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Probability Axioms
for Quantum Field Theory.

By Etienne Frochaux, Département de Mathématique,
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse.

(28. XI. 1988, revised 12. VI. 1989)

Abstract
We give sufficient conditions on a characteristic function of a probability space
for its derivatives at the origin to satisfy the Osterwalder-Schrader axioms.
These conditions are the Probability Axioms for Quantum Field Theory. The

weakly coupled P(cp)2 models constructed by Glimm, Jaffe and Spencer satisfy
these axioms. Some new results about these models are established, such as the

strong convergence of measures when the Euclidean-space cutoff is removed,
the continuity of some combinations of Schwinger functions l\ the construction
of the Euclidean Wick fields and the generalization of the Feynman-Kac-Nelson
formula for the generalized Schwinger distributions.

This is a result of the Thèse de l'Université de Lausanne of the author.

Introduction
Motivations. In a previous paper [Frochaux, a] the particle structure of a

Quantum Field model with weak coupling has been studied using a new method,
the variational perturbation method, initially proposed by Glimm, Jaffe and
Spencer. Some mathematical statements have been used, concerning the
existence of some vectors in the domain of the Hamiltonian, and the regularity
with respect to the coupling constant of some scalar products. These statements
are proved in [Frochaux b]; this last paper use some basic properties of the P(cp)2
models, that we establish here.

Contents. We present the P(cp)2 models with weak coupling and gives many new
results about them. The exposition begins at the axiomatic level, starting from
the Osterwalder-Schrader axioms. The First Part gives the conditions on a probability

theory to generate an Osterwalder-Schrader model, in a space-time of d

dimensions, d>2. The Second Part gives the example of the weakly coupled P(cp)2
models, constructed by Glimm, Jaffe and Spencer. Here d=2. Some new results
about these models are established, such as the strong convergence of measures
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when the Euclidean-space cutoff is removed, the continuity of some
combinations of Schwinger functions, the construction of the Euclidean Wick
fields and the generalization of the Feynman-Kac-Nelson formula for the

generalized Schwinger distributions.
An effort has been made for the transparency of the mathematical exposition,
mostly self-contained, and for the simplicity of the given proofs. A more detailed
version of this work is given in [Frochaux, d].

First Part : the Axioms, page 1039.
I. The Axioms, page 1040 ; TL. The main result, page 1042 ; III. Choice of the

Euclidean Space, page 1047.

Second Part : Examples, page 1049.

I. The free model, page 1049.
1.1 The model, page 1049 ; 1.2 Euclidean Wick Fields, page 1051.

II. The weakly coupled P(cp)2 models, page 1052.
II. 1 The regularized models, page 1052 ; II.2 Two convergence theorems, page
1053 ; II.3 The weakly coupled P(p)2 models, page 1055.

III. Euclidean Wick Fields of the weakly coupled P(cp)2 models, page 1057.
III.l The Wick-Schwinger functions, page 1057 ; III.2 Euclidean Wick Fields,
page 1060.

Appendix I. Integration by parts formulas, page 1063.
Appendix II. The Banach space 3), page 1066.
Appendix III. A technical lemma, page 1068.

Notations. N={0, 1, 2, N*={1, 2, ...); ce Œ is the complex conjugate of c;
the functional spaces ^(E"), ^E"), Lp(En) denote spaces of real-valued
functions. Let f: E n-> E. The translated function x-f is given by x-f(y)=f(y-x) for all

x,ye En. The Fourier transform of f is f (k)=(27c)"n/2 |K„ dnx f(x) eikx for all ke En; it
may be complex-valued. The dominated convergence theorem is noted as d.c.
theorem, and the Cauchy-Schwarz inequality as CS inequality.

First Part : The Axioms

In the 1950's Wightman wrote down a set of axioms for the Quantum Field
Theory, in order to give a precise mathematical framework to this subject. An
equivalent formulation was also given, concerning a family of distributions, the
Wightman distributions, connected in a natural way to the Quantum Field Theory
([Streater, Wightman] or [Jost]). The extension of Wightman distributions to
imaginary time leads to analytic functions, the Schwinger functions. Osterwalder
and Schrader found a set of properties for a family of functions to be the set of
Schwinger functions of a Wightman model [Osterwalder, Schrader]. These are the
Axioms for the Euclidean formulation of the Quantum Field Theory.
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The free model (i.e. without interaction) for massive, spinles particles satisfies
the Wightman axioms. In order to find more interesting examples (i.e. with
interaction) it has been necessary to look at other Euclidean theories constructed
on a probability space and connected to the ordinary Quantum Field Theory by
the famous Feynman-Kac-Nelson formula [Nelson]. It is possible to write down a

set of axioms, the Probability Axioms for Quantum Field Theory, concerning a

probability space, such that some expectations are the Schwinger functions of a

Wightman model [Glimm, Jaffe, §6 and 19]. The proof of this statement, rather
difficult, consists in the construction of the basic objects of the Quantum Field
Theory, starting from a probability space.
We give here another proof, using slightly different probability axioms (§1),
constructing only the Schwinger functions,, and verifying that they satisfy the
Osterwalder-Schrader axioms (§11). The main interest in doing this is the
simplicity of our axioms (we do not need analyticity of the characteristic function)
and also of the proof (because we lean on the Osterwalder-Schrader
reconstruction theorem). The generality of our axioms make necessary the discussion
of which Euclidean Hilbert space must be use for the reconstruction (§111).

I. The Axioms

We restrict ourselves to a world with only with one sort of particles without spin
and without electric charge, moving in a d-dimensional space-time, with d>2.
Let (Q,E,|i) be a probability space, where Q=5^'(Ed), L is the Borelian o-algebra of
Q (given the weak topology), and \i is a probability (i.e. positive and normed)
measure on £. Let <j)f, for fe^(Ed), be the random variable given by <j>f(q)=q(f) for
all qs Q. The characteristic function ^of u is defined by:

<*P: ^(Ed) -> Œ ^f) JQe1<t>f(q) d^(q)

By a Minlos theorem [Minlos], there is a one-to-one correspondence between the
probability measures \l and the functions % provided that the latter verify :

i) Normalisation : ^0) 1

ii) Continuity : ^ is continuous
v (M)

iii) Positivity : for all ns N *, fe yn, ze <Cn : ï i\ W.fj) Zj > 0

We will call these conditions (M).
Let ^ be the Euclidean group on Ed (rotations, translations and reflections),
acting on y(R.A) in the usual way. We single out a particular direction in Rd

which we call Euclidean time ; a point in Ed will be written as: x=(x,x), where x is

an Euclidean time, and xeE*1"1. Let [T(x), xe Ed}<=^> denotes the subgroup of

translations, and 9e^ the reflection in the x=0 hyperplane. We also define:
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y+ {fe ^(Ed), f(x,x)=0 if x< 0}

From now on, we write Sf instead of 5^(Ed).
The Probability Axioms for Quantum Field Theory, denoted by (P), are the

following conditions on a function ^"satisfying (M) :

i) Euclidean invariance : ^yf) W) for all ye^, fe y
ii) Osterwalder-Schrader positivity : £ z; ^e-fj-fj) Zj > 0

for all ne N*. fe (S>+f, ze <En

iii) Cluster property : lim [<^[f+T(sx).g) - ^fJS^g)] 0
s->°

for all xe Ed -{0} and f,ge Sf
iv) Regularity : for all fe J5f a-^af) is of class C~ in an E-neighborhood

of a=0 and there exist a Schwartz space norm I...I and finite
positive numbers a,b,c such that :

3°^af) < a bn (n!)c lfln for all ne N*
a=0

The axioms i), ii) and iii) can be read in [Glimm, Jaffe, §6]. The regularity axioms
of these authors requires analyticity of the characteristic function, and other
complicated properties that we do not need here.
The interest of (P) appears in the following reconstruction theorem.

(P)

Theorem. Let^-.Sf-^l satisfy (M) and (P). Then there exists a Wightman model
whose Schwinger distributions Sn are the derivatives of tf:

Sn(f,...,f) i"n a'fctaf) W

for all neN* and fe S".

The demonstration consists of a Proposition (§11) that we will prove and then of
the Osterwalder-Schrader reconstruction Theorem [Osterwalder, Schrader].
The Osterwalder-Schrader axioms concern the Schwinger distributions Sne

y ((JR. d)n), ne N (we give the case where the Sn are real). We need some

definitions; for all ne N *, let us denote :

5£c {fe 5"((Ed)n), f(xi,...,xn)=0 if x;=Xj for some l<i*j<n, and so are all

derivatives of f]
5£+ {fe5£c, f(x1?...,xn)=0 unless 0 < xx< <xj

For all fe5"((Ed)n) and 7ceon, the set of permutations of {l,...,n}, we denote by f*
and Ttf the following functions :

f*(x„...,xn) f(xn,...,x1) and 7tf(x,,...,xn) f(xJl(1),...,x,l(n))

S^ will be the subgroup of 'ß consisting of translations and rotations of Ed only
(the special group of *ß), acting on 5"((Ed)n) in the usual way.
We state now the Osterwalder-Schrader axioms. For all n, me N * :
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i) Euclidean invariance : Sn(yf) Sn(f) for all yeSfß and fe j£c
n

ii) Osterwalder-Schrader positivity : X Si+j(6fj*®fj) > 0
i,j=0

for all f0e Œ and fje S?+, l<i<n.

iii) Cluster property : lim f Sn+m(ef*®T(sx)g) - Sn(9f*)Sm(g)l =0

for all x=(0,x), xeEd1-{0} and fe^+, ge^,+
iv) Temperedness : S„=l, Sne 5"'((Ed)n) and there exist a Schwartz

space norm I...I and finite positive numbers a,b,c such that :

| Sn(f1,...,fn) | < a b" (n!)c fl IfJ for all f„...,fn e ^(Ed)
i=l

v) Symmetry : Sn(7tf)=Sn(f) for all reeon and fe Sf,,.

