ii) is taken into account. Then the middle terms no longer vanish but they
will be integrable in time.

We will construct a smooth vector field v(z,t), bounded in (z,t), satisfying

vi; + vj; is positive semidefinite

av,- -
03,59 + Sy llow + vl < comst £+ (3:3)
n
> (@i = 243)Vagillp,e0 < comst e=CFY) (3.4)
=1

for some vy > 0, where
W llp.c0 = inf {||W1l, + [W2lleo | W = W1 + W2, W1 € LP(R”), W2 € L®(R")}
These estimates, if applied to (3.2) together with

Pl = ($,0*%) < a(s, K(t)9) + b(4, %) (35)

with a,b independent of ¢, prove that for 1 € D(p?)

LKD) <EGE() + ),

where (K (t)), = (U(¢,s)%, K(¢)U(t,s)¥). By integration time boundedness of K(t) holds
in the sense analogous to (1.4). Using (3.5) and (%, K(s)¥) < o'(¢,p?%) + b'(¥,%) we
obtain (1.4).
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Construction of the vector field v(z,t): It is convenient to work first in the scaled
coordinates y = z/t. We denote the vector field by w, when expressed as a function of y; it
is going to depend also on a parameter & > 0 (whose dependence on time a =t7%, § > 0
as t — 400 will be made explicit only later on), which tunes the size of certain regions
shown in Figure 1. In case of Assumption (F1) w will also depend explicitely on time. We
set

w(y, 1) = wO(y,a) + ) vy, e,1) (3.6)
=1

where w(%) (resp. w(")) accounts for modification i) (resp. ii)).

w = i‘k(t)

:ék(t)

Fig.1 The vector field w in velocity space y. For sake of simplicity only two centers

have been drawn.

i) In a first step we build a vector field w(®)(y, ). Let ¢ € C®(R) with0 < 0 <1, ' >0
and

¢(z)=0 forz <0, p(z)=1 forz>1

Let w9 = 2max;<i<n |u1| and consider the function

w(s,a) = sp (an— s) . (1 o (ucc;- s)) = —azp(z)],_saz: +u (3.7)

for s > 0, @ > 0 and « small, which is going to be the modulus of w(®), We will check the
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following bounds:

O
sup |w(s,a)| < const (3.8) sup |(w(s,a) — 3)-5‘5-‘ < consta (3.10)
8 8
w e >0 (3.9) sup g < const a2 (3.11)
' Bs . |0s8%|

w
sup [—| < const , (3.12)

. |Oa

where here and elsewhere in this proof, const is independent of all the arguments of the
left hand side. The estimate (3.8) follows from (3.7) since ¢ (%) = 0 for s > uy. For
the same reason, its derivative

Z—w = (2¢'(z) + ¢(2))|, o 20=2 (3.13)

satisfies

8
su}:p—é‘f C [0,u0] . (3.14)

Moreover, from (3.13) and z¢'(z) > 0 we see that (3.9) and

22| < const (3.15)
s

sup
8

hold. From w(s,a) — s = (uo — s)(1 — p(*=2)) we get

sup |w(s,a) —s|<  sup |up—s|=a
s<uo up—als<up

since 1 — ¢ (¥2=2) = 0 for s < ug — a. This, together with (3.14), (3.15), proves (3.10).
(3.11) follows from (3.13). Last we compute

Ug — 8

o = —29(2)],o zazt — a2 (2) + 9(2))] o rams (- 257) = 270'(2)] s

a2

Since z2¢'(z) has compact support, (3.12) holds. We can now define
(0) - Y
w (yaa) '—w(lyl’a) Iyl

and compute

2
Yiy; :y — Yy
w(? = (| )= 3+ w(lyl ) s

ly|®
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This is symmetric in 1, and positive semidefinite due to (3.9). Moreover, the relations

oy, = 8@ iy —yiy? - yiy®  w

,, yJ '6—;'!/: + | |3 as yt
Ow y;
Wi~ 33) = w0 ~ Iy = (@~ W) 5 i
(0) Ow w
R et 1
£ =5 Ty
=v in a neighbourhood of y = 0 independent of a
8u® 0wy
da  daly|

carry the bounds (3.8)-(3.12) over to

sup |w(®(y, a)| < const (3.16) sup 1w'%.| < consta™? (3.18)
v

ltJJ

(0) Hw(0)
—y;)| £ const (3.17) supl a | <comst . (3.19)

sup |w (w
]
ii) We first consider case (F1): around the I-th center we now add

wOu,0,8) = == 2o (2= L20) — asplz— )]s (320)

according to (3.6). Because of (T1), the sets K; = {y | [y — #i(t)| < 2a}, I=1,... ,n are
disjoint and contained in {y | |y| < uo — @}, for small & and large ¢. Since supp, w(") C K;
we have

omyr o0 =y (1o (- BZHON) s (- =500

for y € K. In particular

w = (1) for ly—zi(t)| L a . (3.21)
From

i = (8501 - (2= o) + 5 0D ) (3:22)

we see that w; ; is still symmetric and positive semidefinite, due to 1 —¢ > 0, ¢' > 0. The
bounds we will need are

_y—#)(t)
= a

sup |w(y,a,t)| < const (3.23) sup |w; ;5] < consta™?  (3.25)
veEK; yEK,
sup |(w; j(w; —y;)| < const 3.24 su < const 3.26
yeK;I 6.5(wj — y;)] ( ) y€£l|aa| ( )
Sw:
sup ﬁ~ < constt~(+A) | (3.27)
yEK,
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Estimate (3.24) follows from sup, ¢y, |w;,;| < const, sup,cg, lwj — y;j| = supyek, |w§l)| <
const v, whereas (3.25) (resp. (3.26)) is immediate from (3.22) (resp. (3.20)). (3.27) holds
because of dw; /8t = —wgf]).:'é;;j(t) and of (F1). In case (F2) replace ;(t) in (3.20) by u;.
The vector field v(z,t) appearing in (3.1) is defined by

