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Quantum statistical mechanics of general
mean field systems

By G. A. Raggio and R. F. Werner')

Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland

(20. III. 1989)

Abstract. We consider mean field models for » identical systems interacting with each other, and
with another additional system. Each hamiltonian H, is taken to be symmetric with respect to
permutations of the identical systems, and for large n and arbitrary k, (n + k) "'H,,  is approximately
equal to n~'H,, taken as an operator of the larger system, and resymmetrized. We give a complete
theory of the equilibrium statistical mechanics of such systems. The validity of the Gibbs Variational
Principle is established; firstly, at the level of the states of the infinite system, then secondly at the
level of the states of the single system. A generalized gap-equation is obtained at this second level. In

some cases, the variational problem reduces further; this leads to a non-commutative version of the
large deviation results of Cramér-Varadhan for R?-valued random variables.

I. Introduction

We define a class of statistical mechanical models of mean field type, and
obtain a complete theory for them. The models are specified by a C*-algebra &
for the single system, and a hamiltonian for the aggregate of n single systems
(described by the n-fold tensor product of %) interacting with each other, and
with a second system specified by a C*-algebra . The precise nature of the
allowed hamiltonians is described in Section II. The essential features are that the
hamiltonian density H, is invariant with respect to all permutations of the » single
systems, and is asymptotically symmetric in the sense that H, ., is given, up to a
small correction, by resymmetrizing H, considered as element of the (n + 1)-fold
tensor product.

For our general mean field model, we prove the validity of the Gibbs
Variational Principle at two levels. Firstly, the thermodynamic limit of the free
energy density is obtained by minimizing the free energy density functional over
the set of (symmetric) states of the (infinite) system. Secondly, the latter
variational problem is reduced to that for a free energy density functional on the
states of the single system. At this level, the minimizing states are solutions of a

) On leave from: FB Physik, Universitit Osnabriick, Postfach 4469, D-4500 Osnabriick, West
Germany.
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gap-equation. Since all limiting states of the model are minimizers, we obtain
some detailed information about them as well.

In special cases, the reduction proceeds one step further, and a finite
dimensional variational problem is obtained. This corresponds to a ‘level-1’ large
deviation result in the terminology of [5], and extends Varadhan’s results [21], on
the multidimensional Cramér Theorem, to the non-commutative domain. All
three levels were obtained in [14] for the simplest possible case.

From a technical point of view, this paper extends the results of [14],
particularly those involved in the estimates of the energy density, thus allowing
not only for the inclusion of the additional algebra &, but more importantly, for a
larger class of hamiltonians.

The basic definitions and the main results are expounded in Section II.
Section III contains their proofs. The energy estimates are based on the contents
of Section IV, which is essentially selfcontained and describes a general theory of
what we call the C*-algebra of symmetric tensors. In the concluding Section V,
we discuss possible extensions, and problems. Some results on the many-variable
functional calculus in C*-algebras (C*-functions), are given in an Appendix.

II. Main definitions and statement of main results

Throughout the paper & and % will be unital C*-algebras. We shall be con-
cerned with sequences of models with observable algebras %, = A ® (&7 _, B,)),
where ® denotes the minimal, or injective, C*-tensor product [19] and %, is
an isomorphic copy of %B. The C*-inductive limit of the sequence %, with the
natural injections will be denoted by %.. Whenever convenient, %, will be con-
sidered as a subalgebra of .. The symmetrization operator sym,:%,— %,
is the continuous linear extension of sym, (a®x;®---®x,)=(1/n!)Y,a®
X1 ® - - ®x,,, where the sum is over all permutations & of {1,...n}. The
same definitions apply when & =C; we then write %, and %, for %, and %.
respectively. '

For any C*-algebra %, K(%) will denote its state space. A state ¢ € K(%..)
(resp. K(9.)) is called symmetric, if for all neN, and all X € 9, (resp. %,),
¢(X) = ¢(sym, (X)). The convex set of symmetric states of %. will be denoted
by K,(%.). For ¢ € K(%), the associated infinite product state on %.. is written
I, and is symmetric.

The models we consider, are specified by a sequence of hamiltonians, given
abstractly as follows. Firstly, the non-interacting part is determined via a
sequence {w, = p, @ (®)_, p(,y)} of product states of %,, where p, € K(5£), and
Py=p € K(B) are arbitrary separating states (i.e. a state such that the
associated GNS-vector is separating for the von Neumann algebra generated by
the GNS-representation). The interaction is introduced by perturbing each w, in
the sense of Araki [1] with a relative hamiltonian »n - H, € &,. The perturbed
(unnormalized) positive linear functional of %, will be written w2 . This
framework provides a generalization of that special case where the state w is
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given by w(°) =Tr (D) with a (non-singular) density D with respect to a trace
Tr; there, the state w” has density exp (log D + k). The number log w”(1) can be
interpreted as a relative negative free energy [1, 14]. The sequences of relative
hamiltonian densities we allow are assumed to be approximately symmetric in the
sense of the following definition:

I1.1 Definition. A symmetric sequence in %, is a sequence (X,,), defined for
n larger than some initial value n,, such that X, € &¥,, and for all k=0 and
n=ny: X, =sym, (X,). The set of symmetric sequences will be denoted by
%Y, or Y(A, B). A sequence (X, € D,)n=n, is called approximately symmetric, if
for all n=n,, X, =sym, (X,) and V.-¢odyca3,.V,=m || X, — Y.|| = €. The set of
approximately symmetric sequences will be denoted by %, or ¥(, R).

Thus, a mean field model is specified by the algebras &, and %, with respective
separating states p, and p, and by an approximately symmetric sequence
H = (H,)n=n,, of relative hamiltonian densities H, = H,, € 9,,.

The simplest examples of such models are the usual quadratic mean field
models with hamiltonians of the form

n n

n-H,=>h+n-1)"1-2V,
i=1 i)

where h; is a copy of the single particle hamiltonian # € &, acting in the ith tensor
factor, and Vj; is a two-particle interaction V € B ® 9B, acting in the ith and jth
factors. Note that the first term can be included in the second by setting
V=V+(h®1+1Q®h)/2=H,. Clearly, the above sequence H, is strictly
symmetric, and defined for all n = 2. It is also the most general sequence of this
description. The generalization of the quadratic mean field systems to arbitrary
N-particle interactions is straightforward, and leads to symmetric sequences H,
defined for n = N. As in the quadratic case such a model is completely specified
by Hy € 9y, since the higher terms of a symmetric sequence are given by an
explicit formula. Just as the requirement of symmetry fixes the scaling of the
N-particle interaction-term in H,, it fixes the scaling of the interaction between &/
and %,. With & non-trivial there are also symmetric sequences defined for n =0,
which are of the form Hy=a®1---®1€ %,. The corresponding hamiltonian
has a factor n, so the non-interacting &/-part of the hamiltonian is scaled to
infinity with the number of %-particles. This is necessary for H° to contribute
non-trivially to the thermodynamic functions of the model.

Consider now the sequence H,=(n"': X/, h;)* of hamiltonian densities.
This can be written as H, =Y, + R,, where Y, is symmetric with Y, =h @ h and
|R.|| =n~'||h||*> Thus H, is approximately symmetric. More generally, we can
take H, =f(n~" - ¥7_, h;), where f is any continuous function on the spectrum of
h. These are exactly the hamiltonian densities considered in [14]. If f is a
polynomial, then the sequence Y € % in Definition II.1 can be taken independ-
ently of e. However, for general f we need the full freedom of the definition.

A further generalization covered by the above definition of mean field
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systems is to allow the function f in the previous paragraph to depend on several
variables, which do not have to commute, and may themselves be arbitrary
approximately symmetric sequences. Thus we can have H =f(X}, XZ,...) € 9,
with X ¥ e @ for some function f (see Proposition I1.2 below). However, in order
to make this definition of H, precise we have to clarify what we mean by ‘the
same function f~ in the different C*-algebras %,,. This is done in the Appendix by
introducing the notion of C*-functions. Here we only remark that the set of
C*-functions is closed under composition, and includes all polynomials of (finitely
many) non-commuting variables, as well as the continuous functions of a single
variable.