(OS)

II. The main result

Proposition. Let^-.S^-^^ satisfy (M) and (P). Then the Sn distributions defined
by (1) verify (OS) with the same Schwartz space norm I...I and the same numbers
a, b, c in (OS) iv) as in (P) tv).

Proof of the Proposition. We work in five steps. Step 1 : (P) iv) => (OS) iv) ;

Step 2 : (P) iv) => (OS) v) ; Step 3 : (P) iv) and i) => (OS) i) ; Step 4 : (P) iv), i) and ii)
=> (OS) ii) ; Step 5 : (P) iv), i) and iii) => (OS) iii)
Step 1 : (P) iv) => (OS) iv).
We consider a more simple probability space: (E ,1i,a) where o is a probability
measure on the Borei a-algebra TJ of E. Here the characteristic function is now :

^a) jE eiax do(x) for all ae E, and the Bochner theorem takes the place of the

Minlos theorem. For all ne N we define the numbers, whenever they exist :

%n lim a2" X Hk) (-i)k^ka)
a-»0,ae E n<kSn

where0\denotes the binomial coefficients. If a-^^a) is of class CN for some N

e N in an E-neighborhood of a=0, then ^„=(-1)" Sf(2n)(0) for all ne N with 2n<N.

Lemma 1. Let a be a probability measure on H and Ne N such that ^n exist for
all n<N. Then : a) the moments J xn do(x) exist for all n<2N

b) a->^a) belongs to C2N(E) and the formulas hold :

^(2n)(a) i" L x" eiaX do(x) for all n<2N and ae E.
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Proof of a) (from [Loeffel]). The cases N=0 and n=0 are trivial. Fix two integer n,
N with 0<n<N and two real numbers A,a with A>0 and lal<Jt/A. Because lax->

is even and decreasing on [0,rc/2] : Ixl <

ax
aA

2 Sin T
aA a

2 sin —
for lxl<A.

¦ k 2n
Then: j,x„AX"d0(X) *

aA \2n

„ ¦ o*
2 sin -T-

a 2n

s2n

2 sin — do(x).

lxl<A

We use the inequality 1|X|<A (si'n...)2n do < /E (sin...)2n do and the Euler formula

axy ^ • 2n s k ikax
V n+k/ ^"

-n<k<n

axV" V / 2n \ k i2„„Tr £ (2^) (-1) e
V / -n<k<n v '

to find r 2n
• Jlxl<AX da(x) <

/¦ OA Y« -2n

2 sin
aA

2j

«"2n X ("k) ("»'«[k«)
-n<k<n

The limit a-»0 gives : J|X|<A x2n do(x) < %^ (note that 1^n must be positive!). By a

monotonicity argument, the limit A-»°° exists, and is bounded by "^n. With the CS

inequality the existence of odd moments follows.
Proof of b). Fix n<2N and a,ße E with ß*0. From the Euler formula:

Kp"'I(;)(-i)k«i«^ in

k=0 v ' z

r ßxT
2 5/n —

ß
e do(x)

The limit ß-»0 gives the announced formula (for the r.h.s. the existence of the

limit follows from a) and the d.c. theorem).
Let us return to the probability space (Q,X,.u).

Lemma 2. Let ^-.Sf^d satisfy (M) and (P) jv). Then for all ne N* and fe Sf* :

a) (fl9<Xi)^(i|aifi)|«l=-=«n=0 i"JQVq)"'Vq) *<*>

ö) lo «M^ "• ?f (l) d'a,'(l)
»^ 1 n

< ab" (n!)c fi If. I

i=l

By a), the following definition of the Schwinger distributions agrees with (1) :

S„-l
S„(fi,...,f„)=JQ<t)f (q) (q)dp(q) for all ne N * and fe Sf* (2)
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(OS) iv) follows from b) and the Schwartz nuclear theorem.

Proof of Lemma 2 a). Recall that L is generated by the sets Cf(B)={qe J?",
<(>f(q)eB} for all fe i^and BeTJ; then for all fe 5f B-»n(Cf(B)) is a probability measure

on (E/B); we call it of. From (P) i'v) :

«(of) J^«^ dn(q) JR eiax dof(x)
is of class C°° in an E-neighborhood of a=0 ; it follows from Lemma 1 that :

j" oc/ ^ -n C /j. \n ioc<bf(q) .n f n iax
9a^(af) i J C<t>f) e yîW du i JE x e dof

exists for all ne N. a=0 gives the announced formula, in the case where all fj are
the same. The general case follows by n-linearity.
Proof of Lemma 2 b). From a) and (P) iv) : l|Q (<|>f)n dal < a bn (n!)c IfP for all fe Sf.

The announced formula follows from Holder inequality.

Step 2 : (P) iv) => (OS) v).

Since Sne ^"((Ed)n), Sn(f) can be written as a limit, for all fe 5"((Ed)n) :

Sn(f) lim S*(f) where, for all e>0 :

£->+0

Sn(f) J(Rd)n d"dx f(Xi,...,Xn)Sn(T(x1)je, T(xn).jE) Sn(f*(jE)*n)

for all je Sf with jj=l; je is the function Ed3x-»e~d j(x/e). Note that the limit is

independent of j. From its definition (2), Sn(fj,...,fn) is symmetrical, and so is Sf

for all e>0, and so is its limit when e-»0, too.

Step 3 : (P) iv) and i) => (OS) i).

For all ye Sß and fe ya, we have from (2) and (P) i) :

Sn(yf1,...,y.fn) (113«;) ^loj-fi) |a=0 (IPai) ^laifi)la=0 SJfi*~Sù ¦

For all fe^cc^((Ed)n), we approach Sn(f) by SEn(f) with e>0. With the previous

result and some change of variables we obtain :

Sen(y.f) Jdndxf(Xl,...,xn) Sn(y1T(y.x1).jE,...,y1T(y.xn).j£)

A little effort gives : y"1T(y-x)-jE T(x)-kE forallxeEd
where k=y'j and fe SO(d) given by y'-(x-y) yAx - yAy for all x,ye Ed. We obtain

S^(y-f) Sn(fji.(kE)*n). Because Jk=l and ke 5f the limit e->0 exists and gives Sn(f).
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Step 4 : (P) iv), i) and ii) => (OS) ii)
The action of ^on ^induces an action on Sf' in a natural way, and then also on
the random variables 5"'-»<E. By (P) i) this action is realized by unitary operators

on L2(Q,(j.). We introduce a closed subspace of L2(Q„u) :

L+ closure of the span of {e1<|,f, fe S"+}
The bilinear form b : L2(Q,u.) 3 y, % -* b(v>x) Ö-V > X )l2(o u) satisfy :

Lemma 3. Let ^^-»Œ satisfy (M) awtf (P) i) and ii). Then for all ye L+: fr(y,y)>0.

Proof. By (P) i), 9 acts as an unitary operator on L2(Q,u). Then the form b is well

defined. Let us consider a vector y Sj<jSn Cj e1^^' with ne N *, ce Œ" and fe

(Sf+f. Note that ye L+. We have :

*(¥.¥)- X ~j ck (e'S.eH)^ j X "j cfc Wfj+fk)
j,k=l

'
j,k=l

which is non negative, by (P) ii). Because all vectors of L+ can be approached by
such a y, the conclusion holds.

For all neN* and fe5"((Ed)n) we introduce the random variables :

Qä>q-»-%n(q) lim I dndx f(Xl,...,xn) ?kkO-j-W *" *T(0-j.W
e->+0 J(E )n

(3)

where je is an approximation of the Dirac distribution as in Step 2. We will use

the following functional spaces, for all ne N * :

SS { fe^((Ed)n);f(xi,...,xn) 0if x;<0 for some ie{l,...,n}}

Lemma 4. Let ^-.Sf^fL satisfy (M) and (P) iv) and ii). Then for all ne N* we have

<t»"eL2(Q,n) if fe^((Ed)n) and <|)fneL+ if feS?*.

Let us discuss the consequences of Lemmas 3 and 4.

Take y f0 + I1Sn£N $ with Ne N *, f0e Œ and fne ig+cy* for all l<n<N. By Lemma

4 : yeL+. Then by Lemma 3 : 6(y,y) In,m>oSn+m(efn • fm) ^ 0 which, together
with the symmetry of Sn+m (Step 2), proves (OS) ii).