T
v(e,t) = w(;,t B¢

where § > 0 is chosen to satisfy
1+~ :=min(1+6§,3-2§(1-6)(1+¢),14+8)>1, §<p
(see (T1), (F1), (F2) for the definition of 3, ). Most important, v(z,t) is bounded in
(z,t) by (3.16), (3.23) and »; ; + v;; is positive semidefinite.
ov; 1

Buu - Buu
ViVt 5y = 'E’wt',j('wj — ;) — 6_(5’:t (1+6) 4 T

This has a bound (3.3) by (3.17), (3.19), (3.24), (3.26), (3.27); v;,;;; = £ *w;,;;; shares the
same bound by (3.18), (3.25). In case (F1) we have

(0i — d1:())Vis(z — 2(8)) = 0 for |o — z(t)] < %tl“ﬁ (3.28)

since it follows from (3.21) and

z . 1 1 . 1 . 1 ft ;
— = mz(t)l < e —zy(t)] + Sle(t) — ta(8)| < 170 + —] dt'[t'&(t")|
t t t 2 t Jy
l-p ; 1 Lol o g
< Et + ?constt <t

for ¢ large enough. Complementary to (3.28) we have
) : 1,_
1B (lz = 2u(t)] > S 7°)(vi = 243)Visillp,oo < comst[[F(|z] > 5#' ) F(|z| > R)VVi(2)|lp,e0
< const ¢~(1=0)1+e) (3.29)

for 176 > 2R, proving (3.4). Estimate (3.29) holds also in case (F2), whereas (3.28) fails.
We have instead

1, . . .
1E(le — 2(8)] < 58)(0: — 1) Vidllpoo < [AG(OI[VHllpe0 < const =4+
since for |z — zi(t)| < 38178, |2 —w| < Iz —@i(t)|+ LAz (1) < t7°. H
There is also a weaker notion of time boundedness of energy:
Corollary 3.1. For ¢ € H,

lim sup |F(p® > E)U(t,8)¥||=0 . (3.30)
E‘*+°°t23

Proof: It is enough to prove this for ¢ € Q(p?). Then, by (1.4)
const > sup (U(t,s)¥,p’U(t,s)¥) > Esup |F(p* > EYU(t,8)%|> . w
t>s t>s
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4. The Wave Operators

In this section we derive propagation estimates for the free and on the one-center dynamics,
from which the existence of the wave operators easily follows. These estimates will be useful

once more in Section 7, when proving asymptotic completeness. The standing assumptions

of this section are (T1) and (P3).
We will derive the propagation estimates using

IF(|z| > R)Vi(z)(»* +1)7*|| < const R~(1+)

which follows from the part of (P3) concerning the potentials. The assumption on the
forces has also been strengthened with respect to (P2), with the only purpose of excluding
positive eigenvalues of H; (see the proof of Theorem 1.1 i)).

Let us start with the free dynamics:

Lemma 4.1. Let g € C3°(R”) and v > 0. Suppose
1) g(p) =0 for |p| > v and fiza > 1. Then for R > 0,1 >0 and any N >0

HF(|z| > a(R + vt))e~ T ig(p) F(|z| < R)N <On(R+vt)"N . (41)
ii) g(p) =0 for |p| <vand fizvy >0,0< a < 1. Then fort >0 and any N >0

“F(|m| < a(v—v)t)e” 'n'tg(p)F(h:l < vot)” <cnt™N . (4.2)

Since estimates like these are fairly common (e.g.[4], Lemma 6.3), we omit the proof. The
next lemma represents to some extent the counterpart of Lemma 4.1 for the one-center
dynamics.

Lemma 4.2. Let g € C§°(R) and v > 0. Suppose g(e) =0 for e > v?/2 and fiz a > 1.
Then for R>0andt> 0

|F(lz| > a(R + vt))e™*Hitg(H|)F(|z| < R)|| < C(R +vt)™¢ . (4.3)

Proof: By Lemma 2 in (3] we know that ||F(|z| > R)(g(H:i) — 9(p*/2))]| < const B-idrrE),
Thus it is sufficient to estimate ||F(|:c] > a(R + vt))g(p?/2)e*H1*F(|z| < R)|. This

expression with e ~*Hit replaced by e™*7* is of order O((R + vt)~™V) by (4.1). Hence we
are left with

IF(l2] > a(R + vt))g(p?/2)(eHit — e~ 5 ) F(j2| < R)|
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Write a = ajaz with a;, az > 1, let f € C§°(RY) with f(y) = 0 for |y| > 1, and set
R(t,s) = a;(R + vt) — vs. Then for any N >0
sl _
sup |F(Jel > a(R +v0))g(a?/2)e™ % f(a/ R, )|  On(R+0) N . (44)
<s<t

This follows from (4.1) because a,(R(t,s)+vs) = a(R+vt), and R(¢,s8) > a; R > 0. Using
(4.4) with s = 0, { we are allowed to modify once more the quantity to be estimated:

[0l > @+ o)e(E) (1-1( o) = T 1 f () Fll=l < B)|

14 p2 2
< jds HF(]z[ > o(R+vt))g(2)e 7
0

p? z ) = 0 z
-5 (=1 (g +10~1 (g e - ﬁf(R(t,s))] | - @9
The expression in square brackets splits into (a)-(c) below:
(a) (1 - f(z/R(t,s)))Vi(z) = Vi(z)F(|z| > R(¢,s)/2)(1 - f(z/R(t,s)))
since we may take f to satisfy also f(y) =1 for |y| < 1/2. Its contribution to the integral
in (4.5) is bounded by

[ 45 19B)@ + D1 + 1) Vi) E(lel > Rt 0)/2)]

