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Quantum Statistical mechanics of general
mean field systems

By G. A. Raggio and R. F. Werner1)

Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland

(20. III. 1989)

Abstract. We consider mean field models for n identical systems interacting with each other, and
with another additional system. Each hamiltonian H„ is taken to be symmetric with respect to
permutations of the identical systems, and for large n and arbitrary k, (n + kYlH„+k is approximately
equal to n~xHn, taken as an operator of the larger system, and resymmetrized. We give a complete
theory of the equilibrium statistical mechanics of such systems. The validity of the Gibbs Variational
Principle is established; firstly, at the level of the states of the infinite system, then secondly at the
level of the states of the single system. A generalized gap-equation is obtained at this second level. In
some cases, the variational problem reduces further; this leads to a non-commutative version of the
large deviation results of Cramer-Varadhan for Ud-valued random variables.

I. Introduction

We define a class of statistical mechanical models of mean field type, and
obtain a complete theory for them. The models are specified by a C*-algebra 3S

for the single system, and a hamiltonian for the aggregate of n single systems
(described by the n-fold tensor product of 38) interacting with each other, and
with a second system specified by a C*-algebra sl. The precise nature of the
allowed hamiltonians is described in Section II. The essential features are that the
hamiltonian density Hn is invariant with respect to all permutations of the n single
systems, and is asymptotically symmetric in the sense that Hn+1 is given, up to a
small correction, by resymmetrizing Hn considered as element of the (n + l)-fold
tensor product.

For our general mean field model, we prove the validity of the Gibbs
Variational Principle at two levels. Firstly, the thermodynamic limit of the free
energy density is obtained by minimizing the free energy density functional over
the set of (symmetric) states of the (infinite) system. Secondly, the latter
variational problem is reduced to that for a free energy density functional on the
states of the single system. At this level, the minimizing states are solutions of a

') On leave from: FB Physik, Universität Osnabrück, Postfach 4469, D-4500 Osnabrück, West
Germany.
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gap-equation. Since all limiting states of the model are minimizers, we obtain
some detailed information about them as well.

In special cases, the reduction proceeds one step further, and a finite
dimensional variational problem is obtained. This corresponds to a 'level-1' large
deviation result in the terminology of [5], and extends Varadhan's results [21], on
the multidimensional Cramer Theorem, to the non-commutative domain. All
three levels were obtained in [14] for the simplest possible case.

From a technical point of view, this paper extends the results of [14],
particularly those involved in the estimates of the energy density, thus allowing
not only for the inclusion of the additional algebra si, but more importantly, for a

larger class of hamiltonians.
The basic definitions and the main results are expounded in Section II.

Section III contains their proofs. The energy estimates are based on the contents
of Section IV, which is essentially selfcontained and describes a general theory of
what we call the C*-algebra of symmetric tensors. In the concluding Section V,
we discuss possible extensions, and problems. Some results on the many-variable
functional calculus in C*-algebras (C*-functions), are given in an Appendix.

II. Main definitions and statement of main results

Throughout the paper sì and 38 will be unital C*-algebras. We shall be
concerned with sequences of models with observable algebras S>„ ,s#<8> (<8>"=i 38(v)),
where <8> denotes the minimal, or injective, C*-tensor product [19] and S8(v) is

an isomorphic copy of 38. The C*-inductive limit of the sequence 2èn with the
natural injections will be denoted by 2>œ. Whenever convenient, S>„ will be
considered as a subalgebra of 3>œ. The symmetrization operator sym„:2)„—» 2)„
is the continuous linear extension of symn (a <8> xt ® • • • <8> xn) (1/n!) E^ a <8>

x„x® - - - ®Xnn> where the sum is over all permutations n of {1,... n). The
same definitions apply when si C; we then write 38„ and 38<„ for 3)n and S>«,

respectively.
For any C*-algebra 9, K(^) will denote its state space. A state cp e K(3sY)

(resp. K(^Y)) is called symmetric, if for all n e N, and all X e 2n (resp. 38„),
cp(X) cp(symn (X)). The convex set of symmetric states of 3)œ will be denoted
by /sC,(2L). For cp e K(@t), the associated infinite product state on 38œ is written
nv, and is symmetric.

The models we consider, are specified by a sequence of hamiltonians, given
abstractly as follows. Firstly, the non-interacting part is determined via a

sequence {co„ p0 <8> (<8>"=i P(V>)} of product states of 9)„, where p0 € K(si), and

P(v) peK(8ft) are arbitrary separating states (i.e. a state such that the
associated GNS-vector is separating for the von Neumann algebra generated by
the GNS-representation). The interaction is introduced by perturbing each con in
the sense of Araki [1] with a relative hamiltonian n ¦ Hne 2>„. The perturbed
(unnormalized) positive linear functional of 3>n will be written co"H". This
framework provides a generalization of that special case where the state co is
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given by co(°) Tr(D°) with a (non-singular) density D with respect to a trace
Tr; there, the state coh has density exp (log D + h). The number log coh(\) can be

interpreted as a relative negative free energy [1,14]. The sequences of relative
hamiltonian densities we allow are assumed to be approximately symmetric in the
sense of the following definition:

n.l Definition. A symmetric sequence in 2«, is a sequence (X„), defined for
n larger than some initial value n0, such that Xn e 3>n, and for all k > 0 and

n t>n0:Xn+k sym„+fc (Xn). The set of symmetric sequences will be denoted by
°y, or <&(si, 38). A sequence (Xn e S>„)„»„0 is called approximately symmetric, if
for all n >n0, Xn sym„ (Xn) and Ve>03ye*3mV„am \\Xn - Y„\\ < e. The set of
approximately symmetric sequences will be denoted by <&, or ^(sl, 38).

Thus, a mean field model is specified by the algebras si, and 38, with respective
separating states p0 and p, and by an approximately symmetric sequence
H (//„)„=,„„, of relative hamiltonian densities Hn H* e 2)n.

The simplest examples of such models are the usual quadratic mean field
models with hamiltonians of the form

n • Hn J ht + (n - l)"1 • £ V„,

where /i, is a copy of the single particle hamiltonian h e 38, acting in the /th tensor
factor, and Vtj is a two-particle interaction V e 38 <8> 38, acting in the ith and /th
factors. Note that the first term can be included in the second by setting
V V + (h®l + l<2)h)/2 H2. Clearly, the above sequence Hn is strictly
symmetric, and defined for all n s 2. It is also the most general sequence of this
description. The generalization of the quadratic mean field systems to arbitrary
iV-particle interactions is straightforward, and leads to symmetric sequences Hn
defined for n > JV. As in the quadratic case such a model is completely specified
by HN e 3)N, since the higher terms of a symmetric sequence are given by an
explicit formula. Just as the requirement of symmetry fixes the scaling of the
Af-particle interaction-term in Hn, it fixes the scaling of the interaction between si
and 38„. With si non-trivial there are also symmetric sequences defined for n s 0,
which are of the form H?, a <8) 1- • • <8) 1 e <2>„. The corresponding hamiltonian
has a factor n, so the non-interacting si-part of the hamiltonian is scaled to
infinity with the number of 38-particles. This is necessary for H° to contribute
non-trivially to the thermodynamic functions of the model.

Consider now the sequence Hn (n_1 ¦ T,"=1 ht)2 of hamiltonian densities.
This can be written as Hn Yn + Rn, where Yn is symmetric with Y2 h <8> h and
||/?„||<rt-1 \\h\\2. Thus Hn is approximately symmetric. More generally, we can
take Hn =f(n~l • S?=i ht), where/is any continuous function on the spectrum of
h. These are exactly the hamiltonian densities considered in [14]. If / is a

polynomial, then the sequence Y e <& in Definition II. 1 can be taken independently

of e. However, for general /we need the full freedom of the definition.
A further generalization covered by the above definition of mean field
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systems is to allow the function / in the previous paragraph to depend on several
variables, which do not have to commute, and may themselves be arbitrary
approximately symmetric sequences. Thus we can have H =f(X\, X2n,... e 3)„,
with Xv e $ for some function / (see Proposition II.2 below). However, in order
to make this definition of Hn precise we have to clarify what we mean by 'the
same function/' in the different C*-algebras 3>n. This is done in the Appendix by
introducing the notion of C*-functions. Here we only remark that the set of
C*-functions is closed under composition, and includes all polynomials of (finitely
many) non-commuting variables, as well as the continuous functions of a single
variable.