Proof of Lemma 4. Let us begin with the case where f is a product of functions
of E2 : f(x„...,xn) f,(x,) -fn(xn). We define :

<.«D »" 7(eÌE<t,fl(q) - ll - Ue"*^ - lì
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for all e>0 and qeQ, <j>"EeL2(Q,(i) and if fe S?* <t>"£e L+. The lemma holds for such f

if the pointwise limit <|>°(q) lim£^+0tfe(ci) actually converges in L2(Q„u). Look at

2 r
YIE

A™

L2(Q^) J Q iv^-n'-p*-.) dn(q)

The convergence to 0 if e->+0 is assured by the d.c. theorem (a bound independent

of e follows from : le_1(cxpie<|)f(q)-l)l < l<t>f(q)l eLp(Q,p) for all l<p<°°, Lemma 2).

If f cannot be factorized, we use the definition (3). The r. h. s., if e>0, is treated

like the factorized case, and thus is in L2(Q,u) and moreover is in L+ if fe Sf^ and

je Sf*. We have only to control the strong limit in L2 when e-»+0. So we compute :

2

L2(Q,,u)

?f - Jdndxf(xi xn) ?r(Xl).Je- <h-(Xn).Je

^n(f®f)-2jdndxf(x1,...,xn) ^n(f®(T(Xl).jE® - •TCxJ.Je)) +

+ Jdndx dndy f(xj x.) %!,...,yn)S2n(T(Xl).jE«» ». •T(xn).jE*T(y,).Je* - •TCyJ.j,)

which converges to 0 if e-»+0 because S2ne 5"'((Rd)2n).

Step 5 : (P) iv), i) and iii) => (OS) iii).
Because u. is a finite measure, the constant functions are in L2(Q„u.). We call P the

orthogonal projector in L2(Q,u) on the one-dimensional subspace {Qaq->c, ce(C}.

Lemma 5. Let ^-.Sf-id satisfy (M) and (P) i) and iii). Then: weak-lim T(x) =P.
lxl->o°

For all n, me N*. fe ^>+C^((Ed)») and ge ^,t+C^((Ed)m), we know that <j>g.f Ç™ >

L2(Q,n) (Lemma 4). For all x=(0,x), xeEd"1-{0} it follows from Lemma 5 that

0 lim (Vf* ' T(SX) Ol^Q.n) ' (*»-t* ' l )La(Q.n) (1' *ÜV(Q.»i)

lim [Sn+m(9.f*®T(sx).g) - Sn(9-f*)Sm(g) ]
S—» oo L J

and then (OS) iii) holds.
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Proof of Lemma 5. By (P) i), T(x) is a bounded operator onL2(Q,|i) for all xeEd;
it is then enough to verify the weak limit on a dense subspace.

ièf
The span of {e fe Sf) is dense (Lemma 6); we take two vectors in it :

<£ -i<h <£ i<t>o

V=X Cn e " and 3C X dn e
n=1 n=1

with N, Me N*, c4, dj e Œ, f;, gj e y. For all xe Ed we have :

N M

y (T(x)-P) % ),2f0 Xlq.d, [<*tfn+T(sx)-gJ - «£,)«&») ]
which goes to 0 when lxl->°o, by (P) iii).

III. Choice of the Euclidean Space

Let (Q,X,ji) be a probability space, where Q=y(Rn), X is the Borelian o-algebra of Q

(given the weak topology), and u is a probability measure on X- We introduce
two closed subspaces of L2(Q,|j.):

ef closed span of {e'* fe S*}
.JI closed span of {(<s>ff, ne N, fe S*}

We give two Lemmas about the connection between L2(Q,u.) and these sub-

spaces, and we discuss then which Euclidean Hilbert space must be used for the
reconstruction.

Lemma 6. <f= L2(Q,n).

Proof. We establish that all F in L2(Q,n) with : F(f) =JQ e^^ F(q) d^(q) 0 for

all fe Sf satisfies : HFIIL2 0 For all compact set A of E, let {%A e>0} be a set in Sf

which converges pointwise when e-»0 to the characteristic function xA of A. We

suppose that lx^(x)l < 2 for all xe R and e>0. For all e>0 and fe y we have now :

JRda x>) P(af) JQ F(q) x^M) dji(q) £^° JCf(A) F dji

(XA is the Fourier transform of xA)- The equality is due to the Fubini theorem

which allows us to permute the integrals over E and Q when the function is L1 in
both variables ae E and qe Q. The convergence when e-»0 is assured by the d.c.

theorem. Because the sets Cf(A) {qeQ, <|)f(q)eA}, for all fe5" and A compact set of
E, generate X, we have proved that JB F d(i 0 for all Be X-
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For all ne N * the n-th moment of p is Sn(f) =Jq (<|>f)n dp. for fe y when it exists.

Lemma 7. Suppose that there exists a Schwartz «orwi ...1 and two finite positive
numbers a, b such that ISn(f)l < ab" n! Ifl for all ns N*andfe^f TTien : L2(Q,p) hf

— ^rft.

Remark. When the growth in n of ISn(f)l is stronger then in Lemma 7, ^and ^ét

can be different. For an example (in the case where Q=E) see [Feller, §VII.3].

Euclidean Hilbert space. For the reconstruction of the Quantum Field Theory
[Glimm, Jaffe, §6, §19] take <f as Euclidean Hilbert space. The regularity axiom
used there requires analyticity of the characteristic function, which imposes a

growth in n of ISn(f)l no stronger then in Lemma 7; thus in this case c?=^t= L2.

Our regularity axiom is weaker, and admits stronger growth for ISn(f)l (that is, in

(P) iv), c can be >1). Because ef= L2 may be too large, we must require for the

reconstruction the Euclidean Hilbert space to be ^ét.

Proof of Lemma 7. The relation L2(Q,p)=lf is just Lemma 6. To prove "€=^L, we
must construct a random variable exp(i§r) for each fe 5"as a limit in ^s€. For that,

-l ¦>

we define, for all aeE, lak(8blfl) the multiplication operator in L (Q,a) :

AN(a) £ (ia)"
(ff)"

n=0

with Ne N. AN(a) is well defined on L°°(Q,n.), which is dense in L2(Q,(i) (Lemma 6).

Moreover for all Fe L°°(Q„u.) the sequence {AN(a)F, Ne N } converges strongly in

L2(Q,u.) to eia*f F when N-»~ because :

| |AN(o)F - e*0^ F| | < IIFII2

L2 L

IIFIL

Q

(ia)"

v (ia)n ,ia<j>f

n=0 n!
dii

(«!>f)n da
n=N+l

goes to 0 when N-»°° (this follows from the hypothesis of the Lemma and the d.c.

theorem). Because (lleiot*f FIIl2)2 JQ |ei«4>f(q)|2 |F(q)l2 dp(q) (llFIIL2)2 the

multiplication operator emvf is of norm 1. So it is defined on all L2, and it can. be

iterated. Take ae E and ne N such that na=l and a<(8blfl)"1; since le ^#, we have
obtain :

.M>f (eia<Df)"= lim Um ANl(a) - AN»(a) 1

N, -»«> N.->~
that is : exp(ityf) is a strong limit (in L2) of vectors of Jt.
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Second Part. Examples.
The weakly coupled P(q>)2 models associate to any pair (P.X.), where P is a positive

polynomial and A, is a non negative, sufficiently small number, a Quantum
Field model satisfying the Wightman axioms. They are constructed first in a

regularized form, starting from the case X=0 (the free model, §1) and then the

regularization is removed carefully. We describe briefly this construction,
without proof (§11), giving only the result of the cluster expansion of Glimm,
Jaffe and Spencer. We will prove that the limit of involving measure holds in a

strong sense because of the good asymptotic behavior of the characteristic
function (II.2), which is obtain by a generalization of the Integration by parts
formulas (Appendix I). These models satisfy the axioms (P) (Ü.3).
We construct the Euclidean Wick fields (§111) in a simple way (which generalize
the results of Klein, Landau and of Glimm, Jaffe), starting with the case X=0 (1.2),

using that some combinations of Schwinger functions, the Wick-Schwinger
functions, are bounded and continuous (III.l). This permits us to generalize the

Feynman-Kac-Nelson formula for the generalized Schwinger distributions (III.2).
We use the following notations, with now d space-time dimension 2 : y, Sf\
3, V and CN instead of ^"(E2), 5"'(E2), S(E2), LP(E2), CN(E2) as spaces of real-
valued functions (but their Fourier transform may be complex valued). We will
call {jn ne N*} a sequence in 3 which approximates S if jn(x)=n2j(nx) for all xe E2
and neN*, where j is every function of ^satisfying Jj=l.

I. The free model

The first example ¥>:5^-»(I is a Gaussian function, which generates a physically
trivial theory.

Ll The model

1.1.1 Definition. The characteristic function of the free model is % -.y* f ->

exp(-jC(f,f)) where C(f,f)=(f,(l-A)"1f)I2 A is the Laplacian on E2.

