Zeitschrift:	Helvetica Physica Acta
Band:	62 (1989)
Heft:	6-7
Artikel:	XPS investigation of the YBa_2CuO_3O_7-6
Autor:	del Fennino, U. / Di Bona, A. / Tombesi, A.
DOI:	https://doi.org/10.5169/seals-116119

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 08.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

XPS INVESTIGATION OF THE YBasCuOsO7-6

U. del Fennino, A. Di Bona, A. Tombesi and S. Valeri Dipartimento di Fisica, Via Campi 213/a 41100 MODENA, ITALY

In the latest years many papers reported about XPS investigations on $YBa_{B}Cu_{B}O_{7-}$ (YBCO) samples [1]. Most of these reports dealt with Cu 2p and/or O is lines in **§**. *****O samples. Very few papers reported XPS spectra of all the four YBCO elements and, in our knowledge, none of them in both the semiconductor and superconductor phases. On the contrary, we think very important to study the spectra of all the four elements and their evolution with the stoichiometry to try to find possible correlations helpful in the understanding of the superconductive behaviour.

In this preliminary report we show the most relevant peaks of Cu, O, Ba and Y in samples with values of $\int e^{a}$ and $\int e^{a}$.

Samples were syntered ceramic disks annealed for 12 hours at 500 C in flowing oxygen. After the introduction in the UHV system they were scraped before each measurement. They were also exposed to oxygen at increasing exposures between 10 and 1000 Langmuir (1L=1s at 10⁻⁶ torr). Some samples were sputtered with Ar ions at 5 KeV. The measuring apparatus was a Leybold emispherical analyser with a 15 KV X-ray Mg source. The overall resolution was 0.9 eV.

To a careful analysis each spectrum shows a composite structure which changes with . and the surface treatment. A first semi-quantitative analysis of these spectra enables the following conclusions:

 Cu 2p_{3/2}. As well known this spectrum is formed by a main line and a satellite corresponding to differently screened complex final states. Limiting ourself to the main line (as the d? satellite shows a multiplet structure) it is possible to fit it with the sum of two components that we associate to Cu²⁺ and Cu¹⁺ in analogy to what shown for CuO [2]. Their relative weights change with the stoichiometry from about 49% and 51% respectively in samples with J² to about 83% and 17% for J²O. It is worth noting that upon oxygen exposure it is the Cu¹⁺ component which increases.

- O 1s. It is well established [1] that even in "good" superconductor two peaks appears in the O 1s spectrum. One at -528.5 eV and the second at -531.5 eV with a weight at least 70% of the main one. We found this second peak about 90% for $\mathbf{J} \approx 0$ and about 60% for $\mathbf{J} \approx 1$. In both samples upon oxygen exposure the relative intensity of these peaks increases slightly.

- Ba 3d_{5/e}. In the superconductor samples a clear asymmetry is observed on the low binding energy (B.E.) side of the peak at -779.3. The difference between the spectra corresponding to the two **v** values is a small peak at -777.7 eV B.E., with a weight of about 12.5 %. A similar shifted component had been observed in the 4d doublet by Steiner et al.[3].

- Y 3d. This spectrum shows a tail on the high B.E. side and can be fairly well fitted by the sum of two doublets identical in shape with the larger at -156.1 and the smaller shifted by about 2 eV at higher B.E.. Its weight is about 12% for 3° 0 and reduces to about 5% for 3° 1. It also reduces upon oxygen exposure or sputtering.

A more detailed analysis of these data is in progress with particular attention to the role of the screening of O 2p holes. [1] J.C. Fuggle et al.:Int.J. Mod. Phys. B1, 1185 (1989) [2] F. Parmiggiani and G. Samoggia: to be published [3] P. Steiner et al.: 2. Phys. B69, 449 (1988)