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CHAOS IN MECHANICAL ENGINEERING
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Ecole Polytechnique Fédérale de Lausanne

CH-1015 LAUSANNE.

Abstract : Vibro-impact devices commonly used in mechanical
engineering are discussed in the light of recent
developments of non-linear dynamics. More
specifically, the existence of typically non-linear
phenomena such as cascade of bifurcations and chaotic
solutions are examined. The illustrations presented
here, namely vibratory transporters and models of
gearboxes have, besides their own engineering
interest, the merit to exhibit a dynamics described by

well known 2-dimensional, dissipative mappings.
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1. INTRODUCTION.

In 1961, the eminent Professor of Mechanical
Engineering, R. M. Rosenberg concluded an article devoted to
non-linear oscillations in the following terms (1) : "The
outlook regarding progress in non-linear oscillations is
bright for those who like to do research, and bleak for those
who like to see results. (....). At the present time, no hope
exists for a unified theory or body of knowledge regarding
the solutions of non-linear problems. The basic reason
behind this statement is the failure to define the field ."
Since this remark was written, great progresses has been
achieved in the field of non-linear dynamics. Recently, the
engineering community has started to explore more
systematically the implications of these new mathematical
developments (2.3). lllustrations ranging from magnetically
levitated vehicles, chaos in elastic continua, impact print
head, non-linear electric circuits, etc...are reported ; (see
further references in (3). The aim of the present paper is to
bring a contribution to this exploration in the domain of

mechanical engineering.
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We shall discuss dissipative, non-linear systems
driven by external impulsive forces and (or) also subject to
impusive constraints. The Dynamics of these systems s
described by discrete mappings which now stand as the
corner-stone of the studies in non-linear science. Let us
here emphasize that the Dynamics of the impulsively driven
systems is exactly described by non-linear mappings ;
whereas, in the study of differential equations, mappings
often result either from approximations or modelizations of
the original equations of the motion. Besides their own
engineering interest, the devices discussed in this paper,
present the advantage to admit dynamical equations. already
encountered in the mathematical literature.

Before, we introduce our particular devices, let us
first formally exhibit the type of equations of motion we
have to deal with. These have the recurrent form :

T oot = F1 (T, W) (1a)

Vot = (T W), (1b)

where f, and (or) f2 are non-linear functions . The
mappings to be derived are dissipative i.e. the Jacobian of

Egs. (1a,b) is less than one.. Among the infinitely rich

variety of choices for the function f1 and f2 two situations

have been largely studied, namely :
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f1=Tn+a\|In (2a)
fo=ey ,+ (14e)c0s (T nu1), (2b)
and
f1=Tn+a/\|!n (3a)
fo=-ew, +Bcos (T,), (3b)

where a, B are external parameters and 0 < € <1 relates the
dissipation ; the Jacobian of these transformations equals e.
Eqs. (2a, b) describe the so-called dissipative standard
mapping which is discussed in 3 Egs. (3a, b) are known
under the name of the dissipative Fermi map and are also

considered in (3. 4).

Our paper is organised as follows : In section 2,
we introduce the problem of vibro-transportation. It is
observed that the dynamics of this system is governed by
the mapping Egs. (2a, b). In section 3, we discuss, as a
second example, the modelization of gearboxes. In this last
situation, the Fermi mapping Egs. (3a, b) is found to be
embedded in the dynamical equations of motion. Finally,

section 4 is devoted to conclusions and remarks..

H.P.A.
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2. VIBRO-TRANSPORTATION.

One of the difficulties in the realization of
automatic assembly lines is to convey parts to the ad-hoc
locations in the chain. A commonly adopted solution is the
use of vibratory transporters (also called vibratory
feeders). Basically, a vibratory feeder is constituted by an
oscillating track on which the parts to be conveyed are
disposed. When the track is set into motion, the mobile-lying
on it is itself set in movement. Since the pioneering work
A.H. Redford & G. Boothroyd (6), theoretical and experimental
aspects vibro-transportation have been abundantly studied,
(a selection of articles is given in (7)). This important
activity of research clearly reflects the difficulties which
the constructors of feeders have to deal with.

Schematically, the device s
represented in Fig.1 and 2 where the notations to be used
are introduced. The reference frame xOy is mobile and
attached to the track.

In actual applications, the vibratory
transporter is either a bowl or a linear track. Here, we
shall restrict our discussion to the linear case for which
the centripetal and Coriolis accelerations are absent- (the
dynamics for the bowl shape case presents, in its essence,

identical features as locally it reduces to the case Rg. 2).

577
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In view of Fig. 2, the general equations of the

motion have the form :
e 2
mx(t) = maow sin(ot)-mgsin(a) + F (4a)

my(t) = mbmzsin(mt +7v) - mgecos(a) + N, (4b)

where dots denote the derivatives with respect to the time,
F and N stand respectively for the friction and the
constraints forces, o is the slope of the track, g the
gravitational acceleration and y the phase shift between the
parallel and perpendicular components of the excitation
force.