1.1.2 Proposition. % satisfies (M) and (P).

Proof. (M) i) and ii) are obvious. For (M) iii) we must prove that, for all ne N*,
fe y* and ze Œ" :

i — - i-C(frfjf fi-fj) i — C(fi,fj)
Z, zi e Zj Z, z i e z j
i,j=l i,j=l

is not negative, where z'i=ziC(fi,fi) for all l<i<n. If A is a nxn non-negative matrix,
so is B, defined by Bij=expAii [Horn, Johnson, § 7.5]. So we have only to verify
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that C is a non-negative quadratic form, which is made obvious by the identity:

C(f,f) JR2 d2k (k2+l)_1 lf(k)l2 for all fe y(lR2).
(P) i) is obvious. For (P) ii) it is enough, as above, to see that for all fe y+: C(9f,f)

JR2(6-f)(k) f(k) (k2+l)"'d2k is non-negative. Recall that support property gives

analyticity by Fourier transformation. If fe y+, then f( S, k) is analytic for k in the

half plane J£Jc>0, and lf(K,k)l decreases if JgJc->+~; and so is (&f)& k) f (S, -k)

(recall that f is real-valued). Then by the residues formula

C(9f,f) JcJEdk f~(icû«,-Ê) f(io4, k) œ(k)"1

where co(k) (k2+l)1/2. Because f is real-valued f (ic,-k) f(ic,k) for all e, ke E,

c>0. Then C(6-f,f) ji Jdk lf(ito(k),k)l2 oo(k)"1 which is obviously non-negative.

Let us prove (P) Hi). For all f, ge y, C(f,x-g) J f (k) g(k) (k2+l)_1 eikx d2k goes to

0 as llxll->°° (Riemann Lemma); thus the following expression also tends to 0 :

%(f+x-g)-%(f)%(g) V0(fK(g) fe" C(f'x'g)
- lì.

We prove now (P) iv). The computation of the derivatives of ^(af) gives :

dna ^o(af)

(-l)n/2n! n/2

(n/2)! 2"/2 C(f'f) f0r n eVen

1 0 for n odd

for all ne N. We define a Schwartz norm Ifl sup^B K2 Vk2+1 lf(k)l and a finite

constant K [J d2k (k2+l)"2]1/2. Then C(f,f) <. K2 Ifl2. We have found :

an„ ^o(af)
a=0

< n! K" Ifl"

1.1.3 The free model. Let <|>f, for fe y, be as in the First Part. The map <j> -.y~^

(Q,X) is the Euclidean field. From the Proposition 1.1.2 and the Minlos theorem

(see First Part) there exists a unique probability measure \i0 on X such that :

W JqeQ dMq) exp M>f(q)

for all fey From the Proposition 1.1.2 and the reconstruction theorem (First Part)
there exists a Wightman Quantum Field model, the free model, the Schwinger
distributions Sn of which are the moments of \i0 :

Sn(f„...,fn) JqeQ dp0(q) <()fl(q) -. <()fn(q) for all ne N* and fe yn.
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1.2 Euclidean Wick fields of the free model

We construct here useful random variables on the probability space (Q,X,p0)-

1.2.1 Wick polynomials. We define the polynomials of Qf :

-n n eia*
:<t>f : i

%(af) a=0

for all ne N *, called Wick polynomials, closely related to the Hermite polynomials;
for n=0, we put %°:=1. We obtain :<t>fj.<t)fn: with fe yn by n-linearity. We will use

the algebraic notation : :A+B: :A:+:B:. Let {jn ne N*} be a sequence in 3 which

approximate 8, fe L2 and meN*. We define a sequence : {yn=|d2x f(x) :(<t>x.jn)m:

neN*}. The following result is due to Nelson ([Nelson] or [Dimock]).

1.2.2 Lemma. {yn neN*) is a Cauchy sequence in L (Q,p0)

Proof. The expectation of a product of two Wick polynomials gives :

K(«f+ßg)i :<s>{ : : <)>„ : d\i0
.-(n+m) -.n -,m
1 o„ a« P %(cxf)%(U) a=p=0

8n>m n! C(f,g)n

for all n,m e N and f, ge L2; 5.;. is the Kronecker tensor. After calculations we find

HVn-Vn'II^CQ,^) m!(2,t)
'— d2k: A

,2m
n
i=l k:Z+l

fm \
f I k

'=1 /
|J„(k)-Jn'(k)|

for all n, n'e N*, where Jn(k)=jn(ki)... j7n(km). Now Jn(k)=J(k/n) for all ke E2, which

converges pointwise to j (0) when n->~ (recall that j (0)=l/2rc for all je 3 with

Jj=l). Moreover lj(k/n)l < jupxeK2lJ(x)l (IIjIIli)/2tc for all ke E2, ne N * and

Knd^iAk^+l))!?(Xki)l2 is well defined because it can be written as Jd2k tf (k)l2

Gn(k), bounded by (IIFIIL2)2 IIGnllL~, where Gn is given in Appendix III. It follows
now from the d.c. theorem that llyn-yn.ll goes to 0 when n,n'-»<».

Remark We have taken je y because of the definition of the Euclidean fields
1.1.3, but the above proof uses only that jeL1.

1.2.3 Definition. Because L2(Q„u.0) is complete {yn, neN*} has a limit :

:(j)m:(f) Um La d2x f(x) :(<|>x.jn)m:

and the maps : <j)m : from L2(R2) to L2(Q,fi0), for all me K*, are called Euclidean



1052 E. Frochaux H. P. A.

Wick fields. (We don't mention j because the limit depends only on j(0)=l/2ji,
see the proof of 1.2.2). For m=0 we put : <|> :(f)=l. For m=l we have : $ :(f) (j)f.

1.2.4 Lemma. For all m, pe N * and fe L2 we have : <t>m :(f) e Lp(Q,,u.0).

This result is also due to Nelson ([Nelson] or [Dimock]). For a more detailed proof,
see [Frochaux, d].

II. The weakly coupled P((p)2 models

We resume the main steps of the construction of the weakly coupled P(cp)2
models, without giving the proofs. Let P : E -> E be a polynomial bounded from
below, fixed for all this paper.

ILI The regularized models

Let A be a compact set of E2 (the cutoff), {jn, ne N*} be a sequence in 3 which

approximate 5, and consider the sequence jxn=ejcp(-JA d x :P(<|>x.jn): J ; ne N

II.l.l Theorem. (%„, neN*) is a Cauchy sequence in Lp(Q,p0) for all pe N*.

This Theorem is due to Nelson. He uses a slightly different sequence, but his
proof ([Nelson] or [Dimock]) admits the case given here.

From the theorem, (xa, ne N*} has a unique limit in all Lp(Q,n0), pe N*. We denote

it q-»e" *' Note the factorization law e"VAUA' e'VA e"VA' for all disjoint compact
sets A,A' of E2. If the polynomial is replaced by XP, \>0, the limit is noted exp-X\A.

11.1.2 Measure of the regularized models. We introduce a probability
measure \ix>A on X by :

<KA(q) ^ du0(q) e"xvA<«l> for all qeQ

which is well defined for all a>0 and A compact set of E2. Z^ A is the normalization
factor. Note that the constant of the polynomial P disappears in the division by
Zx A. Thus the prescription "P bounded from below" can be replaced by "P

positive valued".

11.1.3 Moments of Px,A- The measure \ix A is absolutely continuous with respect
to \i0. So are well defined the generalized moments of pXA :

C(f) Iq^x.a fl :*mi:(fi)
J i=l

for all neN*, me(N*)n and fe y. The goal now is to remove the cutoff, i. e. to
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perform the limit A-»E2. The first step is to establish bounds on S™A independent

of A. We consider a Banach space $) of functions from E2 to E, given in Appendix
II. For all ne N* and fe ^" we write: An(f)=nisi&1 llfjll^. For all U, VcE2 disjoint, we

define: ^j={fe,®, support of fcU) and d(U,V) smallest distance between U and

V (usual distance in E2).

II.1.4 Theorem. There exist K, X_, m_e (0,°°), depending only on P, such that for
all A compact set of E2 and all Xe [0,X],for all n, n'e N*, me (N*)n, m'e (N*)"', (with
i=£isisn mj and i'=XisiSn. m\) :

i) I S™A(f) I < Ü K* An(f) for all fe &
ii) for all U, VCE2 disjoint, fe (,%)n and ge (^V)"' :

C>s)-Of)*) < ili'! Ki+rAn(f)An.(g)exp(-m d(U,V))

The Theorem, due to Glimm, Jaffe and Spencer, is the main and the most difficult
step of the construction of the P(cp)2 models; its proof consists of the control of the
so-called cluster expansion [Glimm, Jaffe, §18]. The Theorem gives an extension

of SXA, originally in (5"')n> to a continuous n-linear form on SB. Note that the

bounds are independent of X in [0,2J.

II.2. Two convergence theorems

Fix Xe [0,X_] for all this paper. The limit A-»E2 is taken first on the moments SXJC

Let Br be the closed ball in E2 of centre O and radius r. A sequence {Aj, je N } of

compact sets of E2 is said to be admissible if BjCAj for all je N.

II.2.1 Theorem. Take neN*, me (N*)n and fe & ". For all admissible sequences

{Aj, jeN} of compact sets o/E2, SxA.(f) converges j/j-»°° to a unique limit.

The proof is in [Glimm, Jaffe, §18] or [Dimock].
We are interested now in the convergence of the measure |1x,a-

II.2.2 Theorem. Take oe X. For all admissible sequences (As, je N } of compact
sets o/E2, Px^aX0) converge ifj-*<» to a unique limit.

[Glimm, Jaffe, Corollary 18.1.3] gives the convergence of the measures, but in a
weaker sense, as in II.2.5. The proof of the theorem needs three lemmas.
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II.2.3 Lemma. Let {Oj, je N } be a family of Borei probability measures on E such

that for all n, je N the moment Fn j=JE xn dOj(x) satisfies : 1) IFn j
I < n! Kn for some

fixed Ke (0,»), 2) lim^^ Fnj exists. Then there exists a unique Borei probability
measure a on TR. such that :

i) 1R xn do(x) lim^„ FnJ for all ne N

ii) JE e'Px do(x) /fm^, JR eiPx dOj(x) for all pe E.