< const /tds (a3 (R 4+ vt) — «us)—(l—l-e)
< const (3 R+ (a; — 1)vt)™° < const (R + vt)™°
() [Z, fe/R(t,9))] = (AN (/B ) T (9 p)@/R(t,0) - Rt )

This gives rise to a contribution O((R + vt)™%) to the integrand in (4.5), since (4.4)

holds with g(p?/2) replaced by g(p?/2)(p?* + 1). The corresponding integral is then
O((R + vt)~(N-1)),

() (e Rlt5)) = (w/Blt, ))(V)(&/Rit,s)) - vR(E, )
which is treated like (b). |

Lemma 4.3.

i) Let 0 < v < v and g € C{°(RY) with g(p) =0 for |p—w| < v, I =1,...,n. Then
forany s € R

lim sup
t1—+o001,>1,

n
. pd .
(0(tz,12) = =5 00=0)) =% =) ] F(Je - wss| < wofts — )| = 0.
=1

(4.6)
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ii) Letv,vp > 0 with v+ vy < mingy [ux—ui| and g € C$P(R) with g(e) = 0 for e > v?/2.
Then

im sup ][(U'(tz,tl) - e"iH'(t"")) g(H)F(|z| < vot1)||=0 . (4.7)

t1—’+°°122t1
Proof: i) Take a < oy < 1 and let f € C§°(R") with f(y) = 0if |y — ui| > a(v — vo) for
all I =1,...,n. Then |f(z/t)] < |f(z/t)| L1y F(lz — uit| < a1(v — vo)(t — s)) for ¢ large

enough, since at < a;(f — s).

|#(z/1)e™ % = )g(p) [T F(lz - ws| < vo(t - 9))
=1

<N flloo D[P (12 — wat] < @z (v — vo)(t - $))e™ T Vg(p) Pl — wis| < wolt — 9))|

=1
< 1flleo SIIF (2] < @1(v — vo)(t — 5))e™ 5 = g(p+ u) F(Jz| < ot — 3))|
=1
< const (t—s)™ N . (4.8)

This follows by applying G;(t) to the second expression within the bars, by commuting
it through, and by (4.2), since g(p + u;) satisfies its hypothesis. By (4.8) it is enough to
estimate

(U(t2,11)(1 ~ £(2/12)) ~ (1 = F(=/t2))e™% @) () [[ F(lz—ws| < vo(t—9))
=1

sup
t2 211

< /:mdt ” [iH(t)(l — f(=/1)) = i(1 — f(:c/t))% - %f(z/t)]-

n
o2
e 5 = g(p) [ ] Fllz — wis| < vo(ts — 9))
=1

| . (49)
The expression within square brackets consists of (a)-(c) below:

(a) Vi(z —zi(0))(1 - f(=/1)) = (1 = f(2/8))F(|z — wit| > a(v — vo)t/2)Vi(z — z:(2))
for Il = 1,...,n, where we took f to satisfy also f(y) = 1if |y — wi] < a(v — vg)/2. Its
contribution to the integrand in (4.9) is bounded by

IF(Jz] > a(v — v0)t/2)Vi(z — Azi(2))(8 + 1)7||[|(#* + 1)g(p)|| < constt~(1+<)

®) Zie/) - 108 = (AR -t (TNl

and
() 55 (/1) = " (=/)(V 1)z /)

are treated using (4.8).
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ii) Choose & > 1 and v; with a(v + v) < v; < mingz |ur —u;| and let f € C§°(R”) with
f(y) =1 for |y| < a(v + vo) and f(y) = 0 for |y| > v;. We first claim that

lim sup||(1 - e~ P22 f(z /1)) e Ht—t)g(H) F(|z| < voty)|| =0 . (4.10)

t1—+004>¢,

To show this, we write
L e PAnO f(a /1) = AU - f(af) + (- eFANY) L (4aD)

The first term on the right gives rise to a vanishing contribution to (4.10), since 1 — f(z/t)
is supported in |z| > a(v + vo)t > a(vot; + v(t — t1)) and

| F(lz]|>e(vots +v(t—t1))e 1 =1)g(H)) F(|z|<vot1)|| < const (vots+v(t—t1)) ™" ,
(4.12)
which follows from (4.3). The contribution related to the second term in (4.11) is bounded
by
I(1 = e~ P22 O)g(m)|| < J|(1 - e=P22O)(P® + 1) I(2* + 1)g(H)|

< const [Azi(¢)||1pl(p* +1) 7| == 0

t—+4co

Using (4.10) with t = t,, #,, the task is now to estimate

tSI;I: ” (Ul(tz, tl)e_ipAz'(h)f(x/tl) s e—ipAz'(tZ)f(z/tz)e_iH'(t’hh)) g(H))F(|z| < ”otl)”

+co
< / dt
1

(P85 f(a 1) — iem 85O f(a /) B, + 2 (e #82O f(a1)].

T H g (B F(la| < woty)]| 5 (413)

where the derivative 8(e~*P22!(Y)f(z/t))/8t is meant in the strong sense and exists on
D(p?). As above, a discussion of terms (a)-(d) now follows:

(2) Vil — Bmi(®)e 72O f(a/1) = PO f(z /1) Vi(z) = O
(b) Vil — (za(t) — urt)e™ 25O f(z /1) = e P22 f(2/)Vi(z — (z4(t) — z(1)))
for k # 1. Notice that f(z/t) = f(z/t)F(|z — (z(t) — zi(t))| > (v2 — v1)t) for any v, with

v1 < vp < mingy|ur — u;|, and ¢ large enough. The contribution of (b) to the integrand
in (4.13) is bounded by a constant times

”F(!z| > ('vz - v])i)Vk(z)(p'A’ i 1)—1””(;02 + l)g(Hz)” < constt—(“")
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(c) [E_’;, e—iPAz:(t)f(x/t)] — e—-’pAm(t)(f;__z(Af)(z/t) _it—lp(vf)(z/t))

