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Regularization of the Mandelstam Soliton
Operator |

By C. A. Hurst

Department of Physics and Mathematical Physics, University of Adelaide,
Adelaide 5001, South Australia

and

M. A. Lohe

University College of the Northern Territory, GPO Box 1341, Darwin NT 0801,
Australia :

(28. XII. 1988)

Abstract. We show how Mandelstam’s soliton operator can be written in regularized form, and
can be used to obtain regularized bosonization formulas. The fermion field properties which we obtain
include the anticommutation relations, which we find are not canonical except for free massive
fermions. We are also able to perform an explicit nonperturbative mass renormalisation of the
massive Thirring model, by direct derivation of the field equations. We find that these field equations,
and some of the fermion anticommutator relations, are valid only in a weak sense. We indicate how
the soliton operator can be used to demonstrate the equivalence of a more general class of boson and
fermion models. The regularized formulas are also used to investigate the N =2 case of non-Abelian
bosonization, including the groups generated by the fermion bilinears, and the corresponding
currents.

1. Introduction

Bosonization is the means by which a fermion theory can be rewritten in
terms of boson fields, and provides a powerful tool for understanding some
aspects of fermion models, particularly the nonperturbative features. Examples of
bosonization are the equivalence between the sine-Gordon and massive Thirring
models described by Coleman [1], and the non-Abelian bosonization of Witten
[2]. For the sine-Gordon case Mandelstam [3] exhibited an explicit map from the
boson to the fermion fields, and was able to obtain the bosonization formulas in a
very direct way. This included the identification of the fermion and boson
currents, the equivalence of the mass and potential terms, and also of the field
equations for each model.

Because Mandelstam’s soliton operator ¢ provides a direct link between the
boson and fermion models, it not only determines the bosonization formulas
correctly but also provides a direct method of obtaining properly regularized
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expressions; this can be done by using a regularized form of the soliton operator.
If one employs y literally, various ambiguities and infinities are encountered,
which of course merely reflect the renormalisation required in the fermion theory
when two fermion operators are multiplied at the same point. Mandelstam [3]
explains how to regularize some of the infinities in the standard way, by point
splitting (following the well known procedure outlined for example by Klaiber
[4]). Additional infinities appear, however, which can be related to mass
renormalisation and which are not fully explained in Ref. [3]. An example is in
the derivation of the massive Thirring model field equations, where the mass term
arises from the commutator

[ Licos oy, wixy] g (1.1)

(see equations (4.6), (4.8) in [3]). The integrand of (1.1) is zero everywhere,
except at §=ux, where it is undefined. Suitable regularization of the soliton
operator leads to a regularized form of (1.1), and thence to mass renormalisation.
Similarly, we find that the fermion anticommutation relations, when nonzero,
must be evaluated with the regularized soliton operator, and then hold only in a
weak sense. Only for a special value of the boson coupling constant (%= 4z,
corresponding to free massive fermions), are the anticommutation relations
canonical. Whilst this fact is implicit in earlier work (see e.g. Johnson [5]),
Mandelstam’s soliton operator demonstrates this directly, and indicates in
regularized form the appropriate distribution required.

The purpose of this paper is to show how the Mandelstam soliton operator
can be regularized, and be used to obtain regularized fermion equations. In
Section 2 we outline the steps by which the soliton operator v is determined from
the current-fermion commutation relations, and how v is regularized (we repeat
here some calculations of Mandelstam briefly for completeness, and to indicate
where regularization is necessary). In Section 3 we consider the fermion anti-
commutation relations and other boson-fermion equivalences; again, the deriva-
tions given by Mandelstam, where satisfactory, are mentioned only briefly, and
we describe in detail the cases for which further regularization is necessary. To
this point no dynamics are imposed on the fields, but in Section 4 we consider first
the sine-Gordon model, and then more general boson models, and derive fermion
field equations, together with the appropriate renormalisation. For the general
case fermion renormalisation is much more complicated, but can in principle be
carried out using the regularized soliton operator. We discuss models of this
generality in order to demonstrate that the Mandelstam soliton operator has
properties which are not model dependent, but has a wide range of applications.