II.2.4 Lemma. Let {pj, je N } be a family of probability measures on X such that

for all n, je N and fe ythe moment Fnj(f) JQ (<t>f)n dpj satisfies: 1) IFn j(f)l < n! Kn Ifl"

for some fixed Ke (0,°°) and Schwartz space norm I...I, 2) limj_,„ Fnj(f) exists. Then
there exists a unique probability measure p o« X smc/i f/iaf :

0 /Q (<t>f)" dp /Jm^«, Fn>j(f) /or a// ne N and fe y
ii) f0 e% dp /iwj^. J0 e**f dUj /or a// fe Sf.

The proofs of Lemmas II.2.3 and II.2.4 (standard!) are given in [Frochaux, d].

II.2.5 Weak convergence of the measures Pj\,ai. The hypothesis of Lemma

II.2.4 are satisfied by the sequence {|Xx,a .J6^} : 1) follows from theorem II.1.4

i) and Lemma A.II ii); 2) follows from Theorem II.2.1. So there exist a unique
probability measure \ix on X such that :

JQe% dm /«mH.^>Aj(0 where ^>Aj(f) JQ e% dpx>Aj

JQ (*f)" dp,, /«mj^„ JQ %)" dpx,Aj
for all fe 5" and ne N. We have obtained the weak convergence of the measure

Px,,Ajas in [Glimm, Jaffe, Corollary 18.1.3],

II.2.6 Lemma. For all fe y, f*0, there exist MeL^E), depending only on P and f,

such that I %^ A(af) I ^ M(a) for all ae E, Xe [0,2J and A compact set of E2.

Proof This is a consequence of the Integration by parts formulas of Appendix I.

Take fe y, f*0, and let us compute the derivation :

io*f(q) 1_
d,~u: e n/w —'a

E-»0
e

iaq(f) + iaeC(f,f) iaq(m
e - e

V

>*ffo) ,:- ir >eC(f,f) ^ eia«t»f(q)iaC(ff)//m — e

iai(>f(q)
for all qeQ. We have found : Drf t-t—- eia<t>f(q)

ct iaC(f,f)
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We use the Proposition A.I.2 of Appendix I, with N=l, F=eiot<l)f/iaC(f,f) and

G=(Zx,iA)"1exp(-X.VA), the derivatives of G being given by Lemma A.I.4, to find :

^(af)= d^JQ*Me^(PV<CQ-tf>
(P' is the derivative of P). Note that there is no singularity when a->0, the

integral being O(a). The same formula, with N=2 and F=-e10t<l)f/a2C(f,f)2 gives :

<^,A(af)

* ~*Fc7tfL d^-A el0Ut,f (p"x,A(Cf,Cf) + (P\,A(Cf))2- 2<Df Fx>A(Cf) + :<Df2:)
a ^(i,ij v

(P" is the second derivative of P). Again, there is no singularity when a-»0, the

integral being 0(a2). For lal>l we use the theorem II. 1.4 to write :

^ j. 1 K' Ifl2
'^(af)l s \J aw

for some K'e (0,~). For lal<l we use 1^>A (af)l<l. We define M(a) as the found
bound.

Remark Using the integration by parts formula again and again, we find that

a-»<^)tiA(af) decreases when loci—» °° faster than the inverse of any polynomial,
uniformly in A. And so is its limit when A-»E2, in the sense of II.2.5.

n.2.7 Proof of the Theorem. Because the sets Cf(B)={qeQ, <|>f(q)eB}, with fe y
and B a Borelian of E, generate the o-algebra X, we restrict ourselves to them.
From the Fubini theorem and Lemma II.2.6, we have for all je N :

JRda ^,Aj(af) V2^Xb(«) JQ Xß(.f(q)) dpx,Aj(q) ^,Aj(Q(B))
where Xb *s die characteristic function of B. We take the limit j-»°°. Referring to
the d.c. theorem and the lemma II.2.6, the limit and the integral can be
permuted in the 1. h. s. and we obtain :

'"» Px,Aj(CKB)) Lda /m ^ (af) V^ Xb(cc) ^(Cf(B))

IL3 The weakly coupled P(cp)2 models

Let %(f) J e^f d\ix lim % A.(f), for fe y be the characteristic function of the

measure Px,='lwlj^», Vx.a announced by the theorem II.2.2.

II.3.1 Theorem. ^ satisfies (P).

Proof. We verify each axioms (P) one after a other.

(P) i) : let ye %, A a compact set of E2 and fe y. From the definition of nXA (II. 1.2)
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and the invariance of p0 (Proposition 1.1.2), we have : ^x,fA(Y-f) ^.¦/-•.aOO-

If {Sj je N} is an admissible sequence of compact sets of E2, so is {y -Ej je N}. By
the Theorem II.2.2, the limit A-»E2 gives on both sides the function %,

(P) ii) : let us define a closed subspace of L2(Q,u,0) : L+= closure of the span of {e^f,

fey*). Because % satisfies (P) (Proposition 1.1.2), L+have the property /q y 9y
dp0 SO for all yeL+ (Lemma 3, First Part). Let A be a compact set of E2 such that

A=A+U A", with A+fl A=0 and 9-A+=A\ Then dpx>A Z^"1 dp0 EA+ 9EA+ where :

EA+ lim exp (- X JA+d2x:P(<|>x.jn):)-A+
n->oo

where {jn ne N} is a sequence which approximates 5, with the special condition:

je y+. The existence of this limit is assured by Theorem II.1.1. Thus EA+eL+.
Because p0 satisfies (P) we have, for all ne N*, fe (y+)a and zé Œ™ :

È zi ^,A(8fi-fj) Zj ^- \q V e-y dp0 >0

where y EA+ XiSjSn Zj e1*^ e L+. We take an admissible sequence of compact sets of
E2: {An ne N} such that An=An+UAn", with An+DAn"=0 and 9-An+=An" for all ne N. Then

we take the limit n-»~, using Theorem II.2.2. The function %_ appears in the 1. h.

s. of the above equation. The non-negativity is preserved during the limit.
(P) iv) : the inequalities of Theorem II.1.4 i), uniform in the cutoff A, are

preserved in the limit A-»E2; then together with the Lemma A.II ii), they give :

|JQ (Of)" dUx | < n! K» Ifl"

for some Schwartz norm I...I, for all fe J^and neN. By Lemma 1, First Part, the

function E»a-»^(af), for fixed feJ/fis of class C~, and the following formulas hold

dX(<xf)la=0 in JQ (<|>f)n dpx for all ne N*.
(P) iii) : because of the inequalities on the moments stated above, the span of
{(<|>f)n, ne N, fey} is dense in L2(Q,px) (First Part, Lemma 7). We will prove that we

can replace y by 3, i. e. 5 span of {(<t>f)n, neN, fe3), is also dense. Let Ç Ç be

two vectors in j). We denote by P the orthogonal projector in L2(Q,px) on the

constant functions of Q. The inequalities of Theorem II. 1.4 ii) being uniform in
the cutoff A, they are preserved in the limit A-»E2, so we can write :

Because T(x)-P is bounded uniformly in x, (P) iii) holds. We must now verify that
$ is dense. For this, we prove that for all ne N * and fe y there is a vector of fl

very near from (<(»f)n. Take e >0. Because ^is dense in 5"there exists ge^with :

If-gl < e (4! (4n)!)1/4Kn X lflj (Ifl+l)""1"1
j=i
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We suppose that e is small enough for the above r. h. s. to be <1, that is lgklfl+1.
With (<t>f)" - (<t>g)n <(>f.g Xjsjsn.i^fy tog)"*1 and with the CS inequality, we have :

X (t>f)j («Og)"^"1H 0Df)n - («Dg)n llL2 * » *f-g llL4

With the bounds of the moments of ix^ just found we obtain ll(<|>f)n-(<|>g)nll 2 - e-

11.3.2 The weakly coupled P(q>)2 models. From the Theorem II.3.1 and the
reconstruction theorem of the First Part there exists for all positive polynomial P

and all Xe [0,2J a Wightman Quantum Field model, called a P(q>)2 model, whose

Schwinger distributions SXn are the moments of pj, :

Sx,„(fi,...,f„) =JQdpx(q)<|>fl(q) - <|>fn(q)

for all ne N * and fe Sf*. These relations, writing the Schwinger distributions of a

model of quantum field theory as moments of a probability space, are known as
the Feynman-Kac-Nelson formula. These models describe a world in which
interaction actually occurs [Osterwalder, Sénéor], [Eckmann, Epstein, Fröhlich].