The first term is integrable by itself, while the contribution related to the second one is
bounded by

7 [p(V £) (2 /t)e =g () F (|| < vots)|
< 47 [p(Hy + ) (Vf) (/1) FCE D (Hy + i)g(H)F(|2| < vota)]| + O(7?) ,  (4.14)

since (V£)(z/t), (Hy +4)7] = (Hi +14)7[p?, (V) (=/))(H +4)! = (i +i)770(t7),
where O(¢™!) is meant in norm sense. Then (4.14) is integrable, due to ||p(H;+1)™}|| < oo,
to (4.12) (with g(H;) replaced by (H;+1%)g(H})), and to the support property of (V f)(z/t).
(@) o(ePAO (2 /1)

= T8O (f(2/t)(~idzi(1)p) — (V)(2/D D) + (2/1)(VF)(/t)t)

The terms which contain Az,(t) are integrable, since Az;(t) is and ||pg(H;)|| < co; the one
which does not can again be treated by (4.12). |

Proof of Theorem 1.1 i): It is enough to prove the existence of the strong limit Qg (s)
on a dense set D: set

D = {g(p)f(z)¢ | g € C>(R” \ {u1,...,un}), f € C°(R"), b € H} .

g(p) satisfies the hypothesis of Lemma 4.3 i) with a suitable » > 0. Take 0 < vop < v and
note that

(HF(I:: — ws| < vo(ty — 3))) f(z) = f(=)
=1
for t; big enough. For ¢, > t; we estimate

”U(s,tl)e“"’i(“")g(p)f(w)%b — U(s,ta)e ™5 = g(p)f (”)‘/’H

<

£ (=)%ll

(U(tz,tl) = e-"’?(h-ﬁ)) e“fﬁi(tt-ﬂg(p)ﬂpuz — ws| < vo(ty — $))
=1

(4.6) now tells us that U(.s,t)e_"%z(‘—‘)g(p)f(z)d) is Cauchy as ¢t — +oo.

Now we consider Q7 (s), I =1,...,n. Because of
U(s,)Gi(t) e HO=IPPPGy(s) = Gi(s) 7 U (s,0)e™ F I PIPGy(s)

it suffices to show the existence of

s— Lim Ul(s,t)e " Hit=2pPP —. Ol=(s) . (4.15)

t—+oo
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In fact it is enough to prove convergence on eigenstates Hi3p = Ev, since their finite linear
combinations are dense in Ran PF?. Due to our assumptions on the potentials, positive
eigenvalues are excluded ([7], Corollary 1.4). Thus for any v > 0 we can find a g as
in Lemma 4.3 ii) with g(H;)Pf? = PP?. To be precise, take v,v9 > 0 with v + vy <
ming; [ug — wi|. For t; > {; we can now estimate
[U(s,t1)e " HE =) PPPy _ [l(s, 1)~ Hilta=2) pPPY|
= [|U'(s,8) (U'(t2, ta) — e Fi(la70)) g =iB(1=2) PPy |
< |[(U(ta,1a) — e7Hila=8)) o () F([2] < wota) || |4

+ 2[lgllco|[[F(l2] > vot1)#|| - (4.16)
(4.7), together with the fact that the last term above vanishes as t; — +o00, proves that
U'(s,t)e”Hi(t=2) pPPy, is Cauchy. |
The proof above has a
Corollary 4.4.

s |

s— lim Q" (s)-1)PPP=0 . (4.17)

Proof: Put t; = s in (4.16), take the the supremum over £, > s on the right and the limit
t — +oc0 on the left. o

Proof of Theorem 1.1 ii): Because the wave operators are partial isometries, they have
closed ranges. Let po = Q5 (8)Yo, w1 = Q7 (8)¢1, I =1,...,n1ie.
—_ 0

.32
“U(t,s)’PO - e_t%_(t_’)‘!‘bol t—+o0

[0t 501 = Gi(t) e IR Gl S ©

’

As in the proof of part i), it is enough to consider the case where G;(s)y; is an eigenstate
of Hy: HiGi(s)Y1 = E1Gi(s)y1. Then

(prr00) = lim (U(t,9)e1,U(t, 5)p0)
= lim (Gi(t)7 e I PPG ()¢, e (=) )

= lim eB=(G (s)ey, e-”’_z(tﬁ)Gl(s)d’O)

t—4o0
=0 .
i -2l b s
since e7*7* ——— 0. Similarly, for I # k

t—+o0

(‘Ph (Pk) = t}_}?@( U(ta 8)901, U(t, S)(pk)
= :li-rfl (Gi(t) e (=) PPPG (s)¢py, G () e HE (=) PPP G () o)
= lim e " BB (s)yy, G1(t)Gi(t) ™ Gi(s)¥r)

t—+o0

=0 ,
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because

Gl(t)Gk(t)_l = ei(_'];;k')—ztefp(ul—uk)te-—i(ug—uk):: w 0
t—+oo

for u; — ux £ 0. |

5. The RAGE Theorem

The purpose of this section is to give a dynamical characterization of the states ¥ or-
thogonal to the ones which are asymptotically bound to center [, i.e. ¥ L RanQ; (s), or
% L Ran '~ (s) if one is referring, as we will do, to the asymptotic rest frame of center 1.
We denote by P}?(s) the orthogonal projection onto Ran Q' (s).

Theorem 5.1. Assume (T1), (P3) and let C be a compact operator. Then for anyp € H
s+ T

1
Am 7 [ dIoU ) - PPl =0 . (5.1)

More useful in scattering theory is the following

Corollary 5.2. Let C be a bounded operator, relatively compact with respect to p>. Then
(5.1) still holds.