Depending on the external parameters, various
type of motion exist and a detailed analysis of the possible
periodic motions is given in (8). Here, we shall confine our
attention to the pure jumping regimes (i.e. sticking to the
track is neglected). In these regimes, the dynamics between
the impacts with the feeder, simply reduces to free flight
equations, namely :

d(t) = sin(t) - k (5a)

v(t) =nsin(t +y) - ktg(a) (5b)

where 1, u(t), v(t), k, n are dimensionless quantities defined ;

579
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k = gcos(a)/bw?2 ; m=ab ; t=ont

u=yb ; v=x/a. (6)

The dynamics at the nth impact time t =1, is

specified in the form :

d d

——U(T)lt—'t + =-R,—u(®) |1:=~:—e 7a)
M =T+ E -La’t - (

d d

gV(T) | T=1T,+ e=—R_Lg;V(T) |‘t=1:n—[-: (7b)

where the coefficients of the perpendicular, (parallel)
restitution are denoted respectively by R, and R, andeis a

infinitesimal quantity which relates times just before and
after the impact time t = 1,. Obviously we have :

0<Rl<1 and 0<Rj, < 1. (8)

Now , let us introduce the notations :

d d
5;u(t)|t=,tn=\11n and ﬁv(t)|1ﬂn=<1)n (9)

Using Egs. (7-9), we can reactualize the initial
conditions each time an impact has occured. Hence the
direct integration of the free flight Eqgs. (5a, b) yields the

set of non-linear mappings :
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K2 ( Th1-T0)2 + ( cos(ty)+¥ ) (The1-Th) =

= SiN(t,.1)-Sin(ty) - (10)

Yo = RJ_( k(Tn+1'Tn)"'cos('cnn)“COS(Tn)'\Pn) (11)

@p.q = Ry(-n (cos(t,,1+ v) — cos( 1,+Y)) -
-ktg(@)(Th.1-Tn) + ). (12)

The transport rate itself can be calculated with

the mean velocity W, (in the parallel direction) attained

between successive impacts ; thus we obtain :

581

Wn={TIC°S(Tn+Y)+‘Dn}' %tg(a)('cn”- Tn) - ( n (Sin(1n+1+y)-sin(1n+y))

Thet™Tn

The dynamics of the model is now completely

characterized by Egs. (10-13).
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Let us discuss the solutions. First of all, one
has to remark that Eqgs. (10) and (11) can be discussed
independently of Eq. (12). Egs. (10) and (11) are precisely
the mapping recently studied in (9.10), Let us briefly recall
the results obtained in (4.5). The mappings Egs. (10) and (11)
exhibits the cascade of bifurcations (here, the control
parameter is k), discovered by Myrberg and Feigenbaum (11),
The period one solutions (i.e. 1, = 19 +(2=nn)r, N 3r) are
immediately found in the form:

(2nrk) R,

¥ =¥ =¥Y=—<= 14a
n+1 n 1+R | ( )

} (14b)

Once R, is fixed and hence the mobile to

1-R.L

1+R |

0= Acos{nrk (

transport selected, the unique control parameter of the
problem is k. The stability intervals for the period one
solutions are obtained by a linearization procedure. The

result reads (4.9.12) .

kir>k >ka, (15)

H.P.A.
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where k ,and k ,, read :

22

2
2 2
(ky,) ={nr |[—|+41——

1+R (L+er

and

When k is decreased below k; , a stable period
two orbit is found. This behaviour is observed until a new
critical value, say k, , is reached, where a new period
doubling occurs.... and so on until k., , where the chaotic
regime is attained (4,5.11,13,14)  The succession of the
critical values approach the accumulation point K

according to the the equation (4.5,11.13,14) :

kn+1,r' kn,r
k

lim

= 0.46992... n=1,2,3, ... (16)
n+2,r - k‘r|+1,r

Using Eq. (13), the transport rate takes the

form :
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1+R
W,=W =xrk =|- t -
n nr ncosm(1 " Fh) g(oc)(1 R )

1
212

' 222[1-R; |
-nsin(y)|1-t k r (17)
1+R,

While it is relatively obvious to obtain Eq. (17),
the estimation of the transport is far less trivial in the
case of chaotic regimes. To simplify the expressions
without lost of generality, let us confine ourselves now to
the case y= 0. With the use of Eq. (10), Eg. (13) can be

written in the form :

Wn = (@, n¥,)+ (1, - rn)(“z—k- 2 tg(a) ) (18)

In the chaotic regime, the quantities ®,, ¥,, and 1,
form pseudo-stochastic sequences which statistical
properties are unknow. To calculate the average transport
rate, one would in fact need the probability densities
governing these quantities. Analytical results which give
such invariant measures are not yet available. Hence, one
has to resort to numerical exploration. Presently, such

studies are performed (15).
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For relatively large restitution parameter,
namely 0.8 < R, < 1, the mapping Egs. (10 - 11) can be
approximated (4.16), This is achieved by observing that the
quantity :
(Sin(7n+1)‘Sin(Tn))/(TnH'Tn)
is a vanishingly small quantity for appropriately choosen
initial conditions (4.16). Using this approximation, the
mapping Egs. (10-11) can be revritten in the form :
tn+1=1n+—2—(cos(tn)+‘}‘n) (19a)

k

Ve =R Vo+ (1 +R)cos(t,,) (19b)

where we have introduced the notation :

Vhst = COs (1) + ¥ (20)

The mapping Egs. (19a,b) exhibits precisely the
form of Egs. (2a,b).