A crucial rdle in the theory is played by the algebra €(K(%), «) of
continuous functions on the state space of % (with the w*-topology) with values
in & (with the norm topology). This is developed in Section IV. To every x € 9,
we associate a function j,(x) € €(K(%RB), ) such that for every @ e H (%),
Jjn(a®@b,® - ®b,)(@)=a-Ili-, p(b,). We show in Lemma IV.6 that for
X =(X,) e %, the limit j(X)=lim, j,(X,) exists uniformly and j maps %¥ onto
€(K(RB), ). In fact, we equip ¥ with the structure of a seminormed *-algebra,
and show that j is a C*-isomorphism. As an application, we obtain a proof of the
non-commutative de Finetti Theorem of Stgrmer [18] and also its extension [6]
(without separability assumptions on the algebra &f). Returning to our main
concern, the statistical mechanics of mean field models, we can show that for a
symmetric state ¢ of 9.., ¢(X,) converges as n—> o, for each X =(X,) € ¥; and
we obtain a formula for this limit in terms of the map j, and the decomposition of
¢ into extremal symmetric states. -

If Y is obtained by operating on some other sequences X elementwise w1th
some C*-function (see the Appendix), then we have the following convenient
formula for j(Y) in terms of the functions j(X").

I1.2 Proposition. Let f be a C*-function on some compact convex set I' = R%,
and let X" € ¥ be an approximately symmetric sequence for each v € N such that
Y, =f(X} X2, ...)€ 9, is defined for n =n,. Then Y = (Y,),=,, is approximately
symmetric and

Yy =fGx"h, j(x?),...)

The treatment of the entropy parallels that of [14]; most of the technical
details needed in our more general setting are found in [13]. For states w and ¢
of a unital C*-algebra, S(w, @) will denote the relative entropy of ¢ with respect
to @ (in the sign-convention of [2]). The non-negative real number S(w, @) is
defined via the GNS representation associated with w, and is finite only if ¢
extends to a normal state of the generated von Neumann algebra; in this case,
S(w, @) is given by the definition of [2] applied to the normal state extensions.
S(w, ©) is convex and lower w*-semicontinuous (the lower semicontinuity in this
general context follows readily from [13, Theorem 9]). In the particular case
where both states are given by non-singular densities D with respect to a trace
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Tr,
S(w, @) =Tr (D, {log D, —log D, }).

The mean relative entropy for ¢ € K(%.) with respect to w € K(%.) is
defined to be

Su(w, ¢)=limsupn~'S(w | B,, ¢ | B,);

and is affine in ¢. When the reference state is a symmetric product-state I1,, and
¢ is symmetric, then by Proposition I11.4 the upper limit is in fact a proper limit.

The connection between w?*(1) and thermodynamics is the following.
Suppose that the separating states p, € K(#) and p € K(%) determining w,, are
given by densities exp (—pB/o)/Try exp (—Bky), respectively exp (—p#4)/
Trg exp (—B4), with $>0. The non-interacting system then has #)=/4,®
(t®1,_,+1®4R®1, ,+---+1,_, ®4] as its hamiltonian. The corresponding
free energy density F(B) is then simply

Fy(B) = (—np) ' log Trg, exp (—By)
= (—nP) "' log Try exp (—Pho) — B~ " log Trg exp (—f4),

and its thermodynamic limit is —8~"'log Trg exp (—fB#4). The free energy density
corresponding to the hamiltonian %3+ V,, ie. E,(B)=(—npB) 'logTry X
exp (—B(%2+ V,)), is then given by

BIF.(B) - E.(B)] =n""log 0, 7¥(1).

The following result gives the existence of the thermodynamic limit of the
relative free energy density of any mean field model, and establishes the validity
of the Gibbs Variational Principle. Moreover, and as is to be expected due to the
mean field nature of the models and the non-commutative de Finetti Theorem,
the variational problem contracts to one on the direct product of the state space
of & and the (‘single particle’) state space of 2.

I1.3 Theorem. For every mean field model,

im ™" log (1) = sup fiim g () - Su(11,, 91 8.} *)
= swp {(@oli(H)(®)} —5(p, P}, (**)
(ZQOZK((Q;))

Remark that the separating state p, of & does not appear in the functionals
to be maximized, and also that the &f-system does not contribute at all to the
entropic part of these functionals. The only influence of the &/-system enters via
the limiting interaction energy density.

The basic information on the nature of the equilibrium states is collected in
the following result.
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I1.4 Theorem. For every mean field model one has:

(1) Every w* cluster point of the sequence (Norm™' w2, _ . maximizes (*);

(2) The subset M, c K(%B.) of states ¢ maximising (*) is convex and
compact, and the subset M., c K(HA)X K(B) of pairs (@o, @)
maximising (**) is non-empty and compact. The extreme points of M, are
the states @, I, with (@,, ¢)eM,, and @,€ K(sf) pure. Every
¢ € M, has a w*-integral decomposition ¢ = [ u(do) @, @ I1,,, where u is
a Baire probability measure on K(RB), @, € K(H) for all oe K(RB),
o> @,(a) is measurable for all a € o4, and (¢,, )M, a.e. (u).

(3) If o and B are separable, then for any extreme point ¢ of M, there exists
an approximately symmetric sequence (H,),-,, such that

lim ||H, — H,]| =0,

and the sequence (Norm™" w}™),..,. is w*-convergent to ¢.

(4) Let X e¥Y(C, B), and suppose that the sequence (Norm™' ")
converges to an extreme point of M,. Then the sequence (IK,) of
probability  measures on R, defined by [K,(dx)f(x)=
(Norm ™" w?#)(f(X,)) for fe %y R), is w*-convergent to a point
measure.

(5) If ¢ is a maximiser of (*), then the restriction of ¢ to B, is normal with
respect to the restriction of w, to B, for all n.

Note that the integral decomposition given in (2) is not a decomposition into
pure phases, which would be an integral of the form ¢ = [ v(d(gq, @)@, ®II,
with a probability measure v on K(&f) X K(%), supported by the set of
(@0, @) e M, with @, extremal in K(s£). For non-separable & the set of extreme
points of K(sf) is not measurable in K(s«/) and hence M,, is in general not
measurable. The ‘support’ of the measure v on K(sf) X K(2) thus has to be
understood in the weaker sense customary in non-metrizable Choquet-theory.
The integral decomposition given in the theorem avoids this difficulty and has the
additional virtue of being unique in the sense specified in Proposition IV.5.

One may wonder whether the local normality property (5) holds also for the
whole algebras 9, rather than the tensor factors %,. That this is not the case is
seen in the following example. Let &/ = B(¥) be the algebra of bounded
operators on ¥ = L*([0, 1], dx) and let 8= C be trivial. Let p, be any faithful
normal state on &/, and let H, = H € o be the multiplication operator with x in
#. Then by Theorem II.4(1) any cluster point @,€ K(sf) of the sequence
(Norm™ - p*) satisfies @o(H)=supspec(H)=1. Hence ¢, must be purely
singular on B(¥).

Under a differentiability condition, the maximizers of (**), i.e. the states in
M,,, satisfy a generalized gap-equation [7, 14] with a state-dependent effective
hamiltonian 4:

IL.5 Proposition. Let (¢, @) e M, and suppose that j(H) is differentiable
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at (o, @) in the sense that there is some 4 € B such that for all y € K(B):

Po{J(H)(1 = D)@ + Ay)} = @o{j(H)(@)} + A(w(4) — @(4)) + 0(A)
as A—0". Then @ = (p*(1))~! - p*

In the case studied in [14], the variational problem (**) contracts further to
one on the real line. This was seen to provide an extension of Varadhan’s
asymptotic formula [20, 21], based on the large deviation results of Cramér for
the distribution of sums of independent, identically distributed random variables.
We obtain a further generalization of this, which at the same time reduces the
computation of the suprema of Theorem II.3 in a certain subclass of mean field
models to a variational problem on R*. The subclass consists of those models
where & is trivial, and the hamiltonian density is given by H,=

FXO, XP ..., X%), for some C*-function f, and k symmetric sequences
XWMe @ all beglnnmg at ng= 1.
Consrder k self-adjoint elements x®, x@, ..., x® in . For teR*, let

t-x=txD+ 6@+ -+ 1x®, and define G5:R*— R, I5:R*— R U {+} by
Gi()=logp™(1), teR"
Ijw)=sup {r-u=Gyn)}), ueR
teRk

where p is any separating state of %. G7, is then convex and differentiable [3] with
{(VG3},(t) = p"*(xP)/p™* (1), 1=j=k.