In Section 5 we consider regularization in the context of the N =2 case of
non-Abelian bosonization. Witten [2] has generalized the bosonization formulas
to the case in which the symmetry group is non-Abelian, O(N) X O(N). The
Mandelstam soliton operator, although not known for general N, can be used to
check the N =2 case of the bosonization formulas. In Ref. [6] it was shown that a
formula of Witten’s [2] relating fermion bilinears to elements of the symmetry
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group was not entirely correct, but that a certain linear combination of the
bilinears was required. Orthogonality properties of the fermion bilinears are
investigated using the regularization determined in Section 3, and the associated
currents are investigated using the field equations found in Section 4. We find
that, for the massless fermion case, the currents generated by both sets of fermion
bilinears are the same. This explains why some checks by Witten did not reveal a
discrepancy. We hope that the methods used here will be of use in the general N
case of non-Abelian bosonization, where corresponding soliton operators are not
yet known.

2. The Mandelstam soliton operator

Without being restricted to any particular fermion model, let us assume that
the fermion currents j,(x) satisfy the equal-time commutation relations

Uo(x), jo)] = [j1(x), 1(¥)1 =0,
Jo(x), 1)1 =i8"(x — y),

where we have included the Schwinger term. As explained by Dell’ Antonio et al
[7], it is preferable to introduce the currents via these commutation relations,
rather than as fermion bilinears, to avoid problems arising from the multiplication
of fermion fields at the same point. Because the current is conserved, we can
introduce a boson field ¢(x) according to the formulas [8]

jox)=¢'(x),  ji(x)= d(x)=m(x). (2.2)

The canonical commutation relations for ¢ and & then imply that the boson
currents (2.2) satisfy the commutation relations (2.1). The identification of the
boson and fermion currents in this way is the basis for the correspondence
between boson and fermion theories.

Next, we introduce the fermion field operators y(x) by means of the equal
time commutation relations, following Johnson [5] and Dell’ Antonio at al [7]:

(2.1)

_m

B
), o)1=~ E 80— yyvsw ), .4

Uo(x), w()]= o(x —y)y(») (2.3)

where v is a two-component field and B is a real constant. (Our convention for
the y-matrices follows Coleman [1] and Mandelstam [3]). The particular constants
on the right hand side of equations (2.3), (2.4) are chosen for later convenience in
order to identify the fermion operator with a soliton field. If an integral multiple
of the coefficient —2s/f in (2.3) is chosen instead, the fermion operator will
correspond to a multisoliton field. For a chirally invariant theory, equations
(2.3), (2.4) express charge conservation for the vector and axial charges, but we
postulate these relations quite generally. We wish to regard the fields ¢ as
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functionals of the boson field ¢, and its conjugate &, with an explicit form to be
determined from equations (2.3), (2.4). To determine this form, we first integrate
(2.3) with respect to x, to obtain

[6(x), ¥O)] =2§ 8y — X)), ~ 2.5)

an equation which is the starting point for Mandelstam and has a soliton
interpretation. Now, by regarding ¢(x) and m(x) as functional derivatives, we
integrate (2.5) to obtain the following expressions for ¥,(x) and y,(x), as given
by Mandelstam:

Y1(x) = N, :exp iA,(x):

. . (2.6)
Ya(x) = —iN, :exp iA,(x):,
where
A== [ 66— 9@ dz-5 o),
- (2.7)

a0 =2 o6 -pm@ dz+5 o

The ordering of the non-commuting operators in (2.7) is determined by the usual
normal ordering prescription, in which we choose the Fock space representation
for a boson field of some mass u. Such normal ordering implies a choice, although
somewhat arbitrary, of a representation of the operators as free fields, and to this
extent is not perturbation independent. The two-point function in this repre-
sentation is given by

_ I .
Au(x=y)=[$"(), $~O0)] = ; HO GG = 1), 2.8)
where x> — ¢* >0, with the asymptotic expansion
1
A(x)~— ype log c*u’x* + O(x?). (2.9)

The &-integration in the expressions (2.7) is understood to be regularized by
inserting the factor exp (€§) in the integrand, and the normalisation N, in
equation (2.6) is chosen to be

2
N§=—exp( ””), (2.10)

as determined by the normalisation required below for 3, and vy, (equation
(3.13)). '

In manipulating the operators A;, A, in (2.7) further regularization is
necessary. Firstly, in multiplying two fermion operators we use the point-splitting
procedure and y,(x)y,(x), for example, will appear in the form &%y, (x)y,(x + €),
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where the index o is calculated so as to produce a finite result for e — 0. In doing
this, we regularize the singularity in A,(x), for x ~0, by introducing an
imaginary time splitting:

E3

A+(x! E)~ 4.7[

log c*u?(x* + %) + O(x?). (2.11)

In addition, we must also consider the meaning of 8(x). We can always
assume

8(x) + O(~x) =1, (2.12)

but when further regularization is necessary, we replace 8(x) by 8.(x), defined as
follows: let 0,(x) be any smooth function interpolating between 0 and 1, and
define

0.(x) = 91(2). (2.13)

For small €, 6.(x) approximates 8(x), and we take the limit € — 0 when possible.
A useful representation of 8.(x) is

0.(x)= % arctan (Z) + 3. (2.14)

If required, further regularization of equation (2.7) is also possible; for example,
we could replace

20— [ 0.0 - £)97(8) d 2.15)

as occurs in Section 4 (equation (4.19)).

3. Anticommutation relations

We wish to investigate the anticommutators of ¥ (x) and y'(y) for all values
of x and y. The formulas we need are

e eB=elABl g8 et (3.1)
where [A, B] commutes with A, B, and

[A1(x), A1(¥)] = —[Ax(x), Ax(y)] = —im(6(x — y) — 6(y —x)),

[A1(x), A;(y)] = in(6(x — y) + O(y — x)) = in.

With these formulas, it is straightforward following Mandelstam [3] to see that,
for different arguments, all anticommutators are zero.

(3.2)
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In order to investigate {y,(x), y,(y)} for x =y, we require the commutator

(A7), 470)] =57 (0 =) = 60 =) + (T + ) A -»)
.71'2[1, 4'7';2“2 jx—y|
et ) A(BEdE 3-3)

where € is the regulator which appears in the integrand of (2.7), and where we
have used

2

(), 0] = (5155 + ) =), (4)
as well as
fo TALE) dE= ﬁ (3.5)

For x ~y we have therefore

[A7(0), ATG)] == 5 (80x —y) = 8y = ) = (o + 1) log [en(x — )

2

il o
Yite O((x —y)*log |x — yl), (3.6)
where
2 B?
=—+4+—-1. 3.7
From the normal ordering formula
e o8 =elA" B ] pATE, (3.8)

we find, for x ~y,

Y1(x)y1(y) = Nzexp [AT(x), AT ()] :exp i(Aq(x) + A, ()):
cp

=L exp | T (00— y) ~ 60 —x) | lentx = )1

X exp i(Ai(x) + A,(y)): (3.9)

Now we consider this equation in a weak sense, i.e. we take matrix elements, and
let y—x; since the matrix elements of the normal ordered operator
:exp i(A1(x) + A;(y)): are finite, and other factors are bounded, we obtain, using
o+1>0,

Y1(x)? = Ya(x)>=0. * (3.10)

We emphasize that these equations hold in a weak sense only, whereas
{y1(x), ¥,(y)} is zero in a strong sense for all x #y.
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Next, we investigate the anticommutator {y,(x), ¥i(y)}. Here we must
include the regularized functions 6.(x) and A (x, €) in order to smooth the
singularity at x =y. Using the normal ordering formula (3.8), and the com-
mutator (3.3) we find, for x ~y

Wiy () = N2exp [AT (x), AT(y)] :exp — i(A,(x) — A,(y)):
= exp | X (6., )~ 6,0 )]

><exp[(‘“’2 B A~y £ exp i1 ~ 410

=;—iexp [%r (B (x—y)—0.(y— x))]

X [u*((x — y)> + £3)]7 D2, (3.11)

where we have included only the leading contribution (the identity) from the
operator :exp — i(A;(x) — A;(y)):. A similar expression for ¥}(y)y,(x) follows by
taking the hermitean conjugate. We obtain, therefore, for x ~ y

{vi(), v,0)}

= %cos [g (e, (x—y)—6.(y— x))][cz,uz((x — YR+ )7V (3.12)