A crucial rôle in the theory is played by the algebra ^(X(38), si) of
continuous functions on the state space of 38 (with the w* -topology) with values
in si (with the norm topology). This is developed in Section IV. To every x e 3sn

we associate a function /'„(*) e ^(AT(38), si) such that for every cp e $T(38),

jn(a ® bx ® • • • ® bn)(cp) a • Ilv=i <p(bv). We show in Lemma IV.6 that for
X (X„) e §), the limit j(X) lim„ j„(Xn) exists uniformly and j maps # onto
"#(.£(38), si). In fact, we equip # with the structure of a seminormed *-algebra,
and show that /' is a C*-isomorphism. As an application, we obtain a proof of the
non-commutative de Finetti Theorem of St0rmer [18] and also its extension [6]
(without separability assumptions on the algebra si). Returning to our main
concern, the statistical mechanics of mean field models, we can show that for a

symmetric state cp of Su, cp(X„) converges as n—» », for each X (Xn) e &; and
we obtain a formula for this limit in terms of the map j, and the decomposition of
cp into extremal symmetric states.

If Y is obtained by operating on some other sequences Xv elementwise with
some C*-function (see the Appendix), then we have the following convenient
formula for j(Y) in terms of the functions /(Xv).

n.2 Proposition. Let f be a C*-function on some compact convex set T e IR",
and let Xv e $ be an approximately symmetric sequence for each v e N such that
Yn =f(X\, X2, e 3>„ is defined for n s n0. Then Y (Y„)„a„0 is approximately
symmetric and

j(Y)=f(j(Xl),j(X2),...)

The treatment of the entropy parallels that of [14]; most of the technical
details needed in our more general setting are found in [13]. For states co and cp

of a unital C*-algebra, S(co, cp) will denote the relative entropy of cp with respect
to co (in the sign-convention of [2]). The non-negative real number S(co, cp) is
defined via the GNS representation associated with co, and is finite only if cp

extends to a normal state of the generated von Neumann algebra; in this case,
S(co, cp) is given by the definition of [2] applied to the normal state extensions.
S(co, °) is convex and lower H>*-semicontinuous (the lower semicontinuity in this
general context follows readily from [13, Theorem 9]). In the particular case
where both states are given by non-singular densities D with respect to a trace
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Tr,

S(co, cp) Tr (D„{log Dv - log £>„}).

The mean relative entropy for cp e K(2ßY) with respect to co e K(3lœ) is
defined to be

Sm(<*>, 0) lim sup n_15((ü | 38„, cp | 38„);
n

and is affine in cp. When the reference state is a symmetric product-state np, and
cp is symmetric, then by Proposition III.4 the upper limit is in fact a proper limit.

The connection between co"H"(l) and thermodynamics is the following.
Suppose that the separating states p0e K(si) and p eK(^) determining co„ are
given by densities exp (—/3^0)/Tr^ exp (—ßA0), respectively exp (—/3/)/
Tra exp (—ßA), with /3>0. The non-interacting system then has Stin=A0®
[A ® 1„_! + 1 ®A ® 1„_2 + • ¦ ¦ + 1„_! <8>A] as its hamiltonian. The corresponding
free energy density F°„(ß) is then simply

F°n(ß) (-riß)'1 log Tra„ exp (-«
(-nß)'1 log Tr,* exp (-/%>) - )8_1 log Trm exp (-ßA),

and its thermodynamic limit is — /3_1logTrß exp (-/?/£). The free energy density
corresponding to the hamiltonian St%+Vn, i.e. Fn(ß) (—nß)~1logTr3lnX
exp (-ß(2t% + K)), is then given by

ß[F°„(ß) - Fn(ß)] n"1 log co-nßv"(\).

The following result gives the existence of the thermodynamic limit of the
relative free energy density of any mean field model, and establishes the validity
of the Gibbs Variational Principle. Moreover, and as is to be expected due to the
mean field nature of the models and the non-commutative de Finetti Theorem,
the variational problem contracts to one on the direct product of the state space
of si and the ('single particle') state space of 38.

II.3 Theorem. For every mean field model,

limn"1 log co"nH-(l)= sup flim cp(Hn) -SM(KP, cp \ 38„)1 (*)

sup {cp0{j(H)(cp)}-S(p,cp)}, (**)
tpeK'Sb)
tpoeK(st)

Remark that the separating state p0 of si does not appear in the functionals
to be maximized, and also that the si-system does not contribute at all to the
entropie part of these functionals. The only influence of the ^-system enters via
the limiting interaction energy density.

The basic information on the nature of the equilibrium states is collected in
the following result.
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11.4 Theorem. For every mean field model one has:

(1) Every w* cluster point ofthe sequence (Norm-1 ft)J"")„>^ maximizes (*);
(2) The subset Af* <= Ks(2ßY) of states cp maximising (*) is convex and

compact, and the subset Af**c K(si)x £(38) of pairs (cp0, cp)

maximising (**) is non-empty and compact. The extreme points of M* are
the states cp^^Ti^ with (cp0, cp)eM** and cp0eK(si) pure. Every
cp e M* has a w*-integral decomposition cp J p(do)cpa <8> nCT, where p is

a Baire probability measure on £(38), cpa e K(si) for all a e £(38),
o*-*cpa(a) is measurable for all a e si, and (cpa, o) e Af** a.e. (p.).

(3) If si and 38 are separable, then for any extreme point cp of M* there exists

an approximately symmetric sequence (Hn)n>„0 such that

lim\\Hn-Hn\\=0,
n

and the sequence (Norm-1 w^H")„>„0 is w*-convergent to cp.

(4) Let X e "3/(0, 38), and suppose that the sequence (Norm-1 co""-)

converges to an extreme point of Af*. Then the sequence (Kn) of
probability measures on R, defined by J Kn(dx)f(x)
(Norm-1 co%H")(f(X„)) for fe^U), is w*-convergent to a point
measure.

(5) If cp is a maximiser of (*), then the restriction of cp to 38„ is normal with
respect to the restriction of con to 38„ for all n.

Note that the integral decomposition given in (2) is not a decomposition into
pure phases, which would be an integral of the form cp J" v(d(cp0, cp))cp0 <8> Tl^
with a probability measure v on K(si) x £(38), supported by the set of
(<Po> <p) £ Af** with cp0 extremal in K(si). For non-separable si the set of extreme
points of K(si) is not measurable in K(si) and hence Af** is in general not
measurable. The 'support' of the measure v on K(si) x £(38) thus has to be
understood in the weaker sense customary in non-metrizable Choquet-theory.
The integral decomposition given in the theorem avoids this difficulty and has the
additional virtue of being unique in the sense specified in Proposition IV.5.

One may wonder whether the local normality property (5) holds also for the
whole algebras 3)n rather than the tensor factors 38„. That this is not the case is

seen in the following example. Let si 38($f) be the algebra of bounded
operators on St L2([0, 1], dx) and let 38 C be trivial. Let p0 be any faithful
normal state on si, and let Hn H e si be the multiplication operator with x in
St. Then by Theorem 11.4(1) any cluster point cp0 e K(si) of the sequence
(Norm-1 • p3*) satisfies cp0(H) sup spec (if) 1. Hence cp0 must be purely
singular on ®(St).

Under a differentiability condition, the maximizers of (**), i.e. the states in
Af**, satisfy a generalized gap-equation [7,14] with a state-dependent effective
hamiltonian A:

11.5 Proposition. Let (cp0, cp) e M**, and suppose that j(H) is differentiable
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at (cp0, cp) in the sense that there is some A e 38 such that for all xp e £(38):

cp0{J(H)((l - k)q> + Ai/;)} cp0{j(H)(cp)} + X(xp(A) - cp(A)) + o(X)

as A^0+. Then cp (p^l))-1 • p^.

In the case studied in [14], the variational problem (**) contracts further to
one on the real line. This was seen to provide an extension of Varadhan's
asymptotic formula [20,21], based on the large deviation results of Cramer for
the distribution of sums of independent, identically distributed random variables.
We obtain a further generalization of this, which at the same time reduces the
computation of the suprema of Theorem II.3 in a certain subclass of mean field
models to a variational problem on IR*. The subclass consists of those models
where si is trivial, and the hamiltonian density is given by Hn
f(X(n1\ X{2), X^), for some C*-ftinction /, and k symmetric sequences
X(v) e <3/, all beginning at n0= 1.