11.3.3 The generalized Schwinger distributions. The limit announced by
the Theorem II.2.1 are called the generalized Schwinger distributions denoted as

S?, where : S™(f) .Um S^.(f)

for all A.e[0,U neN*, me(N*)n and fe ^"; for m={l,l,...,l} we write simply S^S^.
The inequalities of Theorem II. 1.4 are preserved in the limit, because of their
uniformity. Thus we have:

i) I S™(f) I < ü K* An(f) for all fe ^"
ii) for all U,VCE2 disjoint, fe (•%)" and ge (^f :

I Srm'(f®g) - S™(f) S™'(g) I < J! JM K*+r An(f) An.(g) exp (- m d(U,V))

for all \e[0,a], n, n'eN*, me(N*)n, m'e(N*)n', (with J=XisiSn m; and J'^Iju*,. m'j). The

constants K, 5^ and in. are those of Theorem II. 1.4. The goal of §111 is to find a

representation of S^1 as an integral over Q, i.e. to generalize the Feynman-Kac-

Nelson formula for the generalized Schwinger distributions.

Ill Euclidean Wick fields of the weakly coupled P(cp)2 models

III.l The Wick-Schwinger functions

Some combinations of Schwinger distributions are generated by continuous
functions.
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III.l.1 Definition. The Wick-Schwinger distributions SWV„ are defined by :

SWM(f) jQdiix :<|>fl-<|>fn:

where Xe [0,X_] and neN*, for all fe S*"; for n=0 we take SWX0=1. Note that for

X=0, SW0 n=0 for all ne N *. The importance of these distributions can be seen in
the following formula, called the Wick decomposition.

III.1.2 Lemma. Let X be a finite non-empty subset of N, p a partition ofX and
fe y*. Then the following formula holds (Wick decomposition) :

n-u «v i ffQdn. n : n ?f,:| n vJep jeJ 0£Y£X \Y Jepy jeJ J jeX-Y

where pY is the restriction of p to Y.

This formula is given in [Dimock, Glimm].

Proof. The definition of the Wick polynomials leads to :

V i

fl : û *fj : i" 3«r •d*B e
i<t>a.f

Jep je J

n^o(Xo^fj)
Jep JeJ

with a-f=XlsjSn ajfj We multiply by 1 ^(a-f^a-f)"1 :

û *II V rd«Y-\fei**f^(a-f)-1if^a.f)n^(E«A)"1
Jep jel V /I Jep JeJ

With the Leibniz formula, the r.h.s. can be written as a sum of product of
derivatives of each of the two factors. The derivatives of the first factor give the
Wick polynomials, and the derivatives of the second factor give the integrals as

was announced.

By integration the relation of Lemma III.1.2 gives the following result.

III.1.3 Lemma. Let X be a finite non-empty subset of N, p a

fe y and Xe [0,&]. Then the Wick decomposition gives :

partition of X,

fQd^n =n^:= I (jgdUo n : n «Ofj:
¦*

Jep jeJ 0£Y£X ^v JepY je J

w/ierefx.Y ®jeX.Yfj

swx,ix-yi (fx-y)

Thus for all X each Schwinger distribution is a sum of products of Schwinger
distributions of the free theory and Wick-Schwinger distributions.
We establish now the Integration by part formulas for the Wick-Schwinger
distributions. We need some notations, because of a little algebraic complication.
Let Q be a polynomial, X a finite non-empty subset of N and p a partition of X.
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We denote by Qk the k-th derivative of Q (if k>deg Q, Qk=0). For all Xe [0.ÄJ, A

compact set of E2 and fe Sf9 we define :

sgfffl fQdp,,A fl : Q>) :(fj)
jep

The limit A-»E2, in the sense of Theorem II.2.1, will be denoted as :

s?p(f)=A'^2s*p(f)

III. 1.4 Lemma. For all ne N* a« rf fe ^n, the Integration by parts formula gives :

SWx>n(f) Is*
Pe^n

P(fp)

vWiere fpe S?*& is given by fp ®Jep (IltejCfj).

In the Lemma, C is the operator (1-A)"1 and £*n is the set of all partitions of
{l,...,n}. This formula is written in [Eckmann, Epstein, Fröhlich, proof of theorem
2]. Note that the 1. h. s. involve Cfj instead of fj, which is the key for finding the

regularity of the distributions SW.

Proof. The Corollary A.I.3, with F=e"^VA/Zx A for some compact set A of E2, and

then the Lemma A.I.4 lead to :

fgdPx.A :<*!-*„: Xsl'AP(fp.A)

where fp>A=®jeP0unjejCfj). The limit A->fi2 is performed using Theorem II.2.1.?

III.l.5 Lemma. For all ne N *, the distributions SW„^ are generated by

continuous functions swnX Moreover for all neN* there exist Ke (0,°°) with
lswnX(x)l < K for all xe (E2)" and Xe [0,ZJ.

The boundedness is known [Eckmann, Epstein, Fröhlich, proof theorem 2].

Proof. We prove first that t : (E2)na x=(xj,...,xn) -> X S*!'P(cp.*)

is bounded and continuous, where cVfXey^ is given by cp>x= ®jep(rijej Xj-c), and c

is the L2 function, the Fourier transform of which is E2ak-> (2tc)_1 (k2+l)_1. t(x) can
be written as a finite sum of following terms :

s™(nj6JiXj.c,...,nj6Jkxj.c)
The boundedness follows from the inequalities II.3.3 i) (which is independent of
X) and because IIjejXjC belong to M and has a inorai bounded for all Xj
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(Appendix II, Lemma A.II.2 vü) Let x,y be two points in (E2)\ t(x)-t(y) can be

written as a finite sum of following terms :

sx( njeJi Xj-c,..., njejr Xj-c -njejr yrc,..., njeJk yjC

We use again the inequalities II.3.3 i) and we take the limit llx-yll—> 0. From
Lemma A.II.2, viii) : II IljejXj-c - IljejyjC ÏÏ&-* 0, and then t(x)-t (y)-»0.
Let T be the distribution generated by t. Because t(x)=U(xrc,...,xnc) with
Ue ^'((E2)"), we have T(f)=U(c*f!,...,c*fn) for all fe (yf. But c*f is just Cf.

Comparing with the formula of Lemma III. 1.4 we obtain T=SWXn

III.2 Euclidean Wick fields

The continuity and boundedness of the sw functions permits us to construct the
Euclidean Wick fields as in 1.2, but in the case X±0. We take again the sequence

{yn,neN*} of 1.2.1.

III.2.1 Theorem. For ah pe N * the sequence {y„ ,neN*} converge in LP(Q,ux) to

the same limit, denoted by :<t£:(f). The distributions Sx can be written as integrals

sfe) JQdp,
n

n
i=l

:?*:(&) for all neN*, ke(N*)n gey*.

The Theorem generalizes the result of [Klein, Landau] (for even P) and of [Glimm,
Jaffe, Theorem 12.2.1] (for P of type even + linear). The relation in the theorem
can be seen as a generalization of the Feynman-Kac-Nelson formula of II.3.2 to
the generalized Schwinger distributions.

III.2.2 Lemma. {yn ne N*} is a Cauchy sequence in h2(Q,iix)J

Proof. We will work in 4 steps.

Step 1 : Definition of a number. Let us denote by k the following real number :

m 2 f
K X T) «I JE4 d2x d2y f(x) f(y) c(x-y)" sw^(x,...,y,...)

where ß=2m-2a (the x and y variables appear both m-a time in swxp ; this will
be always understood in this proof). Because swxp is bounded and continuous

(Lemma III.l.5) and the function c of the proof of Lemma III.l.5 belongs to Lp
for all l<p<°° (see for instance [Frochaux, b, Appendix A]), K is well defined.

Step 2 : We write an expression for (yn, yn)-K. The strong convergence is proved
if the following statement holds : for all e>0 there exists Ne N such that l(yn, yn)-Kl
< e for all n, n'>N. Because of the Wick decomposition (Lemma III. 1.2), (yn, yn)-K
is a finite sum of the following terms :
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JE4 d2xd2y f(x) f(y) [C(x.jn,y.jn,)aJQdpx Wx-j^y-in')1" °: " c(x,y)" swXiP(x y,...)J

multiplied by some combinatorie factor, for all 0<a£m, with ß=2(m-a). We look at
the limit n,n'->oo. If a=m the convergence to 0 is assured by Lemma 1.2.2 (free

model). The convergence towards 0 if a=0 follows from the continuity and
boundedness of the sw functions (Lemma III. 1.5) and the d.c. theorem, because

feL In the intermediate case 0<a<m we write what we study as :

Jk4 d2x d2y f(x) f(y) C(X"J" * y'Jn')a [Jq^ ^^-jn Viii')" ": " SW^P(X — >]

+ JE4 d2x d2y f(x) f(y) [C(x-jn yjn.)a - C(x,y)" Jsw^x,...,^...)
The first term will be called A and the second B.