Moreover, G,(0)=0, and the generalized Peirels-Bogoljubov and Golden-
Thompson inequalities of [3] imply p(¢ - x) = G5(t) <log p(e"™). It follows that I,
is non-negative, convex, and lower semicontinuous, with I’,‘,(p(x(l))
p(x®), ..., p(x*))=0. Using [3] one can see that G} (and hence [, [17,
Theorem 26.5]) is strictly convex if and only if the set {1, x®,. x(")} is
linearly independent. We remind the reader that the effective domaln dom (13),
of I is the convex set where I}, is finite.

I1.6 Theorem. Let x”, 1<v =<k, be self-adjoint elements in B; then the
closure of dom (I5) is E={(¢(x?), p(x®), ..., p(x®)| @ € K(B)}. Let the
symmetric sequences XV in Y(C, B), 1 <v =k, be given by X\ =x" ¢ B, and
let f by any C*-function on E. Set

H,=f(XD, X . x®)eam,
Then, with H = (H,),.=, € ¥(C, B), one has

o {J(H)(‘P) S(p, qv)}—sup {f(w) — I (u)}
=sup {f({VG,}(1) -1 - {VG, He)+ Go(0)}-

Let us illustrate these results in the case where the assumptions of
Proposition 11.5 and Theorem II1.6 are both satisfied, i.e. f is differentiable as a
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scalar function on a neighbourhood of E. Then

k
b= 2 5V (@), ..., p(x®)).
j=1 :
Consider the maps U, T, and @ defined by:

K®)2 9= U(p)=(p(x?), ..., p(x))€E,
R* 5t ®(t) = (p**(1))"'p"* € K(B).
Esur T(u)=Vf(u) e R%,

If € K(%) is a maximizer for j(H)(°) — S(p, °), then U(g) is a maximizer for
f(e)—Ii(°). Given a maximizer teR*, ®(f) maximizes j(H)(°)—S(p, °).
Finally, an argument similar to that of the proof of Proposition I1.5 shows that
given a maximizer u € E, T(u) maximizes t— f({VG,}(t)) —t - {VG,}(¢) + G(2).
This sets up bijections between the sets of maximizers of the three expressions of
Theorem II.6. The gap-equation becomes

@ =®oToU(p)=Norm™! pW @&, 0c®yx
or, alternatively,
t=ToU-®(t) = Vf(VG(2)).

The bijective correspondence between the sets of maximizers of the three
variational problems of Theorem IL.6 is also guaranteed if dom (I5) = VG5(R¥).
This last condition does not follow from the differentiability of f. If G7, is strictly
convex, then VG%(R*) = int (dom (I%)) [17, Theorem 26.5] is open. On the other
hand, if & is finite-dimensional, then S(p, °) is bounded above, and one can
show that dom (I5) = E, which is closed.

III. Proof of main results

In this section we give the proofs of all results of the previous section except
I1.2. This is done in the appendix. The basic idea of the proofs is exactly the same
as in the paper [14]. The new ingredients are the inclusion of a non-trivial
algebra &, and a much larger class of admissible hamiltonians; this becomes
possible due to the theory presented in Sect. IV.

The central idea is to use the following important variational characteriza-
tion of the relative entropy of states in a general C*-algebra due to Petz [12, 13].
It can be stated by saying that 4+ log w”(1) is the ‘Legendre’ transform of
¢~ S(w, @), and conversely.

III.1 Lemma (Petz). Let w be a separating state of a unital C*-algebra A,
h=h*e A, and @ any state of . Then '

log 0" (1) = p(h) — S(o, @)
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and equality holds if and only if ¢ = 0"(1)"'w”. Moreover,

S(@, )= sup {g(h)~log w"(1)}.

This lemma is now applied to the algebra ¥,, with the reference state
©=w,=p® (-, pn)), the relative Hamiltonian » = nH,, and a symmetric
state ¢ = ¢, of ¥,. After dividing the inequality by n, we pass to the limit. Thus
one has to control two kinds of terms, namely the interaction energy density
¢.(H,), and the relative entropy density n~'S(w,, ¢,). We shall have to require
of the sequence (¢,) only that it converges *-weakly to a limiting state on 9%...
Since the state space of %. is w*-compact, this condition can always be met by
passing to a subnet (since we are not assuming & and % to be separable,
subsequences will not do). We will use the following notations. Let v be a subnet
of N, i.e. a function v:A— N on a directed set (A, =) such that for every n e N
there exists a, € A such that v(a) =n, whenever a = «,. If (a,),n IS a sequence
in a Hausdorff space, we write lim,,_,, a, for lim, 5 a, (4 if it exists, and employ a
similar notation for superior and inferior limits of sequences of extended-real
numbers. '

II1.2 Definition. Let (¢,),.n be a sequence of permutation symmetric states
¢, € K(2,) (resp. ¢, € K(9,)). We say that (¢,) is convergent along a subnet
v:A—N, if for all meN and all X € 9,, (resp. %,,) the limit lim,_,, ¢,(X,) =:
¢ (X) exists.

For any sequence convergent along a subnet, the limit-functional extends
from U, 9, (resp. U, %,) to a unique symmetric state ¢ of %, (resp. %..), and
we shall write ¢ =1lim,,_,, ¢,. By Proposition IV.5 any symmetric state ¢ has an
integral decomposition, ¢ = [ u(do)p, ® I1,, into product states. This decom-
position is used in the following proposition, which summarizes the energy
estimates we shall need. It is proven at the end of Section IV.

II1.3 Proposition. Let X € ¥ and let (¢p,),..n be a sequence of permutation
symmetric states of 9, converging along a subnet v to

lim,_,, ¢, = [ u(do)p, 11, € K,(9..).
Then

lim ¢,(X,) = [ 1(d0)gs X))}

n—v

Recall that Sy,(w, ¢) was defined as an upper limit. We shall need to know
that this lim sup is in fact a limit, if @ is a product state and ¢ is symmetric. The
necessary control of the lower limit is stated in the following proposition.

II1.4 Proposition. (1) Let (¢,)..n be a sequence of permutation symmetric
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states of B, converging along a subnet v to lim,_,, ¢, = ¢ € K,(B.). Then

liminf n~'S(I1, | B,, ¢n) = Sy(IL,, ).

n—v

(2) If ¢ = [ u(do)I, is the decomposition of the symmetric state ¢ into product
states, then Sy(I1,, ¢) = [ u(do)S(p, o).