One sees that at & =0 the expression cos [(7/2)(6,,(x —y) — 6. ,(y —x))] is zero
except possibly at x =y, i.e. {yi(x), ¥.(y)} is zero for x # y as was noted already
above. Equation (3.12) indicates that it is necessary to regularize both the
functions 6(x —y) and A, (x —y) in order to evaluate the commutator at x = y.
The meaning of (3.12) depends on the way in which the limits &,, £,6—0 are
taken; let us choose the regulators ¢,, &, to be equal, &, = g, = g, with £ small.
We can now gain a better understanding of (3.12) by substituting the specific
choice (2.14) for 8.(x). We find

cu)”° £

(W@, 900 = W3, w0 =Bt G1)
We recognize that for o =0 (for which 8% = 4) we obtain a representation of the
0 function, i.e., we recover the canonical anticommutation relations. In general,
however, the noncanonical nature of (3.13) can be attributed to the renormalisa-
tion required for the interacting fields v, 1,. Our result disagrees with that of
Ha [9], who has used a different regularization scheme and obtains the canonical
commutation relations for the massless Thirring model, even for o+#0. The
difference appears to be partly due to the failure to regularize step functions of
the type 8(x) (see for example equation (2.22) in [9]).

Next, let us turn to the fermion bilinears and derive expressions for their
boson equivalents. The fermion currents can be constructed from vy, and y,,
with the point splitting prescription exactly as outlined by Mandelstam [3]; we
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may therefore set £, = £, = 0. We obtain

o) = 9 = lim = (ctae) e v s+ ),
) _ (3.14)
ju(x) = ) = lim (£ cue) ey + ) - 5L),

which explicitly identifies the corresponding fermion and boson currents, together
with additive and multiplicative renormalisation factors.

The remaining fermion bilinears, of the form y}(x)y;(y), can be equated
with terms of the boson potential. As is the case with the currents, point splitting
regularization is sufficient, and we obtain

:c08 Bp(x): = lim Ciu (cue) " *Px)(x + ¢), (3.15)
and
:sin Bp(x): = lim — ;i; (cue) P(x)ysw(x + &), (3.16)
where ‘
_2z_ p
6= 5 gn (3.17)

4. Field equations

So far we have not imposed any dynamics on the boson field or on the
corresponding fermion fields. We consider at first the sine-Gordon model and
then indicate how to generalise the results to boson models with arbitrary
periodic potentials. Included as a special case is the free boson field, shown to be
equivalent to the massless Thirring model. These correspondences have in part
been demonstrated by Mandelstam, by deriving fermion field equations from the
boson dynamics, but without proper consideration of the regularisation required.
In particular, the mass renormalisation in the massive Thirring model is best
performed by employing the regularized functions A, (x, €) and 6,.(x). As is the
case with some of the fermion anticommutators ((3.10) and (3.13)), the field
equations, for the massive case, hold only in a weak sense.

The Hamiltonian for the sine-Gordon model is

o't
H= [ (10787 + bm()* - 505 B (&):) d& = Hy + H, ¢8)
The dynamics of the y fields are determined from

1/-1 =i[H: '4’]’

4.2
y' =P, y], WA
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where the momentum P is given by
1
=> | (n(®), ¢'©)) d& (“.3)

In evaluating (4.2) we encounter the commutator [:cos B¢(&):, Y (x)] which
is zero except possibly at x = £. This follows from Eq. (2.5), which implies

cos B(E)Y(x) = (x) cos [B(&) +270(x — &)]. (4.4)

It is necessary, therefore, to calculate a regularized form of this commutator,
which we will be able to identify with the mass term of the massive Thirring
equations, as suggested by Mandelstam. By using the normal ordering formula
(3.8) and the commutator

I

0= 9 -5 A5 e), (@.5)

[¢7(8), AT (¥)] = -

we obtain

[:exp iBP(E):, ¥1(x)]
= 2iN, sin (0, (x — §))[c*u?((& — x)* + €)] 775" :exp (iBp(x) +iAs(x)): .
' (4.6)

Again, we have chosen equal regulators &, = £, = € for the functions 6, (x) and
Ai(x, £;). We observe that sin (70(x — £)) is zero except at x = &; for small ¢
therefore the only contribution to the right hand side of (4.6) occurs for small
|E — x| and so we have replaced A,(§ —x, €) by its asymptotic form (2.11) and

¢(&) by ¢(x). The commutator [:exp —if¢(E):, yi(x)] has a form similar to
(4.6), and in this case we can let £— 0 and assert that

[:exp — iBP(E): , Y1(x)] = 0. (4.7)

This is clearly true for § #x (by putting £ =0), but also for & =x because the
factor |§ — x| has for this case a positive exponent f%/4x, which again gives zero
for §—x, e—0. The commutator (4.7) is zero in a weak sense because we
assume that the normal ordered operator :exp [iB¢(x) + iA,(x)]: has finite matrix
elements.