Step 3 : Convergence of A. We know that both C(x-jn,y.jn.)a and the factor [...]
converge as n,n'-><» in the distribution sense. The problem we have here is that

one of the convergence of a product of distributions. Now C(x-jn,y-jn.)= j„*Jn*c(x-y)
where JA„(x)=jn(-x) for all xeE2. From the Young inequality, lljn.*fn*cll p

S lljn.llLi

lljnllLl llcllLP (lljllLl)2 llcllLP for all ne N*, which is well defined for all lSp<~
because of the integrability of c (Step 1). With the CS inequality in the y variable :

IAI<JB2d2x lf(x)l[[K2d2y f(y)2Çn,n<(x,y)2] [JE2 d2y C(x-jn yjn.)2a]

where £nn.(x,y) Jq d\ix :(<()x.jn <t>y.jn.)m "• - swxp(x y,...). By the above discussion,

the last factor [...]1/2 is bounded by a constant Ke (0,°°) independent of n and n'.
Thus with the CS inequality in the x variable we obtain :

1/2 r, -.1/2
IAI < K [JK2 d2x lf(x)l ] [JE2 d2x lf(x)l JE2 d2y f(y)2 4n,n.(x,y)2]

Because of the continuity and boundedness of the sw functions (Lemma III. 1.5),
the functions x,y-> Çn>n(x,y) are bounded by a constant uniformly in n, n' and

they go pointwise to 0 when n,n'-»°o. The convergence towards 0 follows from
the d.c. theorem, because feL1.
Step 4 : Convergence of B. Let us denote by F the function x,y-» f(x) f(y) s(x,y)

where s(x,y) swxp(x,...,y,...). Note that F is in LJ(E4) and thus F is a continuous
function. B can be written as :

«

B (2ti)2
,2a

nd2kj ~( " " Ì r -2al
i-xxTTTT X ki • - I ki I Jn'(k> Jn(k) - (27t) I

1 / V=l i=l J

where Jn(k) =|| Tn(ki). The factor [...] is bounded for all n, n' and k, and goes
i=l

pointwise to 0 when n,n'-»°° (for more details, see the proof of Lemma 1.2.2).

Moreover J (rid2ki/(ki2+l)) IF(Ik,-Ik)l is well defined ; with Appendix III this
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can be written as I d2k IF(k,-k)l Gn(k) bounded by IIGBIIL2 I F(k,-k)2 )1/2; and

J F(k,-k)2 I d2x d2y d2z f(x) f(y) f(z) f(x+y-z) s(x,y) s(z,x+y-z) is well defined.
The convergence towards 0 follows from the d.c. theorem.

III.2.3 Definition. Because L2(Q,ux) is complete {yn neN*} has a limit, noted as

:^:(f) lim L2d2xf(x):(<t>x.jnr:

and the maps :<|>™: from ^(E2) to L2(Q,nx), for all meN*, are called Euclidean Wick

Fields. Note that we mention explicitly the X dépendance. For m=l we have

simply :<!>.[:(f) <t>f (independent of X,).

III.2.4 Lemma. :$x:(f) e LP(Q,^X) for all m, peN* and fe y($L2).

Proof. We have only to show that the Lp-norms are bounded uniformly in n, for
all even peN* (see [Frochaux, d, proof of 1.2.4]). (HynllLp)p is a sum of following
terms :

(ftdVOii)] JgdHorf :(0x,jn)ai: JQdnx :]\ (<Pxi.jn)m"°ti:

multiplied by some combinatorie factor, with 0<a<m (multi-indices). The last
integral is bounded in n (Lemma III. 1.5). With the Wick theorem (see for
instance [Dimock]), the positivity of the function c (see for instance [Frochaux, b,
Appendix A]), the absolute value of the integral over \i0 is bounded by the same

expression, with j(x) replaced by lj(x)l, which is also in L1. Thus we have only to
control an expectation of the free model, which can be done as in [Frochaux, d,

proof of 1.2.4], the function x->lf(x)l being in L2.

III.2.5 Proof of the Theorem. Let {An neN*} be an admissible sequence of
compact sets of E2. The definition of the generalized Schwinger distributions
II.3.3 uses the definition of the Wick fields of the free model 1.2.3 as follows :

S£(f) lim lim f djiXtA rf fB2d2xfi(x):(<t)x.jk)'«i:
j->~ k->~ ^ i=l

The convergence of these two limits have been proved in 1.2 and II.2. It follows
from II.2 and Lemma III.2.2 and III.2.3 that if we permute the two limits, the
double convergence exists too. We must prove that this gives the same result,
which holds if the convergence k-»°° is uniform in j. This is indeed true, because

we can repeat Lemma III.2.2, III.2.3 and their proof, replacing everywhere yix

by Hx,a•• We use Theorem II. 1.4 instead of inequalities II.3.3. All estimations are

uniform in the cutoff Aj, thus on j.
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Appendix I. Integration by parts formulas

This is a set of relations between Schwinger distributions [Glimm, Jaffe]. Here we
give more general relations, always obtained in the same way.

A.I.I Definitions. Let F : Q-»Œ be a X-measurable function. If q'*0 belongs to Q,
we define Dq. F, the derivative of F in the direction q', by :

Dq.F(q) lini j(F(q+eq') - F(q))

for all qe Q, whenever the limits exist. F is a cylindrical random variable if there
A A

exist neN*, fe y and F:En-»(E Borei measurable such that F(q)= F(<|>fl(q),...,<|)fn(q))
A

for all qe Q. If F is derivable, then the derivative of F is given by the formula :

Dq'F(q) X fe^-Kf^q). - ?f„(q))i «ffi(q')
i=l V J

I q, q'eQ. We will say that F is N-time derivable,

order partial derivatives, all being Borei measurable.

A
for all q, q'e Q. We will say that F is N-time derivable, with Ne N *, if F admits N-

A.I.2 Proposition. (Integration by parts formulas) Let Ne N* and F, G be two
cylindrical random variables N-time derivable. Suppose that F, G and all their
derivatives are in Lp(Q,n0) for all l<p<~. Then for all fe y-

Jq^o (DNcf F)G (-1)N JQdp.0 Fk|(-l)k (0 4 DakG

The Integration by parts formulas of the literature [Glimm, Jaffe] contain no
derivatives under the integral of the l.h.s.. The interest of the above
generalization is in its applications to the characteristic function (proof of II.2.6).
Let us write these formulas for G=l.

A.I.3 Corollary. Let N and F be as in the proposition, and fe y. Then :

J*Qdu0 DNCfF Jq dn0 :<t»Nf:F

To apply these formulas to the expectations with respect to \ix, we take G=

exp(-XWA) (given in II. 1.2), then we divided by Z^A and take the limit A->E2. We
have thus only to know the derivatives of G.

A.I.4 Lemma. For all positive polynomial P, X>0 and A compact set of fi2 let us

denote G=exp -X:P($):(xA). Then for all Ne N*, fe L2(E2) and Fe Lp(Q,ji0) for all l<p«~:



1064 E. Frochaux H. P. A.

fdn. F D?G Ldn0 F G I (-Xf û :P(IJ%) :(xA(Cf)UI)

P(n) is the n-th derivative of P. To prove the proposition, we take first N=l.

A.I.5 Lemma. Let F, G be two derivable cylindrical random variables. Suppose
that F, G and its derivatives are in V(Q,ii0) for all l<p<°°. Then for all fe y-.

JQdn0(DCfF)G -JQdfi„ F (DCfG - +f G)

Proof of Lemma A.I.5. We follow [Dimock]. There exist neN* and fj,..., fne y
A A

linearly independent, with f=flt such that F(q)=F(<j)fl(q),...,(j)fn(q)) and G(q)= G

A A

(?f!(<!)»• •• >^f (q)) for some functions F, G: En-»Œ, for all qeQ. Let {e!,...,en} be an

orthonormal basis of the span of {fj,...,fn} with respect to the scalar product

g,h->C(g,h). We note F the function F(<t»fl(q),...,<|)fn(q)) F(<()ei(q),...,<|)en(q)) forali
V

qe Q and we define G in the same way. The derivative of F is given by :

DcflF(q) X fU DCeiF(q) X fU diF(«B1Cq).—^B.Cq))
i=l i=l

for all qeQ, where fij=C(fi,ej). On the other hand, the definition of % (1.1.1) gives

i-loj2 r ta.x (Mnrz e- iji/ d„x*(«*> eT JBj' j^ eiax (2n)

for all aeE", where ae=IisiSnaiei. Note that (2jc)"/2dnx exp- ^Z Xj2 is the only

probability measure on E" such that its characteristic function is a-»<^(ae),
because of the uniqueness in the Bochner theorem. We have now :

jgdm, (DcfF)G X fi.i JQdn0 OjFC^/q) ^(q))) G(<Dei(q),...,<(.en(q))
i=l

tfl,i JR"dnx(2re)"n/2e"r.5xJ O^X!,...^)) G(Xl,...,xn)
i=l

With the ordinary integration by parts formula, this becomes :

n

- Ê f l.i Jr" d"x C*)""'2 e" r j?i X
F(xi x„) O^x,,...^) - xiG(x1,...,xn)

i=l

- Jq d^o F(4b,.-*J X f 1.1 Wer-.+e.) - X f 1.1 *ei
li=l li=l
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-JQdn0 F (DcfiG- fcjG).

A.I.6 Proof of the Proposition. We work by induction on N. If N=l the

Proposition is true (Lemma A.I.5). Let us chose Näl, such that the Proposition is
true for N-1. By Lemma A.I.5

JQdn0(D^fF)G -JQdn0 (D^V) (DCfG- ^ G).