Consider k self-adjoint elements xm, x(2\ xw in 38. For t e Uk, let
t ¦ x txxm + t2x{2) + ¦¦¦ + tkx(k), and define Gxp:Uk-+U, Ixp:Rk^M U {+00} by

G*p(0 logp'-*(1), teUk,

Fp(u) sup {t ¦ u - Gxp(t)}, u e I ik

where p is any separating state of 38. Gxp is then convex and differentiable [3] with

{VG* }y(0 p'x(x^)lp'x(l), lsjsfc
Moreover, G*(0) 0, and the generalized Peirels-Bogoljubov and Golden-
Thompson inequalities of [3] imply p(t ¦ x) s Gp(t) =s log p(e'x). It follows that Ixp

is non-negative, convex, and lower semicontinuous, with Ip(p(xw),
p(x(2)), p(x(k))) 0. Using [3] one can see that Gxp (and hence Fp, [17,
Theorem 26.5]) is strictly convex if and only if the set {1, xm, x^) is

linearly independent. We remind the reader that the effective domain, dorn (Ixp),

of Ixp is the convex set where Ip is finite.

II.6 Theorem. Let x(v), l<v</c, be self-adjoint elements in 38; then the
closure of dorn (Fp) is E {(<p(*(1)), <P(x(2)), ¦¦¦, cp(x(k)) \ cp e £(38)}. Let the

symmetric sequences X(v) in "3/(C, 38), 1 < v < A:, be given by X\v) *(v) e 38, and
let f by any C*-function on E. Set

//„=/(Zl1>,^,...,Z<*>)€38„.
Then, with H (Hn)n>x e $(C, 38), one has

sup {j(H)(cp) - S(p, cp)} sup {/(«) - /*(«)}
tpeK(m) ueE

sup {/({VG*}(0) - * • {VG'KO + Gxp(t)}.
IeR'

Let us illustrate these results in the case where the assumptions of
Proposition II.5 and Theorem II.6 are both satisfied, i.e. / is differentiable as a
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scalar function on a neighbourhood of E. Then

^ txiVjf(cp(xm),...,cp(x^)).

Consider the maps U, T, and <I> defined by:

£(38) 3 cp -» t/(cp) (cp(xw), cp(x^)) e E,

Uk3t^> O(0 (p"(l))-y € £(38).

£3«h T(M) V/(u) e R*,

If qc e £(38) is a maximizer for j(H)(°) — S(p, °), then U(cp) is a maximizer for
f(°) — Fp(°)- Given a maximizer teUk, <b(t) maximizes j(H)(°) — S(p, °).
Finally, an argument similar to that of the proof of Proposition II.5 shows that
given a maximizer ueE, T(u) maximizes f->/({VG*}(f)) -1 ¦ {VGxp}(t) + Gxp(t).
This sets up bijections between the sets of maximizers of the three expressions of
Theorem II.6. The gap-equation becomes

cp cpc ro U(cp) Norm"1 pW(«"(*(,)> *(*<*>)}-

or, alternatively,

f r°t/=i>(o v/(VG*(0).
The bijective correspondence between the sets of maximizers of the three

variational problems of Theorem II.6 is also guaranteed if dorn (Ip) VG*(IR*).
This last condition does not follow from the differentiability of/. If Gp is strictly
convex, then VGP(IR*) int (dom (Fp)) [17, Theorem 26.5] is open. On the other
hand, if 38 is finite-dimensional, then S(p, °) is bounded above, and one can
show that dom (Ip) E, which is closed.

III. Proof of main results

In this section we give the proofs of all results of the previous section except
II.2. This is done in the appendix. The basic idea of the proofs is exactly the same
as in the paper [14]. The new ingredients are the inclusion of a non-trivial
algebra sì, and a much larger class of admissible hamiltonians; this becomes
possible due to the theory presented in Sect. IV.

The central idea is to use the following important variational characterization

of the relative entropy of states in a general C*-algebra due to Petz [12,13].
It can be stated by saying that h ¦-» log coh(\) is the 'Legendre' transform of
cpi-+S(to, cp), and conversely.

III.l Lemma (Petz). Let co be a separating state of a unital C*-algebra si,
h=h* esi, and cp any state of si. Then

logcoh(l)> cp(h)-S(co,cp)
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and equality holds if and only if cp coh(\)~1coh. Moreover,

S(co,cp)= sup {cp(h)~ log coh(l)}.
h*=hest

This lemma is now applied to the algebra 3>„, with the reference state
co con po<8>(®v=i P(v>), the relative Hamiltonian h nHn, and a symmetric
state cp cpn of 3)n. After dividing the inequality by n, we pass to the limit. Thus
one has to control two kinds of terms, namely the interaction energy density
cpn(Hn), and the relative entropy density n~1S(con, cpn). We shall have to require
of the sequence (fr,) only that it converges *-weakly to a limiting state on ®„.
Since the state space of 2>„, is w*-compact, this condition can always be met by
passing to a subnet (since we are not assuming si and ^ to be separable,
subsequences will not do). We will use the following notations. Let v be a subnet
of N, i.e. a function v:A-»N on a directed set (A, s) such that for every n eN
there exists a0 e A such that v(a) S: n, whenever a s a0. If (an)neN is a sequence
in a Hausdorff space, we write lim„_»v a„ for lima6ÄAv(a) if it exists, and employ a
similar notation for superior and inferior limits of sequences of extended-real
numbers.

III.2 Definition. Let (cpn)nef^ be a sequence of permutation symmetric states
cpn e K(3)n) (resp. fr, e £(38„)). We say that (cpn) is convergent along a subnet

v: A-> N, if for all m e \\ and all X eé)m (resp. 38m) the limit lim„^v cpn(Xn) =:
cp(X) exists.

For any sequence convergent along a subnet, the limit-functional extends
from U« 3>n (resp. [Jn 38„) to a unique symmetric state cp of S„ (resp. 38œ), and
we shall write cp lim„_v cpn. By Proposition IV.5 any symmetric state cp has an
integral decomposition, cp J p(do)cpa ® nCT, into product states. This
decomposition is used in the following proposition, which summarizes the energy
estimates we shall need. It is proven at the end of Section IV.

m.3 Proposition. Let X e % and let (#„)„6N be a sequence of permutation
symmetric states of 3)n converging along a subnet v to

lim„_v 4>„ J" (i(do)cpa (8) nCT e £s(®œ).

Then

lim fr(Xn) f p(do)cpa{j(X)(o)).

Recall that SM(co, cp) was defined as an upper limit. We shall need to know
that this lim sup is in fact a limit, if co is a product state and cp is symmetric. The
necessary control of the lower limit is stated in the following proposition.

m.4 Proposition. (1) Let (fr,)nsN be a sequence of permutation symmetric
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states of 38„ converging along a subnet v to lim„^.v cp„ cp e £s(38œ). Then

lim inf n-'SÇTlp | 38„, 0n)>SM(np, cp).
n—*v

(2) If cp j p(do)Tla is the decomposition of the symmetric state cp into product
states, then SM(Tlp, cp) j p(do)S(p, o).

Proof. We may suppose that S(J\P | 38„, cpn) is finite for every n. Let x be
the right-shift on 38œ. SM(Tlp, °) is lower H>*-semicontinuous on the T-invariant
states of 38«, (see the appendix of [14]). One has

liminfSM(np, §a)s5M(np, fr),
o-eA

for any net {%a \ a e A} of T-invariant states of 38«, which is w*-convergent to cp.

The first claim follows if we construct such a net, with the additional property that

Sm(Up, U v(ar)-15(np | S8v(a), cpvÇa)). (***)

Define the state £a e £(38,„) by

L | â8*v(a) 0v<ar) ® <Pv<a) ® • • • ® cpvla) (k factors), for every täl;
t,a is then Tv(ar)-invariant. For every meN, Ça(AT) cpvia)(X) for all Xe 38m

whenever v(a) > m. Hence, vv* - lima€A Ça fr Put §a v(cr)-1 Y7f=x £<* ° r;_1;
then, %a is T-invariant and has the same limit as {Ça} by [14, Lemma 5]. We can

repear the argument of [14, Lemma 7] to show that for any m,

limAT^fll,, | 38*, Za°Tm | ßk) v(a)-15(np | ßv(a), cpv(a)).
k

Then the argument of [14, Lemma 8] implies (***). This completes the proof of
the first claim. The second claim follows from the lower semicontinuity of
5M(np, °) by a standard result of Choquet Theory, and the fact that
5M(np,n^) 5(p, cp).

