

**Zeitschrift:** Helvetica Physica Acta

**Band:** 62 (1989)

**Heft:** 6-7

**Artikel:** ESR and X-ray analysis of superconducting transitions in c 31 and c 37 Å BSCCO systems

**Autor:** Buluggiu, E. / Giori, D.C. / Valenti, A.

**DOI:** <https://doi.org/10.5169/seals-116102>

#### **Nutzungsbedingungen**

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

#### **Terms of use**

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

**Download PDF:** 17.01.2026

**ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>**

ESR AND X-RAY ANALYSIS OF SUPERCONDUCTING TRANSITIONS  
IN  $c \approx 31$  AND  $c \approx 37\text{\AA}$  BSCCO SYSTEMS

E. Buluggiu\*, D.C. Giori\*, A. Valenti\* and A. Vera\*, G. Calestani<sup>†</sup> and G. Amoretti<sup>‡</sup>

\*Istituto di Scienze Fisiche dell'Università, 43100, PARMA, Italy

<sup>†</sup>Istituto di Strutturistica Chimica dell'Università, 43100 PARMA, Italy

<sup>‡</sup>Dipartimento di Fisica dell'Università, 43100 PARMA, Italy

**Abstract:** The effect of starting composition on the formation and superconductivity of the two crystallographic phases characterized by  $c \approx 31\text{\AA}$  and  $c \approx 37\text{\AA}$  in pure and  $Pb$ -doped  $Bi - Sr - Ca - Cu - O$  systems has been examined by x-ray diffraction and field-modulated microwave absorption techniques.

### 1. Introduction

The complex behaviour of the superconducting transition in the  $Bi - Sr - Ca - Cu - O$  system has been attributed to the existence of two phases with  $T_c \sim 110K$  and  $T_c \sim 80K$  respectively. The lower- $T_c$  phase was identified as  $Bi_2Sr_2CaCu_2O_z$  (2212) and shows a layered structure with  $c \approx 31\text{\AA}$ . In analogy with the  $Tl$ -based compounds, the higher- $T_c$  phase has been assumed to have a composition  $Bi_2Sr_2Ca_2Cu_3O_z$  (2223), with  $c \approx 37\text{\AA}$ . We have studied the superconducting properties of several pure and  $Pb$ -doped compounds, which are representative of the two crystallographic phases, by x-ray diffraction and field-modulated microwave absorption.

### 2. Results and Discussion

The examined samples are:

- |                             |                                                   |
|-----------------------------|---------------------------------------------------|
| (a) $Bi_2Sr_2CaCu_2O_z$ ;   | (d,e) $Bi_2Pb_{0.4}Sr_{2.2}Ca_{2.2}Cu_{3.3}O_z$ ; |
| (b) $Bi_2Sr_2Ca_2Cu_3O_z$ ; | (f) $Bi_2Pb_{0.4}Sr_2Ca_3Cu_4O_z$ ;               |
| (c) $Bi_2Sr_2Ca_3Cu_4O_z$ ; | (g) $Bi_2Pb_{0.4}Sr_2Ca_4Cu_5O_z$ .               |

Samples d and e have the same nominal composition but were subjected to different thermal treatment. The x-ray powder diffraction pattern show that samples a-d have the  $c \approx 31\text{\AA}$  structure and f-g the  $c \approx 37\text{\AA}$  one. Sample e shows predominantly the  $c$ -longer phase peaks, but appreciable  $c \approx 31\text{\AA}$  contribution is still present. We have recorded the low-field non-resonant microwave absorption, which characterizes the new high- $T_c$  materials in the superconducting phase [1]. The details of X-band ESR measurements are reported in [2]. In Figs. 1 and 2 the absorption profiles vs temperature are shown for a-c and d-g respectively. In a temperature-sweep mode a peak in the derivative absorption is expected at  $T_c$  [3]. It appears (Fig. 1) that samples with  $c \approx 31\text{\AA}$  are characterized by a complex superconductive transition in the  $75 - 110K$  temperature range. By increasing the  $Ca$  and  $Cu$  content, the relative importance of the  $110K$  absorption region increases

correspondingly. However, the absence of a sharp peak indicates a possible wide distribution of transition temperatures. It must be noticed that, in spite of the significant increase of the higher- $T_c$  absorption in Fig. 1, the x-ray diffraction patterns don't show any appreciable trace of the  $c \approx 37\text{\AA}$  phase.