Proof. We may suppose that S(I1, | 8,, ¢,) is finite for every n. Let T be
the right-shift on %.. Sp(I1,, °) is lower w*-semicontinuous on the z-invariant
states of %. (see the appendix of [14]). One has

lim Lnf Su(IL,, E,) =Sy (11, ¢),

for any net {€, | « € A} of t-invariant states of %. which is w*-convergent to ¢.
The first claim follows if we construct such a net, with the additional property that

SM(Hp; ga) = v(a')"lS(IIp | %v(a); d’v(a})- (***)
Define the state , € K(%.) by
Eo | Bivia)= Pvia) @ Py @+ ® Py (K factors)_, for every k =1;

{o is then 7"-invariant. For every m €N, §,(X)= @yay(X) for all X € B,
whenever v(«) =m. Hence, w* — limgea §o = ¢. Put &, =v(a) ' L)X Lo v
then, &, is t-invariant and has the same limit as {{,} by [14, Lemma 5]. We can

repear the argument of [14, Lemma 7] to show that for any m,

ll}cn k_ls(np ‘ %k: Cao " | ﬁk) = 'V(CV)_1S(HP | Bv(af), q’)v(a))'

Then the argument of [14, Lemma 8] implies (***). This completes the proof of
the first claim. The second claim follows from the lower semicontinuity of
Su(II,,°) by a standard result of Choquet Theory, and the fact that

SM(Hp: Hrp) = S(p! (p)

Proof of Theorem 11.3 and of Theorem 11.4(1)

Put a, =n"'log w}™(1), A = sup {lim, ¢(H,) — Sy(I1,, ¢ | B.) | p € K. (%..)},
and B =sup {@o{j(H)(®)} — S(p, @) | ¢ € K(B), po€ K(£)}.
We first claim that A = B. Indeed, by Proposition III.3 and the second part of
Proposition I11.4, for any ¢ € K (%..),

lim $(H,) ~ Sy (1L, & | .) = | w(do)l@, (H)@)} - S(p, D= B

since u is a probability measure. The first claim follows by taking the supremum
with respect to ¢.
Now we claim that lim inf, a,, = B. By Lemma III.1, for arbitrary ¢, € K(),
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and @ € K(%),
8, = (o @ T1,)(H,) —n7'S(po ® (11, | B,), 9o ® (11, | B,))
= (‘pO ® np)(Hn) - n_l(S(pO’ (PO) + nS(pr (p))
Thus, if S(po, o) is finite, '
lim inf a,, = @o{j(H)(9)} - S(p, ¥),

by Proposition III.3. This implies that

lim infa, = sup {@oli(H)(@)} —S(p, @) | ¢ € K(B), @0 € K(4), S(po, Po) <}

Since p, is separating, the set of states of & with finite relative entropy with
respect to p, is w*-dense in K(s£), and the second claim follows.

The third claim is that if the sequence {¢, =Norm™ ' w?% | n e N} converges
along a subnet v to ¢ € K;(%..), one has

lim sup a, <lim ¢(H,) — S (I1,, ¢ | B..) = A.

n—v n

By Lemma III.1, and monotonicty of the relative entropy, for any a € A,

Ay(a) = ¢v(a)(Hv(a)) - V(a)_ls(wv(a’)’ ¢V(ﬂf))
= ¢v(af)(Hv(cv)) - v(“)_ls(a)v(a) | %v(a)i ¢V(O’) | %V(a’))
= (@) (Hy(ay) — V(@) 'S, | Boays Duiey | Buiey)-

The third claim follows from Propositions 1I1.3 and III.4.

Theorem 11.4(1) follows from the three claims. Suppose that lim sup, a, is
strictly larger than A. Then there is a subnet v, of N such that (a,) converges
along v, to this larger value. By w*-compactness of K(%..), there is a subnet v of
v, such that (Norm ™! w?2"") converges along v to a symmetric state in the sense of
Definition III.2. This contradicts the third claim, and shows that limsupa, = A,
which together with the first and second claims proves Theorem I1.3.

Proof of Theorem 11.4(2)

Since the functional maximized in (*) is affine in ¢, M, is convex. Due to the
lower semicontinuity of relative entropies the functionals in (*) and (**) are both
upper semicontinuous, and hence assume their supremum on a closed set, which
is compact since K;(2..) and K() X K(AB) are compact. The integral decomposi-
tion exists by Proposition IV.5 for any ¢ € K,(%..), and we only have to prove
that (@,, 0) e M, almost everywhere. This is clear from the first inequality in
the above proof of I1.3, which must be an equality for a maximizer ¢. Clearly, ¢
cannot be extremal unless p is a point measure, i.e. ¢ = @,®II, for some
(9o, ) e M,,, and unless ¢, is extremal. Conversely, if ¢ has the stated
property, then if is extremal in K;(%..), hence in M.
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Proof of Theorem 11.4(3)

By I1.4(2) every extreme point of M, is of the form ¢ = @, ®II, with @,
pure and (@, ) €M,,. We claim that there exists Ge® such that
Yo(j(G)(y)) =0 for all y,e K(A), y € K(B), with equality exactly for the pair
(@o, ). We then consider for £ >0 the mean field models with hamiltonian
density G, + H,,, and let WZ € K(2,) denote the state W& = Norm™' - 7€+,
Then by II.4(1) the sequence W¥; converges to the given extreme point ¢ for
every €>0. We construct a sequence (&,),.n converging to zero with the
property that W;"— ¢ as n— . For this consider a metric d on K(%.), which
exists since each &, is separable as the tensor product of separable C*-algebras.
Let N, eN such that d(¢, W;)<1/k for e=1/k and all n=N,. N, can be
arranged to be an increasing sequence and we set g, =1/k for Ny =n <N;,;.
Hence d(¢, W) <¢, for all n=N,. Then H, = ¢,G, + H, has the properties
stated in the theorem. ~

It remains to be proven that G € ¥ with the stated properties exists. By
Lemma V.6 it suffices to find g € €(K(%), &) such that g =0 and yy(g(y)) =0 iff
(Yo, ¥) = (@0, ). Note that the pair (@, @) defines an extremal state ¢ of
€(K(RB), A) via ¢(f)=@o(f(®)), and that we are looking for an element
g € 6(K(RB), A) ‘exposing’ this state, in the sense that ¥ € K(€(K(RB), «)) and
Y(g) =0imply ¥ = ¢p. Now since A is separable, so is €(K (%)), being generated
by the functions of the form f(@) = @(b) for b in a countable dense subset of %
on account of the Stone—WeierstraB-Theorem. Hence €(K(%), )=
€(K(%B)) ® A is separable as the tensor product of separable algebras. Our
claim is thus reduced to the general proposition that any pure state ® of a -
separable C*-algebra & is exposed. (Counterexamples for non-separable & are
easily constructed). By [11, Theorem 3.10.7] every extremal state ® is charac-
terized as {®} = {¥ e K(F) | Vr.x¥P(f) =0}, where & denotes the left ideal
F={fe% | ®(f*f) =0}. As a subspace of a separable normed space the ideal &£
contains a dense sequence (f,).en, and g=—-X,27" |If.II”"f. is an element
exposing P. ’

Proof of Theorem 11.4(4)

By Proposition II.2 Y, =f(X,) is approximately symmetric and j(Y)=
f@(X)). Hence, by Proposition II1.3, lim, [ K,(dx)f(x)= | u(do)@.{ji(Y)(0)}
with the integral decomposition I1.4(2). Since the limit state is pure, pu is a point
measure, say at @ € K(%), and since X € #(C, B), j(Y)(0) € « is a multiple of
the identity for all o. Hence lim, | K,(dx)f(x)=j(Y)(@)=fG(X))(¢)=
f(G(X)(@)), which means that [, converges to the point measure at j(X)(g).

Proof of Theorem 11.4(5)

Clearly, for ¢ a maximizer Sy(I1,, ¢ | B.) =limsup, n™'S(IL, | B,, ¢ | B.)
is finite, and hence s, = S(w, | B,, ¢ | B,) must be finite for all sufficiently large
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n. By the monotonicity property of S, s, is an increasing sequence, and is hence
finite for all n. By [13] this implies that ¢ | %, extends to a normal state on
7,(B,)", where m, denotes the GNS-representation of %, with respect to I1, | %,
as claimed.

Proof of Proposition I1.5

Let F(@) = @o{j(H)(®)} — S(p, @). By convexity of S(p, °), we have

F(1-Me +Ayp)=F(@) + A{y(4) — ¢(4£) + S(p, @) — S(p, ¥)} +0(),

for all ¥ € K(9) and all A € [0, 1]. If the expression in braces is strictly positive
for some v, then the left hand side must be strictly larger than F(g) for some
small A, contradicting the maximality of (@,, @¢). Hence, for all 3 we have
w(4£)—S(p, v) = @(4) — S(p, ). Taking the sup over ¥ and using Lemma
II1.1, we find @(4£) — S(p, @) =log pﬁ(l), and hence @ = Norm™! - p*.