From (4.6), therefore, we obtain the commutator

[:cos BH(E):, Yi(x)] = — alx) sin (76, (x — EN[c2u*((x — E)2 + £2)]-F¥87,
(4.8)
If we choose the representation (2.14) for 6,.(x) we find

£
[(x _ §)2 + 82]132/8.n:+1/2 >

[:cos BH(E):, wa(x)] = —9alx)(cu) 4" (4.9)

Only for =4 does the right hand side include a regularized & function.
Now let us return to the evaluation of equations (4.2). The free Hamiltonian
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H, can be written
— 1 =2 2
Ho=3 | G3+ 7, (4.10)

where the boson currents jg, j; are given in (2.2). The commutation relations
((2.3), (2.4)) then imply

11 2
(o, 9] =5~ 25 o) = 500, w0} @1)
Similarly
[P, ¥i] =%{_273jzf1(x) _gfo(x)’ "l’l(x)}- | (4.12)

From (4.8) we obtain (putting x — & = gy and using (2.13))

o

% [ sin@o,0)07+ DI dy

= mp,(x)e!~F"7, (4.13)

[H), pi(x)] = wz(x)gl-(ﬂlmn)

where m can be identified from the right hand side of (4.13) and is finite and
independent of &. However, m does depend on the conventions chosen, namely
the normal ordering mass pu, and the regulating function 8,(x). It is natural to
define the bare mass

my= mgl_ﬁzmu’ (4 14)

and regard the factor £'7P74" as a mass renormalisation, which is unity only for
B*>=4n. For B><4am it appears that the bare mass m, is zero (letting ¢— 0) but
in this case the matrix elements of y,(x), which multiplies m, and also depends
on ¢, will diverge such that the product m,y, remains finite.

We have now

Y1 =%{_ ?ftfo - gfn lAf’l} + imgy,
(4.15)

,_3{_2_::._@ }
"Pl—z B h 2]0; Y1

together with similar equations for y,. Combining these, we arrive at the field
equations

rou+myy =5 Ly yl, (4.16)
where
4 2
g=— . (4.17)
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If we identify j, with the fermion current as in equations (3.14) then (4.16) can be
considered as the quantum field equations for the massive Thirring model, given
by the classical Lagrangian

%= i9y"8,p =5 By w)Y + mopy. (4.18)

The anticommutator in equation (4.16) is usually expressed via a limiting
procedure (see for example Refs. [4] and [5]), in order to be well defined; we can
regularize singularities in the most natural way by including the regularized 6,(x)
function in the definition of y(x), including the ¢(x) term, as shown in equation
(2.15). This amounts to replacing 6(x — y) on the right hand side of ((2.3), (2.4))
by a regularized function 6.(x —y). Equation (4.16) can then be written in the
smeared form

B
21

An alternative procedure is to regularize H, and P in the following way:

18"+ myw =57 [ 6.6 = &) - (8), y(w) d (419)

Ho=tim > [ [o()io& — €) + u(B)i(& — )] &,

e—0

1 (4.20)
P=tim > [ lo()i(& ~ &)+ (ol — )]
In this case the right hand side of (4.16) becomes
im &L (G0 + £)92) + w0)iu(x -~ ), (4.21)

which is the point splitting prescription described by Johnson [5].

We remark that the equivalence between the boson and fermion models as
revealed by the field equations (4.16) does not extend to an equivalence of the
corresponding actions; we can equate the actions of the fermion and boson
models only at an extremum of the action. Whereas this equivalence is model
dependant, the properties of the fermion field described in Section 3, including
relations of the form 1y ~cos B¢, hold regardless of the fermion-boson
dynamics. One might expect, therefore, given a boson-fermion equivalence, that
a perturbation of the boson model, by adding a term of the form (cos S¢)" for
some integer n, would correspond to a perturbation of the fermion model of the
form ()™

