

Zeitschrift: Helvetica Physica Acta
Band: 62 (1989)
Heft: 6-7

Artikel: Polarization transfer in the reaction ${}^2\text{H}(\text{p},\text{p}){}^2\text{H}$ at $E_{\text{p}}=22.7$ MeV
Autor: Clajus, M. / Egun, P.M. / Grüebler, W.
DOI: <https://doi.org/10.5169/seals-116166>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 17.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

Polarization Transfer in the Reaction $^2\text{H}(\vec{p}, \vec{p}^*)^2\text{H}$ at $E_p = 22.7$ MeV

M.Clajus, P.M.Egun, W.Grüebler, P.Hautle, A.Weber, IMP, ETH Zürich

P.A.Schmelzbach, PSI Villigen; I.Slaus, Inst. Ruder Boskovic, Zagreb

B.Vuaridel, Univ. of Michigan; F.Sperisen, IUCF

W.Kretschmer, A.Rauscher, R.Weidmann, M.Haller, R.O.Karschnick, Univ. Erlangen

M.Bruno, F.Cannata, M.D'Agostino, INFN, Bologna

Abstract: We report measurements of proton to proton polarization transfer in elastic p-d scattering at a proton energy $E_p = 22.7$ MeV. The measurements have been performed at the Philips injector cyclotron at PSI. The statistical accuracy is typically 0.02, the estimated systematic errors amount to a comparable value. The results are compared to Faddeev calculations using realistic two nucleon potentials

One of the most interesting and fundamental problems in few body nuclear physics is the description of the nucleon-nucleon (N-N) interaction by a general potential, which not only includes the central forces but also the non-central spin interactions. For the determination of the spin-dependent contribution to such a potential accurate measurements of polarization observables are required. The most direct access to information seems to be offered by N-N experiments, since a large amount of p-p data are available. However, at energies below 30 MeV the 3P_J phase-shifts are quite small and consequently the analyzing powers in N-N elastic scattering are tiny, requiring extremely high precision measurements. Unfortunately, the mixing parameter ϵ_1 is only accessible through the n-p scattering, where the experimental results bear large uncertainties and are still incomplete. On the other hand, the binding energies of ^3H and ^3He critically depend on the mixing parameter ϵ_1 of the N-N force. Thus N-d scattering can deliver quantitative information on ϵ_1 at low energy provided one performs high precision measurements of polarization observables, which are sensitive to ϵ_1 . Rigorous three body Faddeev calculations based on realistic potentials can provide information about the sensitivity of the relevant observables and give guidelines to the experiments to be carried out. It has been shown that the polarization-transfer coefficient K_y^y (Wolfenstein's notation D) is particularly sensitive to the strength of the 3S_1 - 3D_1 tensor force [1].

Here we report the results of $^2\text{H}(\vec{p}, \vec{p}^*)^2\text{H}$ measurements with incident polarized protons of an energy of 22.7 MeV. This experiment requires double scattering of the polarized beam and is therefore more difficult and time consuming than analyzing power measurements. The polarization transfer coefficient K_y^y has been determined, where the subscript y denotes the polarization component of the incident beam in the Madison convention [2]. The primed superscript refers to the measured polarization in the outgoing particle coordinate system, where the y' -axis is in the same direction as the y -axis. The polarization transfer formalism and the measurement techniques are described in detail in ref. [3]. For the determination of K_y^y one needs to know in addition the analyzing power A_y .

The 22.7 MeV polarized proton beam from the PSI cyclotron was scattered from a deuterium gas target, pressurized to 12 bars and cooled to 77 K. The scattered protons were focused by a magnetic quadrupole triplet lens into the polarimeter about 2 m from the first scattering chamber. The beam polarization was continuously monitored by a

^{12}C polarimeter located upstream of the primary scattering target. One of the main experimental problems is the measurement of the polarization of the scattered protons over a large angular range, since their energy decreases strongly with scattering angle. Two different polarimeters based on $p - \alpha$ and $p - ^{12}\text{C}$ scattering were used to cover the energies of an angular range between 45° and 125° in the c.m. system. Details of these polarimeters and their calibration procedure are given in ref. [4]. The sign of the beam polarization was inverted every few seconds. This method allows to determine K_y' from the ratios of the detector counting rates independently of solid angles. The formalism used is described in ref. [5]. For A_y interpolated values and uncertainties from ref. [6] were used.

The measured spin transfer coefficients K_y' are plotted in Fig. 1. The quoted errors are due to the counting rate statistics. The curves in Fig. 1 are the results of rigorous three nucleon calculations [1] (no Coulomb force included) using the Paris potential with $j \leq 3$ (dotted curve) and with $j \leq 2$ (dashed curve). The solid curve is the result using the Bonn potential (OBEPQ(A)) with $j \leq 2$, which has a smaller ϵ_1 parameter than the Paris potential. A clear sensitivity to ϵ_1 of the results of the two calculations can be observed near the minimum of the cross section. The excellent agreement of the calculations with first order observables in the angular region $\theta > 45^\circ$ suggests that the influence of the Coulomb force on spin observables at this energy is not appreciable. The experimental results are in better agreement with the Bonn potential calculation, which suggests that the 3S_1 - 3D_1 tensor force of the Paris potential is too strong.

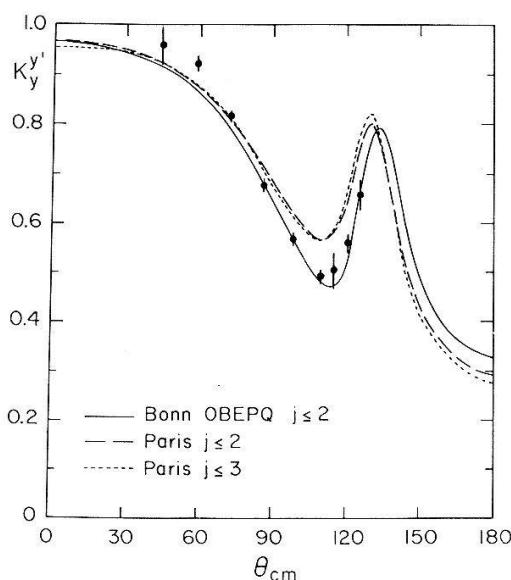


Fig. 1 K_y' as a function of angle.

- [1] H. Witała et al., Nucl. Phys. A (1989) in press, and to be published.
- [2] Proc. 3rd. Int. Symp. Polarization Phenomena, Madison (1971).
- [3] F. Sperisen et al., Nucl. Phys. A **422** (1984) 81.
- [4] F. Sperisen et al., Nucl. Instr. Meth. **190** (1981) 301.
- [5] F. Sperisen et al., Nucl. Instr. Meth. **204** (1983) 491.
- [6] W. Grüebler et al., Nucl. Phys. A **398** (1983) 445.