Proof of Theorem I11.6

In what follows, we drop the index p and the superscript x from I and G.
Notice that E is compact, convex and contained in X%_, spec (x*). For ¢ € R%,
we write p,=(p"*(1)) 'p"* € K(RB), and remark that, in an obvious vector-
notation, p,(x) = VG(¢), and moreover, S(p, p,) =t - p,(x) — G(t) due to Lemma
III.1.

We first prove that VG(R*) and dom (I) have the same closure, which is E. By
[17, Corollary 26.4.1], ri(dom (I)) = VG(R*) = dom (), where ri denotes the
relative interior [17, p. 44]. By [17, Theorem 6.3] ri(dom (7)) and dom (I) have
the same closure, so since VG(R*) c E and E is closed, VG(R*) =dom (I) c E.
For the converse inclusion, suppose u ¢ dom (/). There exists [17, Theorem 13.1]
t € R* such that ¢ - u>sup {¢- v | v e dom (J)}. Since I is non-negative, we have
for every n e N

n~'G(nt) = sup {v-t—n"I(v)} = sup {v-t—n"UW)=t-u-—c,
for some ¢ >0. Applying Theorem II.3 in the case &/ = % and B =C, we have
lim, n'G(nt) =sup {@(t-x)=t- @(x) | p e K(B)}. Hence u¢E by [17,
Theorem 13.1]. This completes the proof of VG(R*) = dom (I) = E.

The second part of Lemma III.1 implies that S(p, @) =1(@(x)) (take h =1 - x
and vary ¢). Using this, and Proposition II.2,

S := SUp UH)@)—S(p, )} = sup {f(p(x))—S(p, @)}
peK(RB) peK(RB)

= _sup F(o() — I(p(x))} =sup {f(u) — 1(u)} =:5,.



Vol. 62, 1989  Quantum statistical mechanics of general mean field systems 993

Since I is + outside dom (/) which has closure E, we may rewrite

$;= sup {f(u)—I(u)}.

uedom (1)

On the other hand,
$1=sup {f(p(x)) = S(p, p)} = sup {f(VG(1)) — 1 - VG(1) + G(O)} =: 5.

If ueVG(R*), then u=VG(t) for some teR* and [17, Theorem 23.5]
Iw)=t-VG(t)— G(t). Thus, S;=sup {f(u)—I(u)|ueVG(R*)}. Since
ri(dom (1)) = VG(R¥), S;=sup {f(u) —I(u) | u e ri(dom (I))}. We have estab-
lished that

sup  {f(u)—Iu)}=S,= sup {f(u)—I(u)}. (***)

ueri(dom (I)) uedom (1)

Due to lower semicontinuity [17, Corollary 7.5.1], lim, 4, I((1 — A)v + Au) =
I(u) for every ueR* and vedom(I). Moreover [17, Theorem 6.1], if
v eri(dom (I)) and u € dom (/) then (1 —A)v + Au € ri(dom (I)) for every 0=
A <1. This implies that given u € dom (I) and & >0, there exists v € ri(dom (1))
such that |I(u) — I(v)| =< &. Since f is continuous, it follows that the left and right
hand sides of (***) are equal. This completes the proof.

IV. A C*-algebra of symmetric tensors

In this essentially self-contained section we develop the theory of symmetric
and approximately symmetric sequences. This provides a systematic background
for the energy estimate III.3, as well as the necessary information for showing
the equality of the two variational expressions in Theorem I1.3. However, we also
prove some results of independent interest. The central idea is to equip the set ¥
of approximately symmetric sequences with the structure of a (semi-) normed
*-algebra in two prima facie different but equivalent ways.

The first product on % (in the case of trivial & =C) is simply the
symmetrized tensor product *:%, X 9,,— 9, ® @,, = D, ,,,. Clearly, this prod-
uct is commutative. Any symmetric state ¢ € K;(%2.) defines a state on the
algebra (%, %), and the product states of &, become homomorphisms,, i.e. pure
states on this algebra. This is the basic observation behind Stgrmer’s Theorem
[18], which says that any symmetric state has an integral decomposition into
product states (compared Proposition IV.5).

The second product on % is the elementwise product of sequences. It is not
immediately obvious that this operation takes % X % into %. However, the
elementwise product turns out to be asymptotically equal to the *-product. This
equality will make it possible to treat mean field hamiltonians, which are defined
for each n as some arbitrary function of a set of sequences from %.

We shall continue to use the notation introduced in Sect. II. On the set % the
operations of scalar multiplication, adjoint, and addition will simply be defined
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elementwise, e.g. (X +Y), =X, +Y, € 9, for all n such that both X,, and Y, are
defined. We shall set || X|| =lim, ||X,||. This limit exists since ||X,.xl|l=
llsym, + (X, ®1®---@1)||=||X,®1®---®1| =|X,|, i.e. the sequence of
norms is decreasing. It is worthwhile to note that this sequence is in general
strictly decreasing (unless X, is defined for all n = 1), but that it never decreases
to zero for X # 0. (This can be shown with the help of Lemma IV.4 and the fact
that product states on 9, separate points of sym, (%,); we shall not use this
observation). :

The product in %, which we shall denote by X, Y+— X % Y, will be the sym-
metrized tensor product in the following sense: for X=a®x, ®x,Q---Qx,€ P,
and Y=b®y, ®y,®---y, €D, let

X*n,mY=Symn+m {ab ®xl ®x2®' T Xn ®y1 ®y2® ) ym)} € @n+m

Clearly, this extends by linearity and norm continuity to a bilinear map
*,mi Dy X D,y—> D m. Moreover, this product is associative, and elements of
the form 1® B, € 2, =% @ (B®") commute with all others. Note that a
sequence X, € ¥, is symmetric iff for all k, X, ., = X, *,, 1, where 1, denotes
the unit element in %,. The product *: ¥ X ¥— % is now defined by
X*Y)pim:=X,%,,, Y, for all n,m such that both X, and Y,, are de-
fined. Since Xn+k *n+k,m Ym = (Xn *n,k 1k) *n+k,m Ym = Xn *n,k+m (1k *k,m Ym) =
X, *, k+m Yr+m the value (X % Y), of the sequence X * Y does not depend on the
representation r=n+m, and by a similar argument one finds that indeed
X*xYe®. It is easy to verify that with these operations % becomes a
semi-normed *-algebra with unit, and we shall call ¥ the algebra of symmetric
A-valued tensors over 2.

It is crucial for our application to relate the algebraic properties of the
elements X, € ¥, to the properties of the sequence X € %. The key to such
questions is the following combinatorial lemma, which will allow us to transfer
the full ‘elementwise functional calculus’ from the algebras &, to the functional
calculus of ¥.

IV.1 Lemma. Let X, Y € ¥ and k, m e N such that X, and Y,, are defined.
Then forn=k +m

k-m
| X, Y, — (X % Y),|l . | Xkl ~ 1Yl

In particular,

lim || X, Y, — (X % Y),|| =0.

n—ro

Proof. Let w— «, € Aut(%,) denote the action of the permutations of
{1,...n} on 2, Then X,=sym,(X)=n)"'Y,a,(X;) and X,Y,=
(n") 7% Lo @ (X)), (Y,,). Moreover, (X * Y), is represented by the sum over
only those terms in the same sum, for which =#({1, ... k})Nxa'({1,... m})=.
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Let w,(k, m) denote the relative weight of these terms in the sum. Then
XY, — (X *Y),|| =|1—w,(k, m)| - || Xkll - ||Y,.||- Thus it remains to be proven
that |1 — w,(k, m)| < km/n.

The number of permutations & such that z({1, ...k} )Na'({1,...m}) =D
does not depend on x’. Therefore n! - w,(k, m) is the number of permutations 7«
with

- (hn—m
({1, ... kNN{,...m}=@, ie. ( ) )-k!-(n-—k)!.

Hence

(n—k)'(n— m)' m—m)(n—m—-1)---(n—m-—k+1)
n!(n—k—m)! nn—=1)---(n—k+1)

ﬁnma’

a=0 o

w,(k, m) =

The bound w,(k, m) =1 —km/n is obviously true for kK =0 or m = 0. Therefore
we may assume m =1 and proceed by induction over k. Using the induction
hypothesis we find

Wk +1,m)=w,(k,m)-(1—m/(n—k))=(1 —km/n)-(1—m/(n —k))
=1-mk+1)/n+km(m—-1)-n"'-(n—k)™!
=1-m(k+1)/n, aslongasn<k.