Proof of Theorem II.3 and of Theorem 11.4(1)

Put a„ «-1 log connH-(l), A sup {lim„ cp(Hn) - SM(Tlp, cp \ 38œ) | cp e £s(®„)},
and B sup {cp0{j(H)(cp)} - S(p, cp)\cpe £(38), cp0 e K(si)}.

We first claim that A<B. Indeed, by Proposition III.3 and the second part of
Proposition III.4, for any cp e KS(3)Y),

lim cp(Hn) - SM(TVP, cp | 38œ) - f p(do)[cpa{j(H)(o)} - S(p, o)] < B
n J

since p. is a probability measure. The first claim follows by taking the supremum
with respect to cp.

Now we claim that lim inf„ an > B. By Lemma III.l, for arbitrary cp0 e K(si),
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and cp e £(38),

a„ > (cp0 <8> Up)(Hn) - n-15(po «> (np | 38„), cp0 ® (Uv | 38„))

(cp0 <g> np)(//„) - n-x(5(p0, cp0) + nS(p, cp)).

Thus, if S(p0, cpo) is finite,

lim inf a„ > cp0{j(H)(cp)} - S(p, cp),
n

by Proposition III.3. This implies that

lim inf A„ > sup {cp0{j(H)(cp)}-S(p, cp)\cpe £(38), cp0 e K(si), S(p0, cp0) < «>}.
n

Since Po is separating, the set of states of si with finite relative entropy with
respect to p0 is w*-dense in K(si), and the second claim follows.

The third claim is that if the sequence {cp„ Norm-1 co""" \ n e N} converges
along a subnet v to cp e K^Q)^), one has

lim sup a„ < lim cp(Hn) - SM(Ylp, cp | 38„) < A.
n—*v n

By Lemma III.l, and monotonicty of the relative entropy, for any ar e A,

«v(aO 0v(ar)(ifv(a)) - v(a)-1S(<Ov(ar), 0v(a))

< cpv(a)(Hv(a)) - v(a)~lS(covia) I 38v(ar), cpvia) | 38v(a))

</»v(a)(^v(ar)) - v(a)-1S(np | 38v(o.), cpv(a) | ßv(a)).

The third claim follows from Propositions III.3 and III.4.
Theorem 11.4(1) follows from the three claims. Suppose that lim sup„ an is

strictly larger than A. Then there is a subnet v0 of N such that (an) converges
along v0 to this larger value. By w*-compactness of K(3>Y), there is a subnet v of
v0 such that (Norm-1 co""") converges along v to a symmetric state in the sense of
Definition III.2. This contradicts the third claim, and shows that lim sup an s A,
which together with the first and second claims proves Theorem II.3.

Proof of Theorem 11.4(2)

Since the functional maximized in (*) is affine in cp, M * is convex. Due to the
lower semicontinuity of relative entropies the functionals in (*) and (**) are both

upper semicontinuous, and hence assume their supremum on a closed set, which
is compact since KS(2Y) and K(si) x £(38) are compact. The integral decomposition

exists by Proposition IV.5 for any cp e Ks(2êJ), and we only have to prove
that (cpa, o) e Af** almost everywhere. This is clear from the first inequality in
the above proof of II.3, which must be an equality for a maximizer cp. Clearly, cp

cannot be extremal unless p is a point measure, i.e. cp cp0®Tlv for some
(cp0, <p)eM**, and unless cp0 is extremal. Conversely, if cp has the stated

property, then if is extremal in Ks(@)œ), hence in Af*.
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Proof of Theorem 11.4(3)

By 11.4(2) every extreme point of Af* is of the form cp cp0 ® Hv with cp0

pure and (cp0, cp) e Af**. We claim that there exists Ge% such that
Vo(j(G)(xp)) < 0 for all xp0 e K(s4), xp e £(38), with equality exactly for the pair
(<Po> <?>)• We then consider for e > 0 the mean field models with hamiltonian
density eGn + Hn, and let Wen e K(%) denote the state Wn Norm-1 • a)^(eG"+H").

Then by 11.4(1) the sequence W* converges to the given extreme point cp for
every £>0. We construct a sequence (£„)„6N converging to zero with the
property that W*"—»0 as «-*00- For this consider a metric d on K(3)Y), which
exists since each 2>„ is separable as the tensor product of separable C*-algebras.
Let Nk e N such that d(cp, W„) < 1/Jfc for £ 1/k and all n > Nk. Nk can be
arranged to be an increasing sequence and we set £n l/k for Nk^n<Nk+1.
Hence d(cp, W™) < en for all n>Nx- Then H„ enG„ + Hn has the properties
stated in the theorem.

It remains to be proven that G e # with the stated properties exists. By
Lemma V.6 it suffices to find g e «(£(38), si) such that g < 0 and xp0(g(xp)) 0 iff
(Vo. V) i.fo, <P)- Note that the pair (cp0, cp) defines an extremal state cp of
«(£(38), si) via cp(f) cp0(f(cp)), and that we are looking for an element
g e «(£(38), si) 'exposing' this state, in the sense that W g £(«(£(38), si)) and
W(g) 0 imply W fr Now since 38 is separable, so is «(£(38)), being generated
by the functions of the form f(cp) cp(b) for è in a countable dense subset of 38

on account of the Stone-Weierstraß-Theorem. Hence «(£(38), si) —

«(£(38)) <8> si is separable as the tensor product of separable algebras. Our
claim is thus reduced to the general proposition that any pure state O of a

separable C*-algebra 3* is exposed. (Counterexamples for non-separable & are
easily constructed). By [11, Theorem 3.10.7] every extremal state <I> is characterized

as {<&} {W e £(^) | VMW(f) 0}, where <£ denotes the left ideal
i?= {/ e & | <&(/*/) 0}. As a subspace of a separable normed space the ideal !£
contains a dense sequence (fn)neN, and g — £„ 2-" ||/„||-1/„ is an element
exposing <I>.

Proof of Theorem 11.4(4)

By Proposition II.2 Yn =f(X„) is approximately symmetric and j(Y)
f(j(X)). Hence, by Proposition III.3, lim„ / Kn(dx)f(x) J p(do)cpa{j(Y)(o)}
with the integral decomposition 11.4(2). Since the limit state is pure, p. is a point
measure, say at cp e £(38), and since X e $(C, 38), j(Y)(o) e si is a multiple of
the identity for all o. Hence lim„ J Kn(dx)f(x)=j(Y)(cp) =f(j(X))(cp)
f(j(X)(cp)), which means that IK„ converges to the point measure at j(X)(cp).

Proof of Theorem 11.4(5)

Clearly, for cp a maximizer SM(Tlp, cp \ 38œ) lim sup„ n_15(np | 38„, cp \ 38„)
is finite, and hence sn S(con \ 38„, cp | 38„) must be finite for all sufficiently large
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n. By the monotonicity property of S, sn is an increasing sequence, and is hence
finite for all n. By [13] this implies that cp | 38„ extends to a normal state on
;rp(38„)", where np denotes the GNS-representation of 38„ with respect to np | 38„

as claimed.

Proof of Proposition II.5

Let F(cp) cpo{j(H)(cp)} — S(p, cp). By convexity of S(p, °), we have

F((l - k)cp + kxp) > F(cp) + k{xp(A) - cp(A) + S(p, cp) - S(p, xp)} + o(X),

for all xp e £(38) and all A e [0, 1]. If the expression in braces is strictly positive
for some xp, then the left hand side must be strictly larger than F(cp) for some
small A, contradicting the maximality of (cp0, cp). Hence, for all xp we have
xp(A) — S(p, xp) < cp(A) — S(p, cp). Taking the sup over xp and using Lemma
III.l, we find cp(A) — S(p, cp) log p^(l), and hence cp Norm-1 • pÀ.