Let us investigate such a possible equivalence, in order to demonstrate that
the bosonization formulas of Section 3 apply to a much larger range of models
than merely the sine-Gordon and massive Thirring models, and to indicate how
the Mandelstam soliton operator can be used to find the fermion model
corresponding to a given boson model. The boson models we consider are those
with potentials that can be written as a sum of terms of the form (cos B¢)", which
will correspond to fermion interaction terms of the form (yy)". Although such
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terms are not renormalisable in the usual sense, the Mandelstam operator shows
how to write down a renormalisable fermion model; the fermion model is
necessarily renormalisable since the boson model is renormalisable (by normal
ordering) and the Mandelstam operator shows how to rewrite the theory in terms
of fermion operators. This is remarkable because it means that although the
perturbation series for the fermion field with interaction (yv)" apparently
contains new divergences at every order of approximation, these divergences can
all be eliminated by the regrouping arising from the boson-fermion correspon-
dence. Although an infinite set of subtractions appear to be called for, they are
not ultimately required. Another way of looking at this problem is to say that the
boson-fermion correspondence defines the putatively non-renormalisable theory.
Furthermore, the redefined theory is unitary.
Let us now investigate therefore, the boson Hamiltonian

H= [ ¢/ (67 +1m(E) +:V(9(8)):) d& (4.22)
where V(¢) is an even, periodic potential:
Vig)=V(g+ %—-’) (4.23)

We may write V(¢) as a Fourier cosine series
1
V(g):= Eg >, a, :cos (nfo): . (4.24)

where the coefficients {a,} are finite. In order to calculate the time derivative of
¥ from equation (4.2), we require the following commutator (similar to (4.6)):

[:exp inB¢(8):, ¥1(x)]
= 2iN, sin (n0,(x — §))[c*u>((€ — x)> + £9)]7"F"8" :exp(inBep(x) + iA;(x)):.
(4.25)
It is apparent from this expression that only integer values of n are allowed, since
otherwise the factor sin (nr6(x — &)) will not have point support, as was required
in the previous analysis for n = 1. This prevents us from considering arbitrary

potentials, expressible as a Fourier transform, instead of the Fourier series (4.24).
It follows from (4.25), in the same way as for n =1, that

[:exp (—inf¢(5)):, ¥1(x)] =0, (4.26)

by putting n— —n and letting é— 0. Hence, again as before,

J: [:cos nBP(E):, Wi(x)] dE = iN.M,e*~"F"* .exp (inBp(x) + A,(x)):. (4.27)

where

M, = f [2u?(y? + 1)]7"7757 sin na6,(y) dy. (4.28)
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T_he coefficients M,, are finite for all n >0, and we can define the ‘bare constants’
M, by
M, = M, g ~"F= (4.29)

Although this indicates how the fermion theory corresponding to the boson
Hamiltonian (4.22) is renormalised, we have yet to express the right hand side of
(4.27) in terms of the fermion field ¥ (x). To do this, we need to reshuffle the
normal ordered operators, introducing more renormalisation factors. The right
hand side of (4.27) takes the form (]y,)" '1,, in which the arguments of the
fermion operators differ successively by &, and is also multiplied by a power of ¢.
Because of the point splitting, repeated products of the form (yiy,)” are not
necessarily zero, as might be expected from 3 = 0= 3. The time derivative of
1, then has the form
; i( 22, B, . o el

Y= i{_ F]o - 5]1; ‘!’1} +1 En: c(YiY2)"" Y2, (4.30)
for some set of coefficients {c,}. The fermion Lagrangian which corresponds to
the boson model (4.24) therefore has the form

L= 979, ~E v vR +1Gy) ' @30

where f is some function that is identified explicitly by tracing back the constant
and multiplicative factors introduced in the normal ordering process. Renorm-
alisation of this Lagrangian must be carried out by assigning to expressions like
f(yy) the meaning indicated precisely by the bosonization formulas. This
demonstrates, in outline, that for boson-fermion equivalent models, a perturba-
tion by (cos S¢)" corresponds to a perturbation ()" on the fermion model.