IV.2 Corollary. The seminorm defined on ¥ satisfies || X* * X|| = || X||*
Proof. || X* % X|| =lim ||(X* % X),|| = lim || XX, =lim || X,|* = || X||?

Our next aim is to show that there is a natural one-to-one correspondence
between the symmetric states of %, and the states of @. A state on % is by
definition a linear functional ¢: % — C, such that ¢(1)=1, and ¢(X* * X) =0
and |¢(X)| = || X|| for all X € ¥. The set of such functionals will be denoted by
K(%), and coincides with the state space of the separated completion of %. It is
useful to introduce the following map #4:\, 9,— ¥: for x € 9,, 4#(x) will be the
sequence £(x),, = sym,, (x ® 1,41y - - * @ 1(,,)). Note that £ is compatible with the
injections 9, < %,,, and maps |, 9, onto ¥, because £(X,)=X for all X e ¥
and n € N such that X, is defined. Due to the estimate ||[4(x)|| =< ||x]||, # has an
adjoint £*, taking continuous linear functionals on ¥ to the dual (Z.,)*.

IV.3 Lemma. £*: K(¥)— K,(9.) is an isomorphism of compact convex sets.
The inverse is given by (4#*~'¢)(X) = ¢(X,,) for ¢ € K(D..), X € ¥, and n large
enough for X,, to be defined.

Proof. Let £:K,(9.,)— ¥* denote the map described in the lemma, which
is well defined since for symmetric ¢ and X € ¥ ¢(X, 1) = @(sym, ., (X)) =
¢(X,). The fur_lctionals 4£¢ are indeed continuous on ¥, since |4 ¢(X)|=
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lim, |¢(X,)| <lim, || X,||= || X]|. If ¢ is positive, then so is 4¢, since
(£ ) X* * X)=lim, p((X* * X),)=lim, ¢(X?X,)=0 by Lemma IV.1. Since
for every X € ¥ the map ¢+ ¢(X,) is w*-continuous, £ is continuous for the
w*-topologies and maps K,(%.,) into K(%).

We show next that £* maps K(%) into K,(%.,). It is clear that £*w is always
a symmetric functional on 9.. Suppose that w € ¥* is positive. Then ||£*w|| =
|lw|| = w(1) = (4#*w)(1), which implies that #*® = 0. From the definition of # and
4 it is clear that for x € U, @, and ¢ € K,(2..), ¢(x) = (£ ¢)(4x). Hence £* £ is
the identity on K;(%.). On the other hand, for X € % and w € K(%) we have
(£ oh*0)(X) = (£*w)(X,) = o(#(X,)) = w(X). Hence £ and 4 are inverse of each
other.

This characterization of the symmetric states of %, is useful only if we can
give a concrete representation of K(%), or, equivalently, of the completion of the
algebra (%, *). The following lemma shows that this completion is canonically
isomorphic to €(K(%B), &), and that the embedding of % into its completion is
just the map j: ¥ — €(K(8B), o) introduced in Sect. II. We defined j,: 2,—
C(K(RB), ) by ju(a®x; ®---Qx,)(@)=all,@(x,), and j(X)=lim, j,(X,).
The existence of this limit will be established for general X € % in Lemma IV.6.
Here we only need the trivial case X € %, in which the sequence n+—j,(x,) is
constant.

IV.4 Lemma. j: % — €(K(RB), A) is an isometric *-homomorphism of %
onto a dense subalgebra of €(K(B), A). The pure states of €(K(RB), o), which
are of the form f € €(K(B), A)— ¢o(f(¢)) for a pure state ¢, K(A) and an
arbitrary state ¢ € K(B), are mapped by £*°j* to the product states ¢, &I, €
K (9..).

Proof. % contains two special subalgebras, namely an isomorphic copy of <
consisting of the sequences A,=a®1,,®---®1,,€%, with ae s, and
another algebra, isomorphic to ¥(C, &), consisting of the elements 4(1 ® X,,)
with X, € 3,. The algebra %(C, %) belongs to the center of ¥ = ¥ (H, B), and
since 9, = A4 @ B,, the finite linear combinations of elements AX with A € &
and X € %(C, 3B) are norm dense in ¥(sf, B). Consequently, ¥ (A, B)=A ®
¥(C, B). As an abelian unital C*-algebra, the completion of #¥(C, B) is
isomorphic to €(I') for some compact space I'. Hence the completion of ¥ (s, RB)
is isomorphic to & &® €(I')=<%(I', /) by Proposition IV.7.3. and Theorem
IV.4.14. of [19]. It remains to be shown that the space T is canonically isomorphic
to the state space K(9). Thus in the remainder of this proof we can take & = C.

For any abelian C*-algebra €, T is the set of pure states of €, or,
equivalently, the space of unital *-homomorphisms y: € — C, equipped with the
w*-topology. Let y be a homomorphism of %(C, %). We claim that £*y is then
a product state of %.. For let xe %, and ye %,,, and x®ye %,.,,.. Then
A(xy) =4(x) * 4(y), and (£*y)(xy) = y(£(x) * £(y)) = y(£(x))y(#(x)). Conversely,
suppose that ¢ € K,(9.) is a product state. Then according to Lemma IV.3 we
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have for all X,Ye® and k,neN sufficiently large: (4* '¢)(X *xY)=
P(sym, (X ®Y, ;) = ¢(X, ®Y, i) = ¢(X)p(Yo_i) = £* ') X)£*"$)(Y).
Hence (4*'¢) is a product state of ¥(C, B). Hence the extreme points of K(%)
correspond exactly to the product states Il,, and since the map ¢—1II, is a
homeomorphism for the w*-topologies, the completion of #(C, %) is isomorphic
to €(K(9)), with K(%) taken in this topology.

Putting together these two lemmas we obtain the following generalization of
Stgrmer’s Theorem [18]. Our proof is an expansion of the proof given in [6] for
the case of separable & using the theory of liftings [9].

IV.5 Proposition. Any state ¢ € K, (%.) has a w*-integral decomposition
¢ = [ u(do)p, ®I1,, where u is a probability measure on K(RB), ¢, € K(st) for
all o€ K(B), and o~ @,(a) is measurable for all a € s§. Moreover, for each
a € A, p,(a) is uniquely determined by ¢ almost everywhere with respect to u. If
oA is separable, then @, is uniquely determined by ¢ a.e..

Proof. By the previous two lemmas we have to show that any state ¥ on
6(K(B), ) has an integral decomposition W(f) = [ u(do),(f(0)), for u and
o— @, as specified above. For any a € & with a =0, consider the functional
f—¥(af) on scalar functions f € €(K(%B), C). Clearly, this is positive and hence
of the form W(af) = [ u.(do) f(o) for a unique probability measure u,. Since
W(af) = ||a|| W(1f) for all positive f, we have u, < ||a|| u,. Hence p, is absolutely
continuous with respect to u;, and has a Radon-Nikodym derivative R(a) e
L'(K(%), u1), which is essentially bounded by ||a||. Hence R(a)e L*, and
a+> R(a) € L*(K(%), u,) extends to a positive linear map of norm =1. Note that
R(a) is not a single function, but an equivalence class with respect to a.e.
equality. However, there exists a ‘lifting’ p:L™(K(R), py)— L (K(RB), u,),
which associates in a linear and positive manner a single bounded measurable
function to each class [9]. Thus for each oe K(%8) the map a+—> R(a)—
p(R(a))— (pR(a))(0o) is linear and positive, an takes 1€ & to 1 e R. That is to
say there is a state @, e K(«) with @,(a) =(pR(a))(o). For discussing the
uniqueness statements, let ¢, and 1, be families of states satisfying the
conclusion of the proposition. Then since @ (a) and vy (a) both represent the
Radon—-Nikodym-derivative R(a) they must be equal a.e. If &« is separable and
(@,)nen is a dense sequence, let N, ={o | ¢,(a,) # ¥,(a,)}. This is a null set,
hence {o | Qs * Yo} =\, N, is also a null set.