Proof of Theorem II.6

In what follows, we drop the index p and the superscript x from I and G.
Notice that E is compact, convex and contained in x*=1spec(x(v)). For teUk,
we write p, (p''x(l))_1p''x e £(38), and remark that, in an obvious vector-
notation, p,(x) VG(t), and moreover, S(p, p,) t ¦ p,(x) — G(t) due to Lemma
III.l.

We first prove that VG(IRfc) and dom (I) have the same closure, which is E. By
[17, Corollary 26.4.1], ri(dom (/)) c VG^R*) cdom(f), where ri denotes the
relative interior [17, p. 44]. By [17, Theorem 6.3] ri (dom (/)) and dom (I) have
the same closure, so since VG(IR*) cz E and E is closed, VG(IRfc) dom (/) c E.
For the converse inclusion, suppose u g dom (/). There exists [17, Theorem 13.1]
t e IR* such that t • u> sup {t • v | v e dom (/)}. Since / is non-negative, we have
for every n e N

n~lG(nt) sup {v • t — n~xI(v)} sup {v • t — «_1/(i;)} <t • u — c,
ueR* uedom(/)

for some c >0. Applying Theorem II.3 in the case si 38 and 38 C, we have
lim„ n~xG(nt) sup {cp(t • x) -1 • cp(x) \ cp e £(38)}. Hence u $ E by [17,
Theorem 13.1]. This completes the proof of VG(IR*) dom (I) E.

The second part of Lemma III.l implies that S(p, cp) > I(cp(x)) (take h t • x
and vary t). Using this, and Proposition II.2,

Sx-.= sup {j(H)(cp)-S(p, cp)}= sup lf(cp(x))-S(p, cp)}
tpeK(3B) qteK(m)

< sup {f(cp(x))-I(cp(x))} sup {f(u)-I(u)}= :£.
q>eK(9B) ueE
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Since 7 is +00 outside dom (/) which has closure E, we may rewrite

S2 sup {/(«)-7(w)}.
uedom (/)

On the other hand,

Sx > sup {f(p,(x)) - S(p, pt)} sup {f(VG(t)) - t ¦ VG(0 + G(t)} : S3.
teKk teRk

If H€VG(IR*), then « VG(f) for some teRk, and [17, Theorem 23.5]
I(u) t ¦ VG(0 - G(t). Thus, S3 sup{f(u)-I(u)\ueVG(Rk)}. Since
ri(dom (/))(= VG(R*), 53 > sup {f(u)-I(u) \ u eri(dom (/))}. We have established

that

sup {/(«)-/(«)}<$!< sup {f(u)-I(u)}. (***)
uen(dom (/)) uedom (/)

Due to lower semicontinuity [17, Corollary 7.5.1], limAt t /((1 — X)v + Xu)
I(u) for every u e Rk and u e dom (/). Moreover [17, Theorem 6.1], if
v e ri(dom (/)) and u e dom (I) then (1 — X)v + Xue ri(dom (/)) for every 0 <
A < 1. This implies that given u e dom (I) and e > 0, there exists v e ri(dom (/))
such that \I(u) — I(v)\ < e. Since/is continuous, it follows that the left and right
hand sides of (***) are equal. This completes the proof.

IV. A C*-algebra of symmetric tensors

In this essentially self-contained section we develop the theory of symmetric
and approximately symmetric sequences. This provides a systematic background
for the energy estimate III.3, as well as the necessary information for showing
the equality of the two variational expressions in Theorem II.3. However, we also

prove some results of independent interest. The central idea is to equip the set *3/

of approximately symmetric sequences with the structure of a (semi-) normed
*-algebra in two prima facie different but equivalent ways.

The first product on "3/ (in the case of trivial si C) is simply the
symmetrized tensor product * : 3)n x 3)m —» 2ên <8> 2>m 3>n+m. Clearly, this product

is commutative. Any symmetric state cp e Ks(2iïœ) defines a state on the
algebra (<&, *), and the product states of 2dœ become homomorphisms,, i.e. pure
states on this algebra. This is the basic observation behind St0rmer's Theorem
[18], which says that any symmetric state has an integral decomposition into
product states (compared Proposition IV.5).

The second product on % is the elementwise product of sequences. It is not
immediately obvious that this operation takes # x # into %. However, the
elementwise product turns out to be asymptotically equal to the *-product. This
equality will make it possible to treat mean field hamiltonians, which are defined
for each n as some arbitrary function of a set of sequences from <2/.

We shall continue to use the notation introduced in Sect. II. On the set <2/ the
operations of scalar multiplication, adjoint, and addition will simply be defined
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elementwise, e.g. (X + Y)n X„ + Yn e â>„ for ail n such that both X„ and Yn are
defined. We shall set \\X\\ =lim„ \\X„\\. This limit exists since ||^„+*||
Hsynw (Xn ® 1 <g> • • • ® 1)|| < \\Xn ® 1 <g> • • • ® 1|| ||X„||, i.e. the sequence of
norms is decreasing. It is worthwhile to note that this sequence is in general
strictly decreasing (unless Xn is defined for all n > 1), but that it never decreases
to zero for X # 0. (This can be shown with the help of Lemma IV.4 and the fact
that product states on 3>„ separate points of sym„ (S>„); we shall not use this
observation).

The product in ty, which we shall denote by A", Y ?-» X * Y, will be the
symmetrized tensor product in the following sense : for X=a ®xx®x2®---®xne2ln
andY b <8> yx <8> y2 ®- ¦ -yme3)m let

X -knm Y symn+m {ab ® xx® x2® ¦ ¦ -xn®yx®y2®-- ¦ ym)} e 3in+m

Clearly, this extends by linearity and norm continuity to a bilinear map
*n,m'2iïnx ^m~* ^n+m- Moreover, this product is associative, and elements of
the form l®Bne2n si® (38®") commute with all others. Note that a

sequence Xn e 3)n is symmetric iff for all k, Xn+k Xn -knk lk, where lk denotes
the unit element in 3)k. The product ir:tyxty—>ty is now defined by
(X-k Y)n+m : Xn *„m Ym for all n, m such that both Xn and Ym are
defined. Since Xn+k *„+/fc,m Ym (Xn *„,& 1*) ~xn+k,m Ym Xn -Knk+m (lk -kk m Ym) —

Xn *n,k+m Yk+m the value (X * Y)r of the sequence X * Y does not depend on the
representation r n + m, and by a similar argument one finds that indeed
X-kYe<&. It is easy to verify that with these operations <& becomes a
semi-normed *-algebra with unit, and we shall call <3/ the algebra of symmetric
j^-valued tensors over 38.

It is crucial for our application to relate the algebraic properties of the
elements Xn e 3)n to the properties of the sequence X e ty. The key to such

questions is the following combinatorial lemma, which will allow us to transfer
the full 'elementwise functional calculus' from the algebras 2>„ to the functional
calculus of ty.

IV.l Lemma. Let X, Y e ty and k, m eN such that Xk and Ym are defined.
Then for n>k + m

k - m
\\XnY„ - (X* Y)n\\ <— prt|| ¦ || YJ|.

In particular,

lim\\XnYn-(X*Y)n\\=0.

Proof. Let ji*-^> a„ e Aut (3)n) denote the action of the permutations of
{1, .n} on 2>n. Then Xn sym„ (Xk) (n!)-1 £„ a„(Xk) and XnYn
("!) 2 EÄ,jt' <xn(Xk)a„(Ym). Moreover, (X ir Y)n is represented by the sum over
only those terms in the same sum, for which jz({1, k}) n n'({l, m}) 0.
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Let wn(k, m) denote the relative weight of these terms in the sum. Then
\\X„Yn -(X* Y)n\\ < |1 - wn(k, m)\ ¦ \\Xk\\ ¦ \\Ym\\. Thus it remains to be proven
that |1 - wn(k, m)\ =£ km/n.

The number of permutations n such that n({\, k}) D Jt'({l, m}) 0
does not depend on n'. Therefore n\ • wn(k, m) is the number of permutations n
with

in — m\
jt({l,...k})n{l,...m} 0, i.e. yk\-(n-k)l

Hence

(n — k)\ (rt — m)! (n — m)(n — m — l)---(n — m — k + l)wn(k,m)
nl(n-k-m)\ n(n - 1) • • • (n -k + 1)

k 1
n — m — a

a=o rt - a

The bound wn(k, m) s 1 — km/n is obviously true for k 0 or m 0. Therefore
we may assume wi > 1 and proceed by induction over k. Using the induction
hypothesis we find

wn(k + 1, /rt) wn(k, m) • (1 - ml(n - k)) s= (1 - km/n) • (1 - /rt/(w - A:))

1 - m(k + l)/rt + fcrtt(m - 1) • rt-1 • (rt - A:)-1

al — m(k + l)/rt, as long as «<A:.

rV.2 Corollary. The seminorm defined on ty satisfies \\X* *k X\\ \\X\\2.