5. Non-Abelian bosonization

Witten’s non-Abelian bosonization [2] reduces, for N = 2, to the case studied
above. Although Witten considered only massless fermions, and the chirally
invariant case corresponding to B?=4m, we can investigate the bosonization
formulas more generally using Mandelstam’s soliton operator. For convenience,
we define Majorana fermions:

V2y =i —ip3,  V2y,=vyi —iys, (5.1)
giving

¥i = V2N, :cos Ay, Y3 =—V2N, sinA;:,

Y7 = V2N. :sin A, Y5 = V2N, :cos A,:. (5.2)

Define also the group element

=( cos B¢  sin ﬁ¢)’

—sin B¢ cos B¢ (5-3)
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and the currents

Ji(x) = B(m(x) £ ¢'(x)). (5.4)
Previous formulas can be rewritten in terms of the Majorana fermions and

currents; for example ((3.15), (3.16)) become:

gi(x) =ilim "*(CME)"“(S,kwk @)y (x + &) = v (X)euyi(x +€)).  (5.5)

As shown in Ref. [6], the matrix g’, defined by
Mg = —iy; y;, (5.6)

is not equal to g, as Witten suggested. It is, however, orthogonal in an
appropriate sense, provided the normalization M is chosen correctly. To verify
this, we require the formula

Y (x) i (v) = 2Nz exp [AT(x), AT (y)] :c0s (Ai(x) — Ay(y)):. (5.7)

Then we find, to leading order in x — y,

gi(x¥)gi(y) = M2y (x)y; (0)yi (x + )i (y + )

= M"2N2exp [Af (x + £), AT + )97 ()9} ): (5.8)
We also have, again to leading order in x —y,
Y1 (x) Yz (y) = 2N exp (— [A7 (x), A2 ()], (5.9)
showing that (in a weak sense)
lim Y7 () Y3 () = 0=lim ¥ (2)Yi (). (5.10)

However, y1(x)y1(y) and v, (x)y,(y) are nonzero and equal as y—x. (5.8)
shows therefore that gji(x)g/(y) is nonzero only for i=k, and so g’ is an
orthogonal matrix, in a weak sense, provided M is suitably chosen, i.e.

.1 2 1, — +
gi(x) = —i }EI_I)I})%(CME)G ")y (x + ). (5.11)

What are the currents generated by g’? Witten’s calculation indicates that
these currents are the same left and right currents J* as generated by the group
elements g. We can investigate the form of the currents by using the equations
(4.15) satisfied by the fermion field . In terms of the Majorana components,
these equations can be written

1
LY = moEp Py — ( ﬁz){-]w ExYr }
(5.12)

OLYi = moExYPi — 1( ){112, EaYi }

ﬁz
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where 0, = 3/t + 3/3x. Let us ignore the fact that terms involving m, appear in
a weak sense only, and interpret the anticommutators on the right hand side of
(5.12) to mean the limit as shown in (4.21). Then

d.(g;) = —iM 'mo(eayi Y+ Ejku"i_l/};)

1 4 1
( 1+ ﬁz) 12€i8 ki — ( ﬁz )leﬁ}kg:k

= —iM 7 'mo(eaWi ¥; + g i Vi) +Ta(g8"); (5.13)

where we have used g'e = gg' for all g’ € SO(2). For m, = 0 therefore we find that
g' satisfies 8,g'=g'J", and similarly 8_g'=J"g’, i.e., the group elements g’
and g each generate the same currents J*, given by (5.4). (This was found by
Witten in a different way, see [2], equation (35), but this does not imply g =g".)

Since g is obtained by a linear transformation from g’, properties of g follow
from those of g’. If we assemble the elements of g and g’ into column or row
vectors of length 4, we can write

g=Tg' (5.14)
where, up to a normalisation factor,
0 -1 1 0
1 00 1
T= ! 5.15
-1 0 0 -1 @15
0 -1 1 0

T is not invertible, so we cannot obtain g’ from g. However, properties of g
follow from those of g’ by applying T; for example, the fact that both g and g’
generate the same currents J* follows from

[T, e®I]=0=][T, I ®e¢]. | (5.16)

This is because we can write 9_g' = (I ® €)g'J1,, from which 3_g =J g follows
using ((5.14), (5.16)).

Whilst Mandelstam’s soliton operator is useful in order to establish formulas
for the N =2 case of non-Abelian bosonization, it does not appear to easily
generalize for larger values of N. It is possible to write down generalizations of
(5.5), which involve not just the SO(N) vectors y*, but also the dual vectors as
appear in (5.5). For example, one can form the vector

Vi= €y Vi Wi " Wi (5.17)

which is not identically zero because the fermion operators 3 anticommute, and
then construct a generalization of (5.5), with the correct vector commutation
relations with respect to the currents J*. However, the validity of such an
expression cannot be readily checked, because of the lack of a suitable soliton
operator.
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