As a simple example showing that separability is essential for the final
uniqueness statement, consider % two dimensional, so that K(%) = [0, 1], and
o = L>([0, 1]). Let ¢ denote the state on €(K(RB), &)= %([0, 1]) ® L™([0, 1])
given by ¢(f ® g) = [ dof (0)g(o) for f € €([0, 1]) and g € L*([0, 1]). Thus the
function o+ @, € K(&) in Proposition IV.5 must satisfy ¢,(g)=g(o) almost
everywhere, and hence two such functions, say ¢ * and ¢, have to coincide a.e.
for every g. However, the exceptional null-set may depend on g, and we shall
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construct ¢ and ¢ such that ¢ # @, for all 0. By [9, Theorem VIII.6] we can
find a lifting p* : L™([0, 1])— £7([0, 1]) such that p*(f) =f for all functions f,
which are continuous from the right. Set @.(g)=(p*(g))(0). Then if x, €
L>([0, 1]) denotes the characteristic function of [0, o], we have ¢ (x,)=0. If p~
is a lifting fixing left-continuous functions, and ¢~ is defined similarly, then for all
o, 9, (x,) =1, and hence @ # ¢,.

The following result states that % modulo the equivalence relation
lim, || X, — Y,|| =0 for X, Y € Y is exactly the completion of ¥.

IV.6 Lemma. Let X € ¥. Then the limit || X || := lim,, || X,,|| and the norm limit
j(X):=lim, j,(X,) in €(K(B), ) exist. The map j:¥U— €(K(B), ) thus
defined maps ¥ isometrically onto €(K(B), ).

Proof. Let € >0. Then according to Definition II.1, there is some exactly
symmetric Y € %, and n,, such that for n =n,, ||X, — Y,|| =& Thus for n, m=
no: | || Xl = 1 Xl | =2€ + | || Yal]| = || Yonl| | =3¢ for sufficiently large n,, since the
sequence ||Y,|| is convergent. Similarly, ||j,.(X,)—j.(X)I| =2+ ||j.(Y,)—
Jm(Y)|| = 2¢, since n+j,(Y,) is constant for n = n,,

By Lemma IV.4, j| % is an isometry, and since ||j(X)|| = lim, ||j,(X,)|| =
lim,||X,|| = || X||, this property carries over to #%. To show that j is onto, let
& € 6(K(%), #). Then by Lemma IV .4 there is a sequence (X “),cn € % such that
J(X*)—> & as a— ». We may assume that | X*— X**!||<27% and pick some
increasing sequence a—m(a) such that || X3— X2+ <27 for n=m(a).
Now set Y, = X7 for m(a)=n <m(a +1). Then for n =m(a), say m(f)=n<
m(B+1) with Bz, ||Y, — X3|| = |1 X5 — X7l =XE2,27"*!'=27*"2 Hence Y €
@, and ||Y — X *|| <27**2. This implies [[j(¥) — &|l =< [li(¥) — j(X )| + (X *) —
E||=const 27% i.e. j(Y)=&.

We are now ready to prove the convergence of the mean energy of the
models under consideration:

Proof of Proposition III.3

First let X € % be strictly symmetric, i.e. X, =sym,, (X;) for some X, € .
Then ¢,()(Xv(a)) = Pu()(SYMy(a) (Xi)) = Pra)(Xi) = ¢(Xi). The limit is equal
to the right hand side of III.3 due to Proposition IV.5 and the definition of ;.
Now let X € %, and Y € ¥ with || X, — Y, || = € for n = m. For any cluster point §
of {¢v(a)(Xv(a)) | @€ A}: |§ - .[ M(d0)¢o(](X)(O'))I = IE - limn—w (pn(Yn)I +
|f u(do)@;(J(Y — X)(0))| =& + ||j(Y — X)|| =2&. Since ¢ is arbitrary by defini-
tion of %, the proof is complete.

V. Discussion

In this paper we have focussed only on those features of mean field systems
which are thermodynamically relevant, i.e. have an influence on the free energy



Vol. 62, 1989  Quantum statistical mechanics of general mean field systems 999

in the thermodynamic limit. If two hamiltonian densities H, and H, satisfy
\|H, — H,||—0, then they are thermodynamically equivalent. It is clear that in
each equivalence class the convergence of the states Norm™ @} to a limit state
can be arbitrarily slow. Hence, the asymptotics of the fluctuations of expectation
values around the limiting value cannot be discussed at the thermodynamic
level [8].

Another question, which cannot be treated at the purely thermodynamic
level is the convergence of effective Hamiltonians. Recall that we defined the
effective hamiltonian 4 in Proposition II.5 as a derivative of the energy density
@o{j(H)(@)} with respect to . Now for suitable sequences H, we can express
4 =#4(@o, @) as lim, J,(H,), where the (¢,, @)-dependent operator J,,: Z,— B is
given by

J@a®x,®--®x,)= 21 (xy — @(x,)) @ola) l;[ P(x,).
v= nFEv

These maps J, are compatible with symmetrization and the canonical injections
9, > 9,,. Hence, for a strictly symmetric sequence H € %, J,(H,) is eventually
constant, and in fact equal to 4. On the other hand, convergence of J,(H,) may
fail for other, thermodynamically equivalent hamiltonians.To see this, let
G,=¢,10x,®---®x, for some sequence ¢, going to zero and some hermitian
x,€B with |lx,]|=1. Then [|G,||—0, and J.(G,) = &.n@(x,)" " (x, — @(xn))-
Now if we choose x, so that ¢(x,) converges rapidly to 1, without x, converging to
1€ B, we can construct G € ¥ such that ||J,(G,)|| diverges.

On the other hand, the condition lim, J,(H,) =4 for all (@, @) may
be of physical interest. For example, if &« =C, one computes that
lim, I1,(A[nH,, B]C — Ad,(B)C)=0 for all strictly local A, B, CelJ,%,,
where 6,(B) denotes the commutator of B with J,(H,)®1,_;+---+1,_,®
J.(H,). In other words, if J,(H,)— #, then the generators of the time evolution in
the system of size n converge to a derivation of %., which corresponds to a
one-particle evolution generated by 4. Hence in this case 4 can be given a
dynamical meaning. This has been exploited in [7,15] to characterize the
equilibrium states of mean field systems by an energy-entropy inequality.

We would like to point out a characteristic difference between the scope of
the above results in the quantum and the classical cases. Consider the two
functions G,(t) = n~'log @?#**)(1), and C,(t)=n"'log w"(e'*) for teR.
In the classical case, i.e. when & and @ are abelian, ®”(1) = w(e”) holds for all
states w and all hermitian A, and hence C, = G,. Thus, in the classical case, the
function G, (respectively the limit) not only contains all the thermodynamics but
also — via derivatives with respect to ¢ — information about expectation values of
X, with respect to the state ¢, = Norm™' w}". Here, convergence of G,(t) for
all ¢ is an asymptotic property of the probability measures I, on R, given by
J K,(dx)f(x) = ¢.(f(X,)) for bounded continuous f:R—R. In fact, if G(f):=
lim, G,(t) is differentiable, then the measures [, converge to the point measure
at G'(0) exponentially fast in the sense made precise by the Large Deviation
Principle [10, Theorem 4]. In the non-commutative case, G, still encodes all
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thermodynamics, but no longer contains direct information about expectation
values. This is contained in C,, which acts as the cumulant generating function of
the measures [,. By Theorem I1.4(4) the measures [K, still converge to point
measures in any pure phase of the system, but the proof [10] of the Large
Deviation Principle for differentiable G carries over to the non-commutative case
only if the reference states p,e K(&) and p € (%) are traces and X is an
approximately symmetric sequence such that [H,, X,,] =0 for all n. However, in
general, the Golden—-Thompson inequality G,(f)=C,(f) remains a strict in-
equality in the limit, even though (for & =C)lim, ||[H,, X,]||=0. It would
interesting to find asymptotic properties of p, H,, and X, that would allow the
control of the limit of C,(¢), and the proof of the Large Deviation Principle for
the measures [,. However, such properties will again depend on H, more
sensitively than the thermodynamic properties.