Proof. \\X**X\\ lim \\(X* + X)n\\ lim \\X*nX„\\ lim \\Xn\\2 ||Z||2
« n n

Our next aim is to show that there is a natural one-to-one correspondence
between the symmetric states of ®„ and the states of ty. A state on ty is by
definition a linear functional cp-.ty^-C, such that cp(l) l, and fr(X*-kX)^0
and I0POI - ll^ni for all Xety. The set of such functionals will be denoted by
K(ty), and coincides with the state space of the separated completion of ty. It is

useful to introduce the following map A:[Jn 3)n^-ty: for x e 3ln, A(x) will be the

sequence A(x)m symm (x ® l(„+i) • • • ® l(m>). Note that A is compatible with the
injections ®„ <-» 3)m, and maps U„ % onto ty, because A(X„) X for all X e ty
and rt e ^J such that X„ is defined. Due to the estimate ||<^(a:)|| ^ ||jc||, A has an
adjoint A*, taking continuous linear functionals on ty to the dual (3)Y)*-

IV.3 Lemma. A* : K(ty)—> £,(2^) is a« isomorphism of compact convex sets.
The inverse is given by (A*~xcp)(X) cp(Xn) for cp e KS(2Y), Xety, and n large
enough for X„ to be defined.

Proof. Let /^(äL)—>ty* denote the map described in the lemma, which
is well defined since for symmetric cp and Xety cp(X„+k) cp(symn+k (Xn))
cp(Xn). The functionals £cp are indeed continuous on ty, since \£cp(X)\
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limn\cp(Xn)\<lim„\\Xn\\ \\X\\. If cp is positive, then so is £cp, since

(Acp)(X**X) limncp((X*+X)n) limncp(XÏXn)>0 by Lemma IV.l. Since
for every Xety the map cp>-*cp(Xn) is w*-continuous, A is continuous for the
w*-topologies and maps Ks(ßY) into £('3').

We show next that A* maps K(ty) into KS(3)Y}. It is clear that A*co is always
a symmetric functional on 2tsa. Suppose that co ety* is positive. Then ||/*o)|| <
|| co || co(l) (A*co)(l), which implies that A* co > 0. From the definition of A and

/ it is clear that for x e U« 3>„ and cp e KS(3)Y), cp(x) (£cp)(Ax). Hence A* °£ is
the identity on Ks(3lœ). On the other hand, for X e ty and co e K(ty) we have
(A~°A*co)(X) (A*co)(X„) co(A(Xn)) co(X). Hence / and A are inverse of each
other.

This characterization of the symmetric states of 2L is useful only if we can
give a concrete representation of K(ty), or, equivalently, of the completion of the
algebra (ty, *). The following lemma shows that this completion is canonically
isomorphic to «(£(38), si), and that the embedding of ty into its completion is

just the map /: <3/-=> «(£(38), si) introduced in Sect. II. We defined ;'„ :©„-»•
«(£(38), sl) by jn(a®xx ® • • • ®xn)(cp) aTlvcp(xv), and j(X) limnjn(Xn).
The existence of this limit will be established for general X e ty in Lemma IV.6.
Here we only need the trivial case Xety, in which the sequence w •-> ;„(*„) is
constant.

IV.4 Lemma. /': <&—> «(£(38), ä/) is Art isometric *-homomorphism of ty
onto a dense subalgebra of «(£(38), si). The pure states of «(£(38), si), which
are of the form f e «(£(38), si) >-» cp0(f(cp)) for a pure state cp0 e K(si) and an
arbitrary state cp e £(38), are mapped by A* °j* to the product states cp0 ® Tl^, e

£(ay.
Proof, ty contains two special subalgebras, namely an isomorphic copy of si

consisting of the sequences An a ® 1(1) ® ¦ ¦ ¦ ® l(/)) e ®„ with a e si, and
another algebra, isomorphic to ty(C, 38), consisting of the elements A(1®X„)
with Xn e 38„. The algebra ty(C, 38) belongs to the center of ty ty(si, 38), and
since 3)n si ® 38„, the finite linear combinations of elements AX with A e si
and X e ty(C, 38) are norm dense in ty(si, 38). Consequently, ty(sd, 38) si ®
ty(C, 38). As an abelian unital C*-algebra, the completion of ty(C, 38) is

isomorphic to «(r) for some compact space T. Hence the completion of ty(si, 38)
is isomorphic to si ® «(r) a= «(r, si) by Proposition IV.7.3. and Theorem
IV.4.14. of [19]. It remains to be shown that the space T is canonically isomorphic
to the state space £(38). Thus in the remainder of this proof we can take si C.

For any abelian C*-algebra «, T is the set of pure states of «, or,
equivalently, the space of unital *-homomorphisms y:«—>C, equipped with the
w*-topology. Let y be a homomorphism of ty(C, 38). We claim that A*y is then
a product state of 38œ. For let x e 38„ and y e 38m, and x ®y e 38„+m. Then
A(xy)=A(x)-kA(y), and (A*y)(xy) y(A(x) +A(y)) y(A(x))y(A(x)). Conversely,
suppose that cp e KS(^Y) is a product state. Then according to Lemma IV.3 we
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have for all X,Yety and k, n e N sufficiently large: (A*~1cp)(XirY)
cp(symn(Xk®Yn_k)) fr(Xk®Yn.k) fr(Xk)cp(Y^k) (,é*-»(*)^*-14>)(Y).
Hence (A* xcp) is a product state of <3/(C, 38). Hence the extreme points of K(ty)
correspond exactly to the product states n,,, and since the map cp^U^ is a

homeomorphism for the w*-topologies, the completion of ty(C, 38) is isomorphic
to «(£(38)), with £(38) taken in this topology.

Putting together these two lemmas we obtain the following generalization of
St0rmer's Theorem [18]. Our proof is an expansion of the proof given in [6] for
the case of separable si using the theory of liftings [9].

rV.5 Proposition. Any state cp e KS(3)Y) has a w*-integral decomposition
cp / p(do)cpa ® TLa, where p is a probability measure on £(38), cpa e K(si) for
all a e £(38), and o>-^>cpa(a) is measurable for all a e si. Moreover, for each

a e si, cpa(a) is uniquely determined by cp almost everywhere with respect to p. If
si is separable, then cpa is uniquely determined by cp a.e..

Proof. By the previous two lemmas we have to show that any state W on
«(£(38), si) has an integral decomposition ^(f) J p(do)cpa(f(o)), for p and
o*-^>cpa as specified above. For any a e si with aâO, consider the functional
fi-*i¥(af) on scalar functions/ e «(£(38), C). Clearly, this is positive and hence
of the form ^(af) J" pa(do) f(o) for a unique probability measure ju0. Since

*P(a/) < ||a|| *P(1/) for all positive /, we have pa < ||a|| pt. Hence pa is absolutely
continuous with respect to pu and has a Radon-Nikodym derivative R(a) e
L1(£(38), px), which is essentially bounded by ||a||. Hence R(a)eL°°, and
a>-*R(a) e L"(£(38), px) extends to a positive linear map of norm <1. Note that
R(a) is not a single function, but an equivalence class with respect to a.e.
equality. However, there exists a 'lifting' p:L°°(£(38), px)^^°i.K(^i), Px),
which associates in a linear and positive manner a single bounded measurable
function to each class [9]. Thus for each oe£(38) the map A>-»f?(a)'-»
p(R(a)) >-> (pR(a))(o) is linear and positive, an takes 1 € si to 1 € IR. That is to
say there is a state cpa e K(s4) with cpa(a) (pR(a))(o). For discussing the
uniqueness statements, let cpa and xpa be families of states satisfying the
conclusion of the proposition. Then since cp(a) and xp(a) both represent the
Radon-Nikodym-derivative R(a) they must be equal a.e. If sl is separable and
(fl„)„eN is a dense sequence, let Nn {o \ cpa(an) ¥= xpa(a„)}. This is a null set,
hence {o \ cpa¥=xpa} cz [_Jn Nn is also a null set.