As regards the *Pb* containing samples, those showing the  $c \approx 37\text{\AA}$  structure are characterized by a single transition at  $T \sim 105\text{K}$  (Fig. 2) more pronounced for higher nominal *Cu* content. The case of sample *e* is indicative of superposition of spectra in line with the mixed structure shown by the x-ray data. The influence of the thermal treatment is illustrated by the behaviour of sample *d* that, by annealing, is progressively transformed into the *c*-longer compound *e*, as evidenced by the appearance of the characteristic peak.

In the  $c \approx 31\text{\AA}$  samples, the  $110\text{K}$  transition was frequently attributed to intergrowths of the  $c \approx 37\text{\AA}$  phase. This explanation seems us somewhat doubtful. In fact, apart from the lack of a specific x-ray indication in this sense, the ESR spectra show systematic differences between the two *c* possibilities in the superconductive onset and in the absorption profile. Moreover, in sample *c* (Fig. 1) an important contribution of higher- $T_c$  transition is found, without any x-ray evidence of the  $c \approx 37\text{\AA}$  phase. A different explanation may be related to electronic structure modification induced by *Ca*, *Sr* or *Cu* substitution for *Bi*, which could influence the transition temperature.

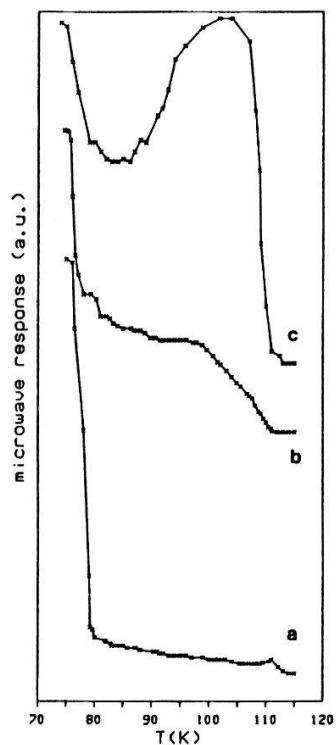



Fig. 1

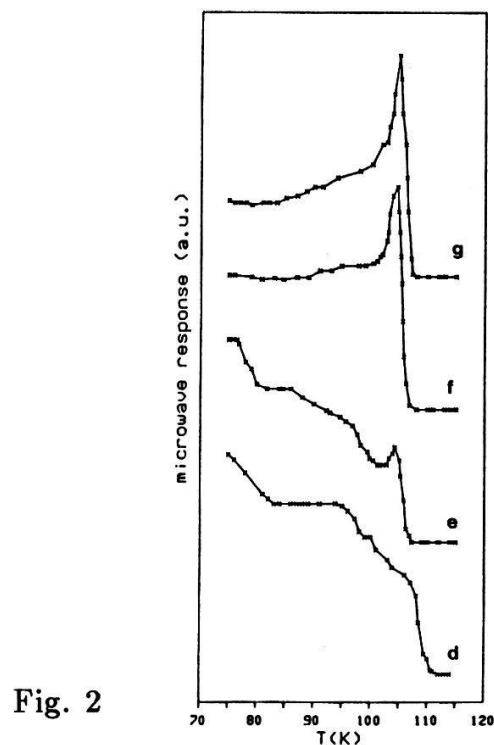



Fig. 2

### 3. References

- [1] K.W. Blazey, K.A. Müller, J.G. Bednorz, W. Berlinger, G. Amoretti, E. Buluggiu, A. Vera and F.C. Matacotta, Phys. Rev. B36, 7241 (1987).
- [2] G. Calestani, C. Rizzoli, G.D. Andreotti, E. Buluggiu, D.C. Giori, A. Valenti, A. Vera and G. Amoretti, Physica C 158, 217 (1989).
- [3] B.F. Kim, J. Bohandy, K. Moorjani and F.J. Adrian, J. Appl. Phys. 63, 2029 (1988).