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934 Theoretical Physics H.P.A.

PHASE TRANSITIONS IN EXPERIMENTAL DYNAMICAL SYSTEMS

R.Stoop, Physik-Institut der Universität Zürich-Irchel, CH-8057 Zürich

Abstract: The scaling function V'(A) is calculated for two characteristic experimental
situations of an NMR-laser system. The results agree with those obtained by H.Hata et al.,
indicating that ij.y(X) is a powerfull tool to characterize experimental dynamical systems.

1. Introduction
In the last years it has been realized that the chaotic behavior of dynamical systems

is due to nonlinear effects produced by the dynamical equation. A description of these

effects involves spatial as well as temporal aspects. While the probabilistic description of
effects in the phase space has been reported vastly (f(a), fractal dimensions), not many
publications deal with the numerically more involved dynamical description (ip(X),
Lyapunov exponents). By looking at simple examples, relations between the two directions
of description can be derived analytically. It is found that they describe fundamentally
different aspects of the scaling behavior of a strange attractor and that only in special
cases the result of one description can be deduced from the other [1]. The complete scaling
behavior of a dynamical system can be formulated in terms of a generalized thermodynamical

formalism. In the usual way a generalized free energy and a generalized entropy
are derived. By imposing constraints, generalized dimensions, Lyapunov exponents and
associated scaling functions can be obtained.

2. Phase-transition-like effects in experimental systems
While for the simplest, hyperbolic, model cases the associated thermodynamic function

is analytic, phase-transition-like effects can be observed for more complicated systems.
Well known examples include the logistic, Henon's, and the circle map. Situations where
these effects take place can be detected easier in the graph of the scaling function
(corresponding in the thermodynamic formalism to the entropy) since there they lead to a

piece of non-strictly convex behavior. They are of interest, since, as in the usual
thermodynamic formalism, the different phases indicate different degrees of order, different
dominant structures in the dynamical system can be distinguished and therefore a simpler
global characterization of the dynamical system can be given. In this sense, many of these

phase-transition-like effects can be explained as the result of a coexistence between different
simpler systems. A special effect is provided by the existence of homoclinic tangency points
for nonhyperbolic systems, which is believed to be generic for experimental systems.
For experimental systems, the information about the dynamical system is provided by the
help of a time series. From this, the attractor is reconstructed by an embedding process and
the generalized dimensions and the generalized Lyapunov exponents and the corresponding

scaling functions can be calculated. The method used to calculate Lyapunov exponents
from time series is a further developed version of the algorithm described in ([3]).

3. Results and discussion
In this contribution, experimental data from an NMR-laser system are examined.
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While changing parameters, the system undergoes different metamorphoses, some of them
involve fast changes ofthe form ofthe associated attractors (so-called crises), e.g. when two
coexisting chaotic bands merge due to a collision with an unstable fixed point. In Figure
1 the scaling function for an experimental situation far away from crisis is shown. It can
be shown that a three-dimensional system with a dynamical map of a quadratic maximum
should have a linear part in the scaling function — ij>(X) of slope one. As is easily seen,
this is here the case. In the inset, the scaling function of an experimental situation near
a crisis is shown. The traces of two involved attractors are clearly visible. Both figures
are in complete agreement with the results of Horita et al. [4], where however the scaling
functions were calculated directly for model maps, using the known dynamical equations.
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Figure 1: Approximated scaling function — i>(X) for a file far away from crisis. Inset:
file near a crisis. Dashed line: linear region (see text)
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