As a simple example showing that separability is essential for the final
uniqueness statement, consider 38 two dimensional, so that £(38) [0, 1], and
si L°°([0, 1]). Let cp denote the state on «(£(38), si) «([0, lj) ® L°°([0, 1])
given by cp(f ®g) J dof(o)g(o) for / e «([0, 1]) and g e L°°([0, 1]). Thus the
function a >-* cpa e K(si) in Proposition IV.5 must satisfy cpa(g) g(o) almost
everywhere, and hence two such functions, say cp+ and cp~, have to coincide a.e.
for every g. However, the exceptional null-set may depend on g, and we shall
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construct cp+ and cp~ such that cp+ ¥= cpâ for all o. By [9, Theorem VIII.6] we can
find a lifting p+:L°°([0, l])-*iT([0, 1]) such that p+(f)=f for all functions /,
which are continuous from the right. Set cp*(g) (p+(g))(o). Then if %a e
L°°([0, 1]) denotes the characteristic function of [0, a], we have cp+(xa) 0. If p-
is a lifting fixing left-continuous functions, and <p- is defined similarly, then for all
o, <Pô(Xo) 1, and hence cp+ ¥= cp~.

The following result states that ty modulo the equivalence relation
lim„ \\Xn - Yn\\ 0 for X, Y e Y is exactly the completion of ty.

rV.6 Lemma. Let X e ty. Then the limit \\X\\ := lim„ \\Xn\\ and the norm limit
j(X):=limJn(Xn) in «(£(38),^) exist. The map j: ty-* «(£(38), si) thus

defined maps ty isometrically onto «(£(38), si).
Proof. Let £>0. Then according to Definition ILI, there is some exactly

symmetric Y e ty, and «„, such that for rt >rt0, \\X„ — Yn\\ < e. Thus for n, m >
n0:\ \\Xn\\ - \\XJ\ | <2e + | ||Y„|| - ||ym|| | <3e for sufficiently large n0, since the
sequence ||Y„|| is convergent. Similarly, \\jn(Xn)-jm(Xm)\\<2e + \\jn(Yn)-
jm(Ym)\\ 2e, since n >-*jn(Yn) is constant for n s n0.

By Lemma IV.4, j \ ty is an isometry, and since ||/(^)|| =lim„ ||y„(JCi)|| ^
lim„||X„|| H^ll, this property carries over to ty. To show that /' is onto, let
£ e «(£(38), si). Then by Lemma IV.4 there is a sequence (X")aeN e ty such that
j(X")-*Ç as or->oo. We may assume that H*"-ATa+1|| <2-", and pick some
increasing sequence ai-^m(a) such that ||Ar^r-^+1|| <2-ar+1 for n^m(a).
Now set Yn X" for m(a) < n < m(a + 1). Then for n > m(a), say m(ß) s n <
m(ß + 1) with ß > a, \\Yn- X^\\ \\Xßn- X^\^T,ÎZÎ2-V+1 ^2~a+2. Hence Y e
ty, and \\Y-Xa\\^2-«+2. This implies \\j(Y)-Ç\\ < \\j(Y) -j(X«)\\ + \\j(Xa)-
£|| < const 2-ar, i.e./(Y) £.

We are now ready to prove the convergence of the mean energy of the
models under consideration:

Proof of Proposition III.3

First let Xety be strictly symmetric, i.e. Xn sym„ (Xk) for some Xk e %k.

Then cpHa)(XHa)) cpv(a)(symv(a)(Xk)) cpv(a)(Xk)^> cp(Xk). The limit is equal
to the right hand side of III.3 due to Proposition IV.5 and the definition of /.
Now let Xety, and Y e ty with ||^„ - Y„ || < e for w > m. For any cluster point §
of {cpv(a)(Xv(a)) | or e A}, || - I p(do)cpa(j(X)(o))\ < |§ - lim„^v fr(Yn)\ +
\$ p(do)cpa(j(Y-X)(o))\<e + \\j(Y-X)\\<2e. Since e is arbitrary by definition

of ty, the proof is complete.

V. Discussion

In this paper we have focussed only on those features of mean field systems
which are thermodynamically relevant, i.e. have an influence on the free energy
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in the thermodynamic limit. If two hamiltonian densities Hn and Hn satisfy
\\Hn —Hn\\—»0, then they are thermodynamically equivalent. It is clear that in
each equivalence class the convergence of the states Norm-1 co"H" to a limit state
can be arbitrarily slow. Hence, the asymptotics of the fluctuations of expectation
values around the limiting value cannot be discussed at the thermodynamic
level [8].

Another question, which cannot be treated at the purely thermodynamic
level is the convergence of effective Hamiltonians. Recall that we defined the
effective hamiltonian A in Proposition II.5 as a derivative of the energy density
cp0{j(H)(cp)} with respect to cp. Now for suitable sequences Hn we can express
A =A(cp0, cp) as lim„ Jn(Hn), where the (cp0, <p)-dependent operator /„ : 2>„—* 38 is

given by
n

Jn(a ®xx ® ¦ ¦ ¦ ® xn) 2 (*v - <p(xv))cp0(a) Y[ <K*»J-
V l /i^V

These maps /„ are compatible with symmetrization and the canonical injections
2>„ <-> 3lm. Hence, for a strictly symmetric sequence H e ty, Jn(Hn) is eventually
constant, and in fact equal to A. On the other hand, convergence of J„(H„) may
fail for other, thermodynamically equivalent hamiltonians.To see this, let
G„ £„1 ®xn ® • • ¦ ® x„ for some sequence sn going to zero and some hermitian
*„e38 with |K|| 1. Then ||G„||-»0, and Jn(Gn) enncp(xn)n-\xn - cp(x„)).
Now if we choose xn so that cp(xn) converges rapidly to 1, without xn converging to
1 e 38, we can construct G e ty such that ||/„(G„)|| diverges.

On the other hand, the condition lim„ J„(Hn) =A for all (cp0, cp) may
be of physical interest. For example, if si C, one computes that
lim„ Tl^AlnHn, B]C - Aòn(B)C) 0 for all strictly local A,B,Ce U„ 33„,
where òn(B) denotes the commutator of B with Jn(Hn) ® 1„_! + • • • + l„_j ®
Jn(H„). In other words, if Jn(Hn)^*A, then the generators of the time evolution in
the system of size « converge to a derivation of 38^, which corresponds to a

one-particle evolution generated by A. Hence in this case A can be given a

dynamical meaning. This has been exploited in [7,15] to characterize the
equilibrium states of mean field systems by an energy-entropy inequality.

We would like to point out a characteristic difference between the scope of
the above results in the quantum and the classical cases. Consider the two
functions G„(t) n-1 log o>?H"+tX»\l), and Cn(t) n~l log co"n""(e'x") for teR.
In the classical case, i.e. when si and 38 are abelian, coh(\) co(eh) holds for all
states co and all hermitian h, and hence C„ G„. Thus, in the classical case, the
function G„ (respectively the limit) not only contains all the thermodynamics but
also - via derivatives with respect to t - information about expectation values of
Xn with respect to the state fr, Norm-1 con"n. Here, convergence of Gn(t) for
all t is an asymptotic property of the probability measures IK„ on IR, given by
J Kn(dx)f(x) fr(f(Xn)) for bounded continuous / : R -> IR. In fact, if G(t) :

lim„ Gn(t) is differentiable, then the measures IK„ converge to the point measure
at G'(0) exponentially fast in the sense made precise by the Large Deviation
Principle [10, Theorem 4]. In the non-commutative case, G„ still encodes all
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thermodynamics, but no longer contains direct information about expectation
values. This is contained in C„, which acts as the cumulant generating function of
the measures IK„. By Theorem 11.4(4) the measures IK„ still converge to point
measures in any pure phase of the system, but the proof [10] of the Large
Deviation Principle for differentiable G carries over to the non-commutative case
only if the reference states p0 e K(si) and p e (38) are traces and X is an
approximately symmetric sequence such that [Hn, X„] 0 for all n. However, in
general, the Golden-Thompson inequality G„(t) < Cn(t) remains a strict
inequality in the limit, even though (for si C)lim„ \\[Hn, Xn]\\ =0. It would
interesting to find asymptotic properties of p, H„, and Xn that would allow the
control of the limit of Cn(t), and the proof of the Large Deviation Principle for
the measures IK„. However, such properties will again depend on Hn more
sensitively than the thermodynamic properties.

