

**Zeitschrift:** Helvetica Physica Acta  
**Band:** 62 (1989)  
**Heft:** 6-7

**Artikel:** New method for  $H_{c2}$  measurement in high  $T_c$  superconductors  
**Autor:** Bolzoni, F. / Manfredotti, G.  
**DOI:** <https://doi.org/10.5169/seals-116099>

#### **Nutzungsbedingungen**

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

#### **Terms of use**

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

**Download PDF:** 17.01.2026

**ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>**

NEW METHOD FOR  $H_{c2}$  MEASUREMENT IN HIGH  $T_c$  SUPERCONDUCTORS.

F. Bolzoni and G. Manfredotti, Istituto Maspes, Via Chiavari 18/A  
43100 Parma, Italy.

**Abstract:** A new method for upper critical field measurement in high pulsed fields, is presented. A special pick-up is used to measure the induced  $dM/dt$  while, simultaneously, an operational amplifier gives the derivative of the differential susceptibility (DDS). The obtained double peak signal decreases with increasing field and temperature and disappears at  $H=H_{c2}$  or  $T=T_c$ . The magnetic  $H_{c2}$  measurements have been carried out both on bulk  $YBa_2Cu_3O_7$  samples and on in-glue-dispersed powders.

## 1. Introduction

Since the recent discovery of a new class of high  $T_c$  superconductors tremendous efforts have been devoted to the study of the materials in order to understand the mechanism of superconductivity and to find new superconductors. Despite recent efforts, the macroscopic nature of superconductivity in these high  $T_c$  ceramic superconductors is not yet well understood. Many  $H_{c2}$  tests, on single crystals, polycrystalline samples and on epitaxial films have been carried out. The results were obtained by the resistive measurement method in both continuous and pulsed fields. Radio frequency  $H_{c2}$  measurements are also reported. A new contact-free method for  $H_c$  measurements, developed by the authors, is presented.

## 2. Experimental

The upper critical field ( $H_{c2}$ ) is measured by a new method using a pulsed field apparatus /1/. Its principle is simple: the magnetization curve of a superconducting sample is detected by means of a specially compensated pick-up and then studied by successive derivatives. The pick-up coil must be less sensitive to the modulation of the main field due to mechanical vibrations and electric stray fields. If we develop the field in a series of Legendre at the centre of the magnet we obtain:  $H = H_0 + c(2z^2 - r^2)$ .

The pick-up is designed so as to give independent cancellation of these two terms. According to Bean's model /2/ we see that at high fields the sample reaches a critical state, that is the critical current depends only on the magnetic field in that region. By using the Ginzburg-Landau theory /3/ at the inversion point of the magnetic field the magnetization jump turns out to be:

$$\Delta(dM/dH) \leq (-1 - 1/(2k^2(t) - 1) \beta_A))$$

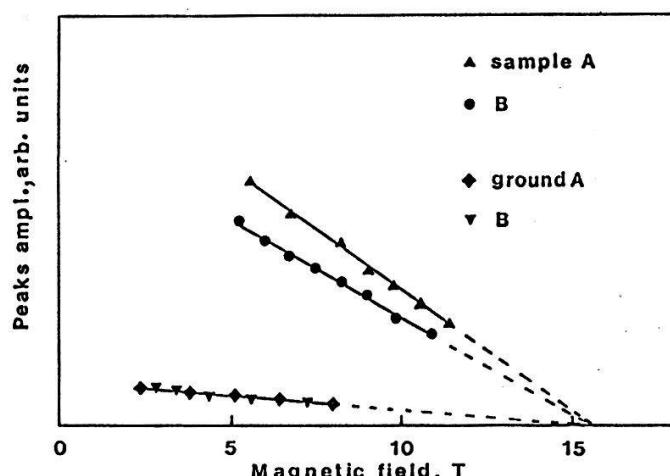
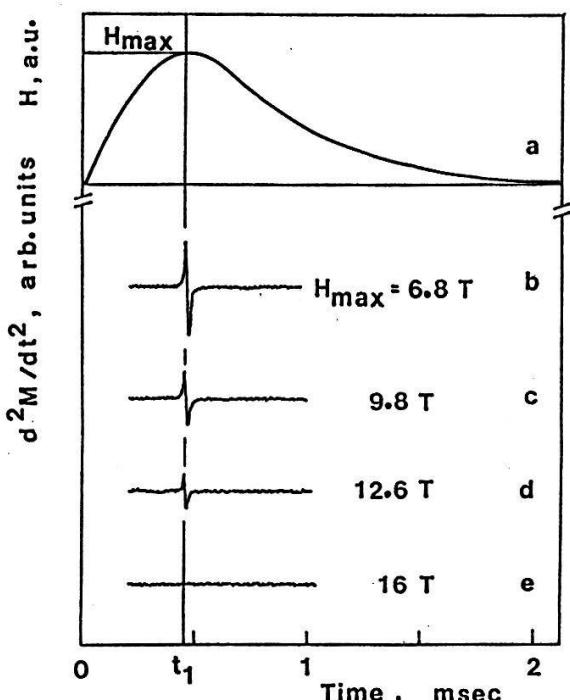




Figure 2. Variation of peak amplitude at  $H=H_{\max}$  with increasing field  
 ▲ sample A, ● sample B, △ ground A, ○ ground B.

Figure 1. Experimental results: a) variation of the magnetic field with respect to time; b-e)  $d^2M/dt^2$  versus time at different maximum applied fields at 78 K.

The experiments were carried out in a pulsed magnetic field with a 0.45 ms rise time and exponential decay; in the first approximation the variation of the field is very close to its maximum where  $dM/dt$  changes sign and can be considered linear. The experiments reveal that, due to increasing noise with increasing field, it is very difficult to detect  $dM/dt$  versus time, but it is relatively easy to detect  $d^2M/dt^2$  against time. Some examples are shown in Figure 1 for samples A at various magnetic fields at 78K. It can be seen that the amplitude of  $dM/dt$  decreases by increasing the maximum field. In particular at  $H= 16$  T the double peak is not present, this also happens as temperature approaches  $T_c$ . Figure 1 also shows an example of the evolution of magnetic field with respect to time ( $H_{\max} = 16$  T). The variations of the peak amplitude at  $H=H_{\max}$  with increasing field for sample A and B are reported in Figure 2. In all cases the extrapolation of the results of each measurement and its intercept with the field axis gives the same value for  $H_{c2}$ , that is  $H_{c2} = 15.6$  T at 78K. This confirms that the presence of different pinning centres and defects, due to the different sample preparation, does not affect the  $H_{c2}$  values obtained.

### 3. Reference

- /1/ F.Bolzoni, to appear on Cryogenics (1989)
- /2/ C.Bean, Phys.Rev.Lett.8, 250 (1962)
- /3/ V.L. Ginzburg and Zh.Landau, Eksperim.i Teor.Fiz 20, 1064 (1950).