Proof: Given £ > 0, there exists by (3.30) an E such that for ¢t > s

IF(p* > EYU'(t,s)(1 — PI"(s))¥ll < €

Hence
. 1 3+T l
limsup 7 [ dt CU'(t,8)(1 ~ PPP(s))ol
T—+eo F
1 s+T
<tmsup [ dt O < EYU(t,9)(1 - PP
T—+o0 s
1 3+T
+imswp [ & [CFG* > E)U(t,9)(1 — PPP()
—+o0 s
<|IClle
since CF(p? < E) is compact. L

Taking C = F(|z| < R), (5.1) tells us that a state ¢ L RanQ'~(s) will leave the ball of
radius R in time mean.

As we will see, it would be useful for the proof of Theorem 5.1 if we knew that PF?(t) —t

t—-+o0

PP?. Unfortunately we are not able to prove this, since it does not follow from (4.17).
However the weaker Lemma 5.3 also does the job:



126 Graf H.P.A.

Lemma 5.3. Take an orthonormal basis in Ran PF? of eigenstates of H; and let Py be
the orthogonal projection on the first n of them; denote by P,(s) the orthogonal projection
onto Ran '~ (s)P,. Then

P, —— P’ (5.2)
Pu(s) ——— P}*(s) (5.3)
U'(t,s)Pa(s) = P.()U'(2, ) (5.4)
1Pa(t) = Puall .52 0 - (5.5)

Proof: (5.2) is quite evident.
Since

Ran P,(s) = RanQ'~(s)P, C RanQ'~(s) = Ran P}?(s)
we have P,(s)PF?(s) = Pn(s) and therefore

Pn(s) = P?(s) = (Pu(s) - 1)P["(s) . (5.6)

Given ¢ € M, there exists by definition of P??(s) a ¢ € H with PPP(s)e = Q' (s)PFPy.
Then

PPP(s)p — Q' (s)Patp = PPP(s)p — Q' (s) (PP?¥ + (P — P{P)¥)
= Q" (s)(PF? = Pp)p —— 0 (5.7)

n—-+o00

by (5.2). The left hand side is an orthogonal sum
P*(s)p — ' () Patp = (1 = Pu(s))F"(s)p + Pu(s)(B}*(s)pp — ' (s) Put)

showing, together with (5.6),(5.7) that (P,(s) — PF?(s))e — 0.
Given ¢ € H, there exists by definition of P,(s) a ¢ € H with

Po(s)p = 0/ (s) Patp (5.8)

From the intertwining property U'(t,s)Q" (s) = Q'~(t)e~*7(*=*) which follows from the
very definition (4.15) of Q'~(s), we get

U'(t,8)Pa(s)p = Q' (1) Poe*Hi(t=2)y, ¢ Ran P,(t)

i.e. Ul(t,s)P.(s) = Pn(t)U'(t,s)P.(s). By taking adjoints and interchanging ¢ and s we
also get P,(t)U'(t,s) = P,(t)U'(t,s)Pa(s), proving (5.4).
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Pn(t)—Pn=(1—Pn)Pn(t)'—Pn(l-Pn(t))

We begin by discussing the first term on the right hand side. Taking 1 as in (5.8) (with ¢
instead of s), we have ||P,(t)¢| = | Pa¥||, since 2'~(2) is an isometry on Ran P/”. Now

(1 = Pa)Pa(t)p = (1 — Pa)(Pa(t)p — Patp) = (1 — Pu)(2(t) — 1) Putp
and hence [|(1 = P,)P,(2)]| < ('~ (¢) — 1)P.||||Pa(t)||, which vanishes by (4.17) and by
the fact that P, is of finite rank. The second term is just the adjoint of
(1= Pa(t))Pa = (1 = Pa(1))(1 - Q' (1)) P
and vanishes for the same reason. .

Lemma 5.4. For any ¢ € Pf°"*H = (1 — P/*)H and any ¢ € H:

. 1 s+T .
| T-l-l,I-Eoo—T__/' dt (e, U'(t,8)¥)| =0 . (5.9)

Proof: Let us put s = 0 for simplicity.
Step 1: For ¢ € Pf°™H

> [a o <l

where ¢(7) — 0 as 7 — +oo.

By the Schwarz inequality it suffices to prove

> [ @, w)P < cn?lel?

The left hand side is equal to

- / dt ($, et p)(e o, ) = (zb,l / dt e‘Hf‘KP,°°“te—‘Hrf¢)
T Jo T Jo
where K = (¢, )p = KPf°™ is compact. But

”% / dt eiH;iKPlconte-—iH;t” T__,+°°i 0
0
by the usual RAGE Theorem in the form e.g. of [4], Lemma 4.2.

Step 2: For any T >0
LT & £ ey I (5.10)
T—+o0
uniformly in 0 <t < T,
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It is enough to prove this on D(p?). It is easy to check that

n

k}::l Vi(z — (z&(t) —uit)) = Z Vi(z — (ur — ui)t — Azi(t)) -;;—oo> Vi(z) (5.11)

k=1

as bounded operators from D(p?) to H. Moreover, for any ¢ € D(p?) the set {etHitp | 0<

t < 7} is compact in D(p?), hence the convergence (5.11) is uniform on this set. Then
(5.10) holds since

n

T+t . ,
(UI(T,T+t)_eiH1t)(p = q,/ dt’ UZ(T, tr)(z Vk(m—(:ck(t')—uzt'))—V;(:c)) ezH;(T+t—t )cp
T k=1

Step 3: For any ¢ € Pf°"*H, » € H and € > 0 there are a T > 0 and a Ty > 0 such that
for T > Ty

1 T+
—/ dt |(,U(t,0))| <e . (5.12)
T JdT
This follows from
1 [T+ : - 1 [T+r 1 ,
[ @l v womi=1 [ aiwhT0e v o)
T TJr

- .i_ jo "t [(UN(T, T + )0, UT,0)8)

% 2 f dt |(Hitp, UNT, 0))] + f Lt | (AT, T + 1) — Hit)p, (T, 0)9)|
0 T

< (c(f)+ sup ||(U’(T,T+t)—e*‘H**)so||) %l
<t

by the unitarity of U'(T,0). Choose first 7 by Step 1 and then T, by Step 2 big enough
such that both terms become smaller than /2 for T' > Tg.