The models we have considered here should perhaps more appropriately be
called homogeneous mean field models. Indeed, no local features enter the
interaction hamiltonian at all. One can also consider 'heterogeneous mean field
models' (e.g. the BCS model treated in [4]), where the interaction between
particles may depend on their location in some compact space X, and in which
the global scaling behaviour of the interaction is of the mean field nature. For
each particle number n the locations of the particles are held fixed, and one is
interested in the limit in which their density converges to some given measure on
x. Extension of our results to this class of models is presently under consideration
[16].

Appendix

In this appendix we collect the results on the calculus of CMunctions
referred to in Sections II and IV. These functions are best seen as a
many-variable generalization of the ordinary functional calculus in C*-algebras.
There are two natural ways to define 'the same function' in different algebras.
The first is abstract, and requires only some transformation behaviour with
respect to C*-morphisms. The second approach starts directly from the algebraic
structure and the evaluation of 'the same polynomial' in different algebras, and
extends to all functions, which can be approximated by polynomials in a

sufficiently strong sense. We shall start from the abstract definition and show the
equivalence to the second approach in Lemma A.2.

A.l Definition. Let T be a compact convex subset of R°°, the set of real
valued sequences with the product topology. Then a C*-function on T is a family
of functions/*, for every unital C*-algebra si, with

f*:{(Au M, ...)esi°°\Av=A*v, VveK(M)(cp(A,), cp(A2), ...)eT}-^sl
such that for any unital *-homomorphism <&:si—> 38 into a unital C*-algebra 38,

U(<P(Ax), <S>(A2), QtfAAx, A2,...
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A CMunction is called hermitian, if the values of all fM are hermitian for all
arguments in its domain. For notational convenience we shall from now on drop
the subscripts si, and will sometimes abbreviate the sequence (Ax, A2, of
arguments by A.

We remark that this definition is strictly speaking not legitimate, since it
contains a quantifier over the proper class of C*-algebras. However, it always
suffices to define fM on the separable C*-subalgebra generated by its countably
many arguments. Since every separable C*-algebra can be faithfully represented
on a separable Hilbert space, it suffices to define fM on the set of separable
C*-algebras on a fixed Hilbert space.

The C*-functions depending only on a single variable are just the continuous
real valued functions on some interval, evaluated in the functional calculus. The
interval on which / is defined in the single variable case becomes the set T in the
many-variable case. Often one can choose T to be an infinite product of compact
intervals, which amounts to imposing a constraint on the spectrum of each Av
separately. The composition of C*-functions, where it is defined, is again a
C*-function. Hence f(X,Y, Z) exp (\i[X, Y]\)/cosh (Z) is a legitimate C*-
function for any choice of TclR3. As this example shows, a CMunction of
several arguments is not determined by its values on scalars Av Avl.

A.2 Lemma. Let f be a C*-function on TcR". Then for any £>0 there
exists a polynomial g depending only on finitely many of the non-commuting
variables Ax, A2, such that \[f(A) — g(A)\\ < e. Moreover, there is a constant c
such that ||/(A)|| <c, and

V«>o3a>o3M6N(VvSM \\AV - A'v\\ < 6) => \[f(Â) -f(A')\\ < £

These statements are valid for any C*-algebra si, any admissible sequences of
arguments A and A', and the choices of g, c, ô, and p can be made independently
of si, Â and Â'.

Proof. Let 9 denote the free unital *-algebra over countably many
hermitian symbols Xu X2,... i.e. the algebra of polynomials in Xlt X2, with
complex coefficients. Then any choice of a sequence A (Av)veN of hermitian
elements in some C*-algebra si induces a unique unital *-homomorphism
<&À '¦ ^-* -^ such that cpâ(Xv) Av for all veN. Define on 9 the seminorm
||g|| := sup {||<PÂ(g)l|}. where the supremum is over all sequences A in separable
C*-algebras si such that cp(Â) := (cp(Ax), cp(A2), e T for all cp e K(si). This
is clearly a C*-seminorm, and we shall denote by 9 the separated completion of
9 with respect to this seminorm. By definition of the norm on 9, each $^ is

continuous, and hence extends to a unique *-homomorphism O^ : 9—> si.
We prove next that X (Xlt X2, e 9°° is an admissible sequence of

arguments for /, i.e. for any cp e K(9) we have cp(X) e T. For any continuous
linear functional | on R°°, i.e. any functional of the form £(*) E™=i %„xn for
some finite m, let Af+(|) sup |(r) and Af_(|) inf %(T). Since T is compact
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and convex xeT is equivalent to x e [M_(£), Af+(|)] for all §. For any
continuous §, let .Y1^ denote the element Ar|= E™=i %„Xn (l/2)(M+(§) +
Af_(|)) • 1. Then, by definition of O^ and the norm in 9:

||*é||= sup {|<p(<M*ê))l} sup ç>(Ê |„i4B)-(l/2)(Af+(|) + Af_(l))|]

where the supremum is over all admissible sequences A e si" and all states
cp e K(si). Therefore cp(Â) e T, so that Ç(cp(a)) e [M_(§), Af+(|)], and ||X5|| <
(l/2)(Af+(§) - M_(|)). Hence for any cp e K(9)

m

§(*(*)) E &.*(*„) <?(&) + (1/2)(M+(|) + M-(D) < M+(§).
n l

The lower bound Ç(cp(X)) > M_(£) follows similarly, so that cp(X) e T.
Now let / be a C*-function. Set f:=f(X)e9. Then since 9 is the

completion of 9, we can find g e 9 (i e N) such that ||/ — g||^£. Thus
11/04) - g(Â)\\ ||^(/) - «D^(g)|| s ||/ - g|| s e uniformly in Â. Boundedness
and uniform continuity are obvious for the polynomials g and follow for / by
straightforward estimates.

The final result of this section is the complete transformation of the
elementwise functional calculus of approximately symmetric sequences into the
functional calculus of «(£(38), si) stated in section II:

Proof of Proposition II.2

Consider first the case f(X\ X2)=XXX2 and fix eu e2>0. Let Z\ Z2e ty
such that 11*1, - Z'„|| s £x for i 1, 2 and n a: mu and set Z Z1* Z2. Then by
Lemma IV. 1, there is some m2eN, such that \\Z},Z2 — Zn\\ < e2 for n^m2.
Hence for n >max (mu m2) \\X\X2 - Zn\\ < £i(||^|| + ||Zi||) + £2, which can be
made arbitrarily small by choice of Ex and e2. Thus by definition Y„ X\X2n
is approximately symmetric, and \\jn(Yn)-jn(X1n)jn(X2n)\\<\\Yn-Zn\\ +
\\jn((Z^Z2)n) -jn(Z\)jn(Z2n)\\ + \\jn(Z\)jn(Z2n) -jn(Xi)jn(X2n)\\. The first and last
term on the right hand side are estimated as before, and the middle term
vanishes, since for Zety jn(Zn)=j(Z) and /' is a homomorphism for the
*-product. Hence the left hand side becomes small for sufficiently large n, and

we find j(Y)=j(X1)j(X2).
The case of a monomial f(X\ X2, Xr) X1X2 ¦ ¦ ¦ Xr now follows by

induction over r, and the case of general polynomials by taking linear
combinations. Let /be a CMunction and e > 0. Then by Lemma A.2 we can find
a polynomial g such that ||/(v4) — g(.A)|| < £ for all admissible arguments A.
Consider the sequence Z„ g(X\, X2n, By the above arguments Zety, so
that we can find Z'ety and meN such that \\Zn — Z'n\\<e for n^m.
Hence ||Y„ -z;|| < \\f(Xn) -g(Xn)\\ + \\Zn - Z'n\\ <2£ for «>m. Thus Yety,
and ||y„(Y„) -f(j(X))\\ ^ \\jn(Yn - Zn)\\ + \\jn(g(Xn) -g((j(X))\\ + \\g((j(X)) -
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f((j(X))\\. The first and last term on the right are <£ because g approximates/,
and the middle term goes to zero since the proposition is valid for polynomials.
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