The models we have considered here should perhaps more appropriately be
called homogeneous mean field models. Indeed, no local features enter the
interaction hamiltonian at all. One can also consider ‘heterogeneous mean field
models’ (e.g. the BCS model treated in [4]), where the interaction between
particles may depend on their location in some compact space X, and in which
the global scaling behaviour of the interaction is of the mean field nature. For
each particle number n the locations of the particles are held fixed, and one is
interested in the limit in which their density converges to some given measure on

x. Extension of our results to this class of models is presently under consideration
[16].

Appendix

In this appendix we collect the results on the calculus of C*-functions
referred to in Sections II and IV. These functions are best seen as a
many-variable generalization of the ordinary functional calculus in C*-algebras.
There are two natural ways to define ‘the same function’ in different algebras.
The first is abstract, and requires only some transformation behaviour with
respect to C*-morphisms. The second approach starts directly from the algebraic
structure and the evaluation of ‘the same polynomial’ in different algebras, and
extends to all functions, which can be approximated by polynomials in a
sufficiently strong sense. We shall start from the abstract definition and show the
equivalence to the second approach in Lemma A.2.

A.1 Definition. Let ' be a compact convex subset of R™, the set of real
valued sequences with the product topology. Then a C*-function on T is a family
of functions f,,, for every unital C*-algebra &, with

f&ﬂ . {(AI! A2r 28 )E oA~ | Av =A:, V(peK(.si)(qy(Al)’ (p(A2)»' W ) € r} — o
such that for any unital *-homomorphism ®: & — % into a unital C*-algebra %,

fa(®(A,), P(Ay), ... ) =DP(fs(A1, Az, . . .)).
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A C*-function is called hermitian, if the values of all f, are hermitian for all
arguments in its domain. For notational convenience we shall from now on drop
the subscripts &/, and will sometimes abbreviate the sequence (A4;, A,, ...) of
arguments by A.

We remark that this definition is strictly speaking not legitimate, since it
contains a quantifier over the proper class of C*-algebras. However, it always
suffices to define f, on the separable C*-subalgebra generated by its countably
many arguments. Since every separable C*-algebra can be faithfully represented
on a separable Hilbert space, it suffices to define f, on the set of separable
C*-algebras on a fixed Hilbert space.

The C*-functions depending only on a single variable are just the continuous
real valued functions on some interval, evaluated in the functional calculus. The
interval on which f is defined in the single variable case becomes the set I' in the
many-variable case. Often one can choose I' to be an infinite product of compact
intervals, which amounts to imposing a constraint on the spectrum of each A,
separately. The composition of C*-functions, where it is defined, is again a
C*-function. Hence f(X, Y, Z)=-exp (Ji[X, Y]|)/cosh(Z) is a legitimate C*-
function for any choice of I cR>. As this example shows, a C*-function of
several arguments is not determined by its values on scalars A, = A4, 1.

A.2 Lemma. Let f be a C*-function on T =« R”. Then for any € >0 there
exists a polynomml g depending only on finitely many of the non-commuting
variables A,, A,, . . . such that ||f (A) — g(A)|| < &. Moreover, there is a constant c
such that ||f(A)|| <c, and

VeooTss0duen(Vosp 14, — AL = 8) D IF(A) - f(A) =&

These statements are valid for any C*-algebra o, any admissible sequences of
arguments A and A', and the choices of g, c, &, and u can be made independently
of A, A and A'.

Proof. Let & denote the free unital *-algebra over countably many
hermitian symbols X, X,, ... i.e. the algebra of polynomlals in X;, X5, ... with
complex coefficients. Then any choice of a sequence A=(A,)yen Of hermltlan
elements in some C*-algebra & induces a unique unital *-homomorphlsm
®;:F— o such that @;(X,)=A, for all veN. Define on ¥ the seminorm
ligll :=sup {||@i(g)ll}, where the supremum is over all sequences A in separable
C*-algebras s such that @(A):= (p(A,), ¢(A,), ...) €T for all p e K(sf). This
is clearly a C*-seminorm, and we shall denote by 377 the separated completion of
F with respect to this seminorm. By definition of the norm on ? each @ is
continuous, and hence extends to a unique -homomorphlsm O;: 55— oA

We prove next that X = (X, Xz,. .)€ %~ is an admissible sequence of
arguments for f, i.e. for any ¢ € K(%) we have ¢(X)eT. For any continuous
linear functional & on R®, i.e. any functional of the form &(x) = X, &.x, for
some finite m, let M, (&) =sup §(I') and M_(&) =inf &(T). Since I' is compact
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and convex x €l is equivalent to x e[M_(§), M, (§)] for all & For any
continuous &, let X5% denote the element X5=Y7, E.X, =(1/2)(M, (&) +
M_(&)) - 1. Then, by definition of ®; and the norm in %:

oS 6n) - /200 + M)

where the supremum 1is over all admissible sequences Aesf” and all states
@ € K(sA). Therefore @(A) €T, so that E(@(@)) € [M_(§), M. ()], and || XF|| =
(1/2)(M.(E) — M_(E)). Hence for any ¢ € K(%)

1% =sup (Ip(@AX o)) =sup |

E(¢p(X)) = 2 E.P(X,) = (X5 + (1/2)(M.(E) + M_(E)) = M.(5).

The lower bound £(¢ (X)) = M_(E) follows similarly, so that ¢(X)eT.

Now let f be a C*function. Set f:=f(X)e %. Then since ¥ is the
completion of %, we can find ge & (i eN) such that ||f —g||=e Thus
I (A) — g(A)ll = |@4(F) - ®a(g)l| = If — gl <& uniformly in A. Boundedness
and uniform continuity are obvious for the polynomials g and follow for f by
straightforward estimates.

The final result of this section is the complete transformation of the
elementwise functional calculus of approximately symmetric sequences into the
functional calculus of €(K(9), &) stated in section II:

Proof of Proposition I1.2

Consider first the case f(X', X?)=X'X? and fix &, &,>0. Let Z', Z’e %
such that || X! — Zi||<¢, fori=1,2 and n =m,, and set Z= Z'* Z2 Then by
Lemma IV.1, there is some m,eN, such that ||Z.Z2— Z,|| <&, for n=m,.
Hence for n = max (m,, m,) || X.X2%— Z,|| < &.(||IX2|| + || Z}||) + &,, which can be
made arbitrarily small by choice of & and &,. Thus by definition Y, = X.1X?%
is approximately symmetric, and  |[j,(Y,) = j(X2j. (XD = 1Y, — Z,I| +
17, ((Z"% Z%),)) = ju(ZDin(Z)| + 11ja(Z2)in(Z7) — jn(X )in(X ). The first and last
term on the right hand side are estimated as before, and the middle term
vanishes, since for Ze ¥ j,(Z,)=j(Z) and j is a homomorphism for the
*-product. Hence the left hand side becomes small for sufficiently large n, and
we find j(¥) = j(X")j(X?).

The case of a monomial f(X', X%, ... X")=X'X?--- X" now follows by
induction over r, and the case of general polynomials by taking linear
combinations. Let f be a C*-function and &> 0. Then by Lemma A.2 we can find
a polynomial g such that |[f(A) g(A)|| =€ for all admissible arguments A.
Consider the sequence Z, =g(X!, X2, ...). By the above arguments Z € %, so
that we can find Z'e% and meN such that ||Z,—Z,||=¢ for n=m.
Hence ||Y, — Z, ||F||f(X) g XN+ 1Z, - Z! |l =2¢ for n=m. Thus Ye@

and  [[ja(Ya) = FGENN = ja(Ya = ZI| + n(8(Xn) — (GE + llg(G(X)) —
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f ((j(X" )I|I- The first and last term on the right are <& because g approximates f,
and the middle term goes to zero since the proposition is valid for polynomials.
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