In order to prove the lemma we set f(t) = |(¢,U'(¢,0)%)| and write

1 (T 1 To [FF0)-1 (k1) 1
— dt f(t) = = f dt f(t) + / dt f(t —i—/ dt f(t
T/ﬂ. f( ) T 0 f( ) ’;0 To+kr f( ) Tg+[2—TT°-]1' f( )

< 7 (@4 Dlelwl +r T2

by (5.12), where [-] denotes the integer part. Thus

T
limeup - [ dt (s, U(2,0)8)| < & "

T—+o0 0
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Proof of Theorem 5.1: By the usual argument it is enough to consider the case where
C is a rank one operator, i.e. C = (¢,-)n, thus reducing (5.1) to

Jim [ (6,000 - PN =0 (5.13)

Now take a sequence P,, as in Lemma 5.3; given ¢ > 0 choose n such that

lellll(Pnls) — PPP(s))dll <& and 1B1lI(Pn — PPP)ell <€
which is possible by (5.2), (5.3). Hence making also use of (5.4)

(2, U (2, 8)(1 — PPP(s))%)| < (0, U' (2, 8)(1 — Pu(s))¥)| + ¢
S (L= Pa(®))e, Uty 8)9)| + ¢
< (1~ Pa)p, U'(t,8)9)| + | Pa(t) = Pullllellllvll + e
S (= PP?)e,U'(t, 8)9)| + € + (| Pu(t) — Pullllellll]l + <

(5.13) now follows by virtue of (5.5) and (5.9). u

6. Asymptotics of Observables

In this section we are interested in scattering states

scat‘t(s) - {1)[) €EH | ¢ L Ra'nnl (3): l= 1 }
={y € H | PPP(s)Gi(s)$ =0, I = 1,... ,n}
(the second equality follows from Gy(s)Q; (s) = 2'~(s)Gi(s)) and in the asymptotic be-
haviour of certain observables along scattering trajectories. As a result we shall see that,

roughly speaking, z/t tends to p as for a free particle.
We consider once more

K(t) = %(p - ;)2 + ZVz(z — z(t))

Theorem 6.1. Assume (T1), (P1) and let 3 € M, ,44(8). Then

U(s,t) f(K()U(L, 8) ——— f(0)¢ (6.1)

for any bounded continuous function f on R.
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We first pay attention to the ‘free’ part of K(t):
Lemma 6.2.
i) %(p — 2)2, defined on S(RY) for t # 0, is essentially selfadjoint; its closure, denoted
by Ko(t), satisfies

.p3.1 2 ;23
Ko(t) = ™52 (i‘t-) fxt (6.2)
ii) D(p? + z2) is a core for Ko(t). For ¢ € D(p* + %)
2
Kol = (- EEE 4 )y (6.3)

iti) Ko(t) is Galilei invariant:
G(t)Ko(t) = Ko(t)G(2) (6.4)
for G() = e~V teipute=iue,
Proof: i) (6.2) holds on e""zritS(R") = S(RY). Hence it has a selfadjoint closure satisfy-
ing (6.2).
ii) (6.3) also holds on S(RY), together with |[(pz + zp)¥| < const||(p? + z2)¥|],

(p — $)?%]| < const ||(p* + z?)¢||. Hence (6.3) follows by taking closures.
iii) It is enough to verify (6.4) on S(R”), where it is evident. |

Lemma 6.3. For ¢ € D(p? + z2)
U(s,t)K(U(t,8)¢ = s> K(s)y + Z /td‘r rGi(8) T U (s, T)Wi(T)U (7, 8)Gi(3)% (6.5)
I=1"°

where Wi(7) = 2Vi(z — Azi(7)) + (z — 7AZ(7))VVi(z — Azi(T)).

Proof: Let ¢, = U(t, )¢, ¢, = U(t,s)p with ¢, ¢ € D(p?+z2). Then 94, ¢, € D(p? +z?)
C D(K(t)) follows from Corollary 2.3 and from (6.3). The computation which yielded (3.2)
is now seen to hold for v = z/t in form sense on D(p? + z?). We only remark that its
starting point

(pr+ats Ko(t + At)Perat) — (¢, Ko(t)hs) =
= (prrat, (Ko(t+At)— Ko ())he)+ (Ko (t+ A1 a1, Yo at—1Pe) (P14 ac— 91, Ko(t)$e)

calls for the continuity of Ko(t)p¢, which follows from the propositions mentioned above.
Hence, from (3.2)

dt(sot,K(t)'l’t) = - (‘Pz,Ko (t)%e) + ; Pt (" — 21(1)) VVi(z — za(t))3:)

“‘%(‘Pt, K(t)¢e) + '} D (e, 2Vi(z — (1)) + (2 — tai(£)) VVi(z — 24(2))) 2)

=1
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Alternatively, this can be written as
d d
a’;(‘Ph t?K(t)p,) = E(‘Pn K (t)) + 2t(we, K(1)3e)

=13 (oo, (2Vi(z — z1(t)) + (& — t84(8)) VWi — (1)) )
=1

Due to (P1), Wi(7) is a continuous function of 7 € R to the bounded operators from D(p?)
to M. Then, integration gives the weak form of (6.5) up to a trivial rearrangement by means
of Galilei transforms, since by the continuity of the integrand in (6.5) the integration can
be carried inside the scalar product. (6.5) now follows, since ¢ was arbitrary in a dense

set. |

Proof of Theorem 6.1: In order to shorten notation write K(t) = U(s,t)K(t)U(t, ), so
that (6.1) reads f(K(t))% e f(0)%. By the so-called Stone-Weierstrass gavotte ([1],