By the induction hypothesis this is equal to :

N-1

- (-1)*-' JQdn0 F X(-Dk (V) ^-^(Dcf0- *f O) •

The derivation gives :

D^flk(DCfG- <|>f G) Eg'fe - ?fDgk'1G - (N-k-1) C(f,f) D^fk'2G.

k k+1 k-1
We use the Wick decomposition III. 1.2 to write :<j)f : <^ :<t>f : + k C(f,f) :§ :

all keN*, and some simple algebra gives the claimed result

for

A.I.7 Proof of Lemma A.I.4. We follows [Dimock, Glimm, proof of Theorem
3.2]. We write G as weak limit of cylindrical random variables. By Theorem

ILL1, G=limD_>„exp (-k(A d2x :P(<|>x.jn):) where {jn ne N*} is a sequence of 3
which approximate 5. The integral is approached by its Riemann sums :

JAd2x:P(<|>x.jn): lim a2 X *(W:
a-»+0 *e^A,a

where MA& is a suitable lattice. We prove now that the limit holds in the strong

Lp(Q,|i0) sense for all l<p<°°. Because ll:P(<|>x.jn):llLp is well defined it is enough to

see the L2 convergence. This follows from the Riemann theorem, because of the
equality :

2

JAd2x:(d>x.jn)m:-a2 X :(«t>x.jn)m
xe^.

m! JA2d2xd2y-2JAd2xa2 X + ** II x6j?A.a *.yeJ¥A
C(x.f,y.f)

x-yeJ¥A,aJ

for all neN* and feL2, and because the function Ax A 3(x,y)-»C(xf,y-f) is

continuous. We have now to derive the following random variables :

Gn,a exp - X a2 X :P(*x.jB):

N

xe^A
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The derivatives of the exponential gives a sum over partitions (see for instance
[Frochaux, b, Appendix B]) :

f \
Ef G„.a Gn,a X û D?' - X a2 X :P(*x.j„):

P^^n JeP ^ x£-%a

and the derivation of Wick monomials are deduced from Df :<j> : n :<|> : C(f,g)

Collecting all these results and taking the right limits gives the Lemma.

Remark. Because the limits limn_>00lima_i+r) Gna(q) do not exist for all qeQ, the

derivatives of G we have found hold only inside integrals.

Appendix II. The Banach space SB

We present the Banach space of II. 1.4 and II.3.3, then complete the proof of
Lemma III. 1.5. '
A.II.l Definitions. For all j=(ji,j2)e Z2 let us denote by Aj the square Aj

{x=(x!,x2)e E2, lxr jil<j- for i=l, 2). For all l<p<°° and feLp(E2) with compact

support the following number III f III S;eZ2 II f Xa- "lp x% weH defined (xA is the

characteristic function of A). We define SB as the Banach space of norm lll...lllp
obtained by completion. The Banach space SB used in II. 1.4 and II.3.3 is S&2

Let T be the translation operator on SBp, that is (T(x)f)(y)=f(y-x) for all x, ye E2
and fe ^p. Il...llp is the norm operator IIAfllp=swp{IIIAflllp, lllflllp <1}. For all ne N* and

xe(E2)n we define the function E2-{xj,...,xn}3Z -» cx(z) üi^,, c(z-x;), where c is

the Fourier transform of E2ak-> (2jt)"1(k2+l)"1.

i) ^p={feLp(E2), lllflllp <~}
ii) there exist a Schwartz space norm I...I and Ke (0,°°) such that lllflllp < K lflp

A.II.2 Lemma. For all l<p<~, we have :

(feLp(E2), lllflllp
•re exist a Schwan

for all feyÇSL2)

iii) for all fe $)v and e>0 there exist K, compact set of E2 and ge 3 (K) such that
'

Hlf-glHp<e
iv) IIT(x)llpS4p-1/ora//xeE2
v) for all fe Sâp T(x)f ^T(y)f in SBV ifx -» y in E2

vi) lllfglllp < lllflllq lllglllr for all q, re E such that L= L+j- and for all fe ^q ge SBZ

vii) for all ne N* and xe (E2)n, cxe SBV and x-»lllcxlllp is bounded on all (E2)n

viii) for all neN*: cx-»cv in SSV i/x->y in (E2)".

Proof, i) Let fe SBp. Then f is locally Lp. From the inequality llfllLp<lllflllp (because
all convergent sum of non-negative real numbers a=San satisfy Z(an)p=Zan(an)p"1<

a(iMp{(an)p1}) a(swp{an})p-1 < ap) follows that feLp. Inversely let fe Lp with
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lllflllp«». For all neN let us define An= \n-\, n+flxp11^ > n+rlClR2 znd f"=

XaJ- Of corse f„-»f in Lp. But [fn ne N} is a Cauchy sequence in ^. Let ge SBp its

limit. From the inequality of the first line of this proof follows that g is also the

Lp-limit of f„. So f=g a.e.

ii) The function h : E2ax-»(l+x2)" ' belongs to SBp (because for lljll big enough :

HhXA-"LP < K' Hjll"3 for some K'e(0,°°), and Zjez2)nj||>i lljll"3 is well defined). Thus for

all fe^(E2) we have lllflllp<Klflp with lflp=sMpX6R2(l+x2)"3/2lf(x)l, and K=lllhlllp

iii) There exists J, a finite subset of Z2, such that lllf-fjlllp< e/2, where fj=fxK' > K'=

UjejAj. There exists also a sequence [fn, neN} of 3ÇK), where K is a compact

neighborhood of K', such that fn-»f; in Lp. But for the measurable functions with

support in K, the norms of Lp and of S?p are equivalent, and thus fn-> fj in SBp.

Then there exists Ne N such that lllfN-fjlllp< e/2. If g=fN, we have found lllf-glllp <

lllf-fjlllp + lllfj-glllp < e

j'v) We introduce the notations : St= {Aj, jeZ2}, S^ {Aj+X= x-Aj, jeZ2} and M '=

{AfìAx Ae Je, Axe Js%). Let fe Sâp. We have immediately :

III T(x) f lllp X (L lf(yx)lp d2y) P= X (L Ifl" V
teje v J test v J

¦Sf ï V <«' f *

à£jl A'e SI, A'cx-A A'eJf'

where the inequality follows from (aj+ +an)1/p< (a^1'^ + (a„)1/p for all neN*,
aj,...,an>0 (*). We collect the cells A'e M ' belonging to the same Ae M:

2 On.')*- I X (tifi')"*,
A'e St' ieÄ A'sjf.i'CA

* 14'-« { X I PV _ jiP"1A' \f\v A" lllf
Ae,# lA'e^, A'CA

where we have used the inequality (aj)1/p+...+ (a4)I/p < 4p*,(aj+... + a4)"p forali
a1,...,a4 >0 (*) and the geometric following fact : each A of M intersects at most 4

elements of J\\
(*) We have used the inequalities, for all neN*, bj bn>0 :

(bj+ +bn)m< (b,)m+ + (bn)m for all me (0,1]

(b1+ +b„)m < nmA ((b,)m+ + (bn)m for all me [1,~)
easily obtained by calculating the supremum of the following function :

(O.oo)»-1 a (Xl, ,Vl) -» (l+x,+ +xn.1)ra(l+(x1)m+ - +(x„.1)m)"1

v) For all e>0 there exist K, a compact set of E2, and %e 3\%) such that
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Illf-glllp < e/(24p), by ii). g being uniformly continuous, there exists 6>0 such that,

for all xe E2, llxlkô, we have lg(z-x)-g(z)l < e/(k22p) for all zeE2, where k is the

number of cells of Je which intersect K. Thus !IIT(x)g-glllp < e/(22p).

For all x, ye E2, llx-ylkS, we have now, using many times iv) :

III T(x) f - T(y) f lllp III T(x) f - T(y-x) f lllp 4P"1 III f - T(y-x) f lllp <

< 41"1 III f - g III,, + III g - T(y-x) g lllp + III T(y-x) (f - g) lllp <

< 4"-1 Q+4"-1) III f - g lllp + III g - T(y-x) g lllp < | + f- e

vi) By the Holder inequality, we have :

III f g lllp Xl|fgXAllLP X » f XA HLq llgXA"Lr
Ae^ Ae^

which contains only a part of the terms of :

lllflllq lllglllr X X llfJCAllLq llgXA»Lr.
ttèSt A'e^

vii) By iv) and vi) it is enough to verify that ce ,S?q for all l<q<<*>. Because ce L2

(Step 1, III.2.2) it is enough by i) to control lllclllq From the inequality: c(x) <

exp-\\x\\ for llxll big enough [Frochaux, b, Appendix A], it follows that c is bounded
asymptotically by the function h of the proof of ii). So lllclllq is well defined.

viii) We write cx-cy as follows :

n /i-l \ / n "\

cx(z) - cy(z) X n c(Xj-z) (c(xrz) - c(yrz)) fl c(yfz)
i=l 1=1 j=i+l

for all ze E -{xj,...,xn,yj,...,yn}. Using vi) and iv) we obtain :

n
III cx-cy lllp < III c III""1 X '" T(Xi-yi) c - c III

i=l
with q=np. The announced result follows from v) and vü).

Appendix III. A technical Lemma
2-1Let c be the Fourier transform of E2ak -» (2jt)"' (1+k2)" Note thatc e ni<p<„Lp.

A.III.l Lemma. For all ne N, n>2, the function G, given by :

G„(k)
•

for all ke E2, bel

•

E2n

ongs

n^Pi
^i=i

t0ÏÏx<r,S~

c(Pi)
J

Lp.

5(2)fv
^i=i

-

>

k
J

Proof. Note that Gn= c* c*...* c (n time). By the Young inequality IIGnllLP< (llcllLq)
with q=np/[l+p(n-l)]. We see easily that qe(l,~] when pe (!,<»].
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