Appendix to Chapter 3) this holds for f € Coo(R) if it holds for resolvents f(z) = (z—z)~1.
The argument allowing to extend this to all bounded continuous functions can be found
in [12], proof of Theorem VIII.20. We stress that these implications hold on individual
states 9. Furthermore, by the first resolvent identity, it is enough to prove

(m,(K(t) = 2)79) 2 (=) "'(n,¥) .  z€C\R

for n € H. Now we take a regularization ¥ € D(p* + z2) of ¢ with ¢(® = 1 slow
enough that

| K ()] < constt (6.6)

(note that in general ¢ ¢ HJ,,..(s)). Here we assumed s # 0 without loss of generality.
Then

(m (B (8) = 2)71 = (=2) 7 )9) = 27} (n, (K (2) — 2) T K (1))
= 27 (R () - 2) 70, K9 ) + 272 (0, (K (1) — 2) R ($)(% — ¥))

The second term vanishes as ¢ — +o0, for (K(t) — z)~* K(t) is uniformly bounded in t. It
is therefore enough to estimate K(¢)%(* using (6.5):

IR < S IK () + > 2 [ 5|0 - Preneie

+325 (flor [5mieon) s - o

where we have inserted a factor of (1 — P?(s)) due to 1 € H, ,4(s). The first term tends
to zero as t — +oco because of (6.6), and the third one because |[rAz;(7) — Az;(7)| and
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hence ||W)(7)| are uniformly bounded in 7. Since Wi(7) is relatively compact with respect
to p?, the second term would vanish by (5.1) as t — +oco if Azy(7) =0, i.e. if Wi(1) were
independent of . In order to gain the necessary ‘uniform compactness in 7’, we look at
the decay rate (1 + |z|)™° rather than at the potentials themselves:

L [dr I 1)1 = PP

<3 [ W@+ RN + D001 = )G

const

; f,“’ 11+ |2y~ U*(r, 8)(1 — PPP())Ga(a)¥]l

<

since

Wa(m)(1 + [=)°]l
< @IVi(2)le,e0 + ITAZL(T) — Azi(7)][[VVi(2)]le\00 + |2V Vi(2)les00) -

.suP( 1+|z| )e
z \1+ |z — Azi(7)]

is uniformly bounded in 7. Here we have set ||V (z)|lc,c0 = [|[(1 + |2])*V(2)]|0o- u

Corollary 6.4. Let ¢ € H_,.,(8). Then there is a sequence 73 —t +o00 such that
— 1T 00

U (7, 8)Gi(s) -;:i":: 0 I=1,...,n , (6.7)
and
U (s, i) f(Ko(m))U(ay 8)$ ——— f(0)¢ (6.8)

for every bounded continuous function f on R.

Proof: By (5.1) we know that for every k > 0

3 2 [ar IE (e < B0, )G 0
=1 *

Thus there is a 74 as big as we like such that

n

S IF (el < U (riys)Gils)l <

=1
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which proves (6.7). Moreover, setting ¥ = U(7k, s)¥,

3 Vit — zi(m))all = 3 Vil — Azi(ra)) Uiy o) Gals )b
=1 =1
< Y IVillellF(J2] < B)U (7, 8)Gi(s)9
I=1

+ Y IVi(z = Azi(n)) F(lz] > F)lloo |l
=1

— 0 . (6.9)
k—+4co

The difference of the resolvents of K(ri) and Ky(7i) is

n

((Ko(me) —2)7" - (K(Tk) —2) )k = D (Ko(m) — 2) " Vilz — zi(7))(K (1) — 2) " ha

= 3" (Ko(m) = 2)" Wiz — ma(m))(—2) o

+ Y (Ko(me) — 2) 7 Vi(z — zu(m))(K(m) = 2) 7 = (—=2) g
=1

The first term goes to zero as k — +oo by (6.9), while the second does the same by (6.1).
N
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7. Asymptotic Completeness

The proof of asymptotic completeness proceeds in two steps. First we prove that on certain
subspaces the full dynamics is well approximated by simpler ones (Lemma 7.2). Then we
show with the asymptotics of observables that the sum of these subspaces is absorbing
with respect to the full dynamics on the scattering states, thus providing an asymptotic
description of them (Lemma 7.3). The estimates along the way will be more transparent
if one keeps in mind the following criterion for asymptotic completeness:

Lemma 7.1. Suppose 3 € H enjoys the following:
For every € > 0 there areaTt € Rand p € H, 1 =0,... ,n such that

U, s} - > @l <e
=0
and
|
sup (U (t,7) — e F ol S ¢
sap (U, 7) = Gi(t) " te =Gy (r)) ] < e l=1,...,n

Then ¢ € P;_, Ran Q; (s).

Proof: For t > v we have

Ut ) = (774 Do + 3 Gi(t) e Hi =Ny (7)py) | <
=1

< Uty — S| + [T, 7) — e F ) 0|+
=0

+ 31U, 7) = Gi() " e EGy 7)) i

<(n+2)
Moreover, because of the asymptotic completeness of the one-center systems ([4], The-

orem 9.1; [14], Theorem XI.112) there is by the Cauchy criterion a ¥ > 7 such that

supll(e—i’;(t—‘?’) _ e-—-in(t-—'T'))e—iH,(‘F—r)P[contGl(T)(Pl” <e
t>F

Thus, fort > 7
) . g2 = .
”U(t,s)'z/;— [e—tﬂz—(t—f) (e—:la—(iu-r)soo + Z G{(‘F)_le"'H‘(‘F—T)PfontGI(T)Pz)+
=1

+ ) Gi(t) eI PPPGy (1)) || <

=1
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< [0t )% = (50 + 3 Gu) 2 HEG () |+
I=1

+ “Z(e—a'!;-(t—‘F)Gl(,,-,)—le—iH;(‘?—r) _ Gl(t)-le—iH‘(t_T))PlcontGl('r)(pl”
=1

n

<(n+2)e+ Z”Gl(t)—l (emir;’-(t-f) - e—iH;(t-f))e—iH,(f—r)PlcomGI(T)w”
=1

< (2n 4+ 2)e

This can be written for t > 7 as

”U(t,s)‘l,b _ (e—i’,i(t—a),!/)o e E Gz(t)_le_in(t—')prGz(S)l,b:) ” < (2n+ 2)5 .
=1
itk ¢0 — e—i’;(a—f-) (e—iP;-(-F—r)SDO 'y ZGI(;’-_)—1e—iHr(*l"-r)PlcontGl(T)(Pl)
=1
and Pr=Gy(s) e tHC-NG(r)er , 1=1,...,n

Multiplying by U(s,t) the expression within norm bars, and taking the limit £ — +o0, this
shows that

P € @Ranﬂ,‘(.s) = @Ranﬂ,_(s)
=0 =0

because of the closedness of these ranges. L

Lemma 7.2.
i) Let 0 < vg < v and g € CP(RY) with g(p) =0 for |p—wi| <wv, 1=1,... ,n. Then

2
lm sup (U(tz,tl) ~i%r (ta- fﬂ)g(p)F(Ko(tl) <Iyll=0 . (11
t1—+004,>1, 2

i) Let v,vg > 0 with 2v+vy < mingy [ug —uy|, g1 € CP(R) with g1(e) = 0 for e > v?/2,
and g; € Cg°(RY) with g2(p) = 0 for |p| > v. Then

lim sup (Ul(tz,tl) — e_"H'(t’_t‘)) 91(H:1)g2(p) F(Ko(t

t1—+0 ¢, >,

(7.2)

Proof: i) By (6.2)

(Utta, 1) - e 5 0=) o) F(Ko (1) < ) =

22 1 . p2
= (U(tz,tl) —e7i (t"“i)) =% ‘lg(p)F(_f__ < E?')et%h ’
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hence the claim follows by (4.6) with s = 0.
ii) We take a > 1 with v + a(v + vo) < ming; |ux — wi|. By (4.1) and (6.2)

1P (l2] > a(v+o)ts)oa(p) F(Ka(ts) < )]

o5 122 o2 R
= ||F(|z| > a(v+vo)t1)e“’2_“gz(p)F(§t—z < ?0)" < const t] N
1

It is therefore enough to show

fm  sup ”(U'(tz,tl) _ e-iH;(tz—h)) a1(H))F(|z| < a(v +'vo)t1)“ =0 ,

t1—+o0 ¢;>1,
which is precisely what (4.7) does. [

Lemma 7.3. Take 0 < 2v < mingy; |ux — uy| and g,h € C5°(R) with g satisfying

1 1
gle)=1 for e< 5(3’2_)2 and gle)=0 for e> 5,vz
Then fOT‘ ¢ € H;;:au(s) there is a sequence Ti -;——;—-) 400 such that
—+o0

lim sup (U(t,rk) - e_"%z(‘“"*)) (1 - ;gz(—;—(p - u;)z)) h(p;)U(‘rk,s)d) =0 (7.3)

k—+oot>r,

: -1_-—1i =T 1 i

 m sup (U(t, ) — Gi(t) e =G (1)) (S (P — w)(E)U (e, 3)¢'“ = 0(7.4)
—+00t>r, 2 2

Proof: Take vg with 0 < vg < v/2, 2v + vg < mingx |ur — w|, and f € Co(R) with
f(0) = 1 and f(e) = 0 for e > v3/2, and let 7 be the sequence given by Corollary 6.4.

Then, by (6.8)

(F(Eo(me) = DU (rmy e} 20

and it is enough to prove (7.3) with a factor of f(Ko(7x)) = F(Ko(7k) < P5‘21),1’(1{0(1';,)) in-
serted to the left of U(7%, s). Then (7.3) follows from (7.1), since (1-Y 1, ¢2((p — w)?/2))
h(p?/2) satisfies its hypothesis with v/2 instead of v (in particular it has compact support,
which is the reason for introducing h).

Applying Gi(t) to the left we see that the norm in (7.4) is equal to

H(U’(t,m) — ¢ Hi(t=m)) gz(p;)h(-lz-( + u;)Z)Ul(rk,s)G;(s)d;” : (7.5)

Because of (6.7) and the compactness of g(H;) — g(?;) one can replace in (7.5) one of the

factors g(%—z) by g(H;). We can then insert as above a factor of F(Ky(7i) < 3.;1)]"(]{0(1',,))
since, due to (6.4)

(F(Ko(7r)) = 1)U 7k, 8)Gi(8)¥ = Gi(me ) f(Ko(Tr)) = 1)U (7ry 8)p ——— 0,

k—+4o0
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and then apply (7.2). |

Proof of Theorem 1.1 iii): It is enough to show ¢ € @;_, Ran Q; (s) for ¥ € H,4.(s).
Given ¢ > 0, we can take by (3.30) a function h € C§°(R) such that

2
sup|(1 — A(ENU(t,s)] < &
t>s 2

Now take g as in Lemma 7.3 and r = 7 so that the suprema in (7.3), (7.4) are smaller
than e. Then the hypothesis of Lemma 7.1 are satisfied with

00 = (1*292(%(1’-”1)2)) CATCAPT
=1

2,1 25 10
pr1=g (E(p—ul) )h(?)U(Tk,S)I,/) , l=1,...,n . |
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