585
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In actual feeders, the reliability of the mean
transport rate is one of the crucial property. Indeed, the set
of external control parameters (i.e. amplitude of the
excitations, frequency etc....) are always subject to
variations due industrial environment. Hence, the problem
is to determine transport regimes which are not too
sensitive to variations of these external parameters. It
seems intuitively clear, that beside the simplest periodic
solution (which are obtained for k in relatively large
bands), the chaotic regime is also likely to favour a mean
transport rate relatively insensitive to external
parameters. In the subharmonic perodic regimes, very tiny
changes in the operating conditions are sufficient to induce
a change of period in the Feigenbaum cascade, (see Eq. (16)).
On the other hand, we have to stress that external noise is
always present in the system. This in turn has the effect of
truncating the original cascade of bifurcations (9.10), A
discussion concerning the reliability of the chaotic regime
is reported in (17) and we are presently performing further
investigations (15). From the conceptual point of view, the
role played by the chaotic solutions is interesting. Indeed,
here the chaos would appear as a useful behaviour in
contrary to most situations where random solutions are

considered as a nuisance.
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RBOXE DELS.

As a second illustration, we introduce now the
discussion of gearboxes. Here, the problem is to determine
the sequence of impacts between the cog-wheels of a
schematic device represented in Fig. 3. In Fig. 4, we
reproduce the results of a numerical 'computation of the
times of impact between two cog-wheels as sketched in
Fig.3 (18,19,20) Fig. 4 clearly exhibit a random motion , a
stochastic nature which, as we shall see, is here again
solely due to the non-linearity of the equations of the
motion.

The impulsive dynamics of this device has been
considered in (18,19) _|n view of Fig. 3, the model consists
of a wheél whose mass, radius and inertial moments
respectively are M, ® and ©. This wheel is externally driven
by another cog-wheel which radius is Rg4. The model
includes three dynamical variables, namely ¢, x and r which
describe the dynamics of the driven cog-wheel. For these
three quantities, we have to consider three intervals of
tolerance ( two of which are explicitely sketched in Fig. 3);
the interval of tolerance I, lies itself between the teeth of
the cog-wheel and is therefore time dependent. Between the
impacts the free dynamics of the system is obviously

governed by the following equations (18.19):

587
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89 =T,- dgo 1,5 S, (21)
mx =T, - d,x I, 3 X (22)
mr=T,-d,r Y (23)

where dots denote time derivatives and the quantity S,

which follows from geometric considerations, reads (18) :

Sz = e(t)- (Rcos(B)e(t) + sin(B)x(t) + cos(B)r(t))  (24)

where :

e(t) = RexSin(Qt) (24a)

is the excitation force and dyx,r are friction coefficients.
Corresponding to the restitution Eq. (8), we

have here:

S, | -R, S, | - R x|

x|

T=Ty+E&™ =t,—& ° Ta+ e =T~ €

Moo= Rl e (25)

where the coefficients 0 < R,,, <1 express the dissipation
of the system during the impacts.

Once again the dynamics of the system is found
by integrating Eqs. (21)-(23) between the impacts and by
using Eqg. (25) to reactualize the initial conditions which
are to be specified to integrate. In the simplest possible

geometry (f=0,R=m=1,0=1,dr=dp <<1, T =T+ Ty <<1,

589
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R;< 1 and Q(tnhs1 - Tn)<<1), we can derive an approximate

mapping (20) in the form :

¥, =R+ R, Qcos( Q) (26a)
v

T =Tn+ |—— | (26b)
n+1

where the quantity v, is directly related to the tolerance

interval between the cog-wheels and ¥ , denotes :

d
‘Pn=ﬁ[r+cp]|t=1n.

Eqgs. (26a,b) are known as the Fermi dissipative
mapping (4.5). They are usually derived for the problem of a
ball bouncing between two heavy walls, one of which being
in sustained oscillations with the time. Hence, in view of
our basic cog-wheel problem, it is not surprising that the
Fermi map is embedded in this context. The map Egs. (26a,
b) does also present the phenomena of cascade of
bifurcations and chaotic solutions (4.5,11,13,14) do then exist.
Therefore, the behaviour observed in Fig. 4 can be
understood from the equations of motion themselves and not
from the presence of, for instance, round-off errors in the

integration procedure.
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In the search to reduce the clattering (accoustic)
noise in gearboxes, the question whether the periodic or
chaotic regime is more favorable or not is important. It
might well happen that the chaotic regime, due to its wide
emission spectrum, presents less annoyance to listeners
than a purely periodic regime which is likely to induce
resonnances. Then we will have another situation in which

chaotic regimes constitute delibarately an advantage.

4. CONCLUSIONS AND PERSPECTIVES.

We have obtained the dynamical equation of
motions of two common mechanical devices in the form of
non-linear, dissipative sets of mappings Egs. (2a,b) and
(3a,b). These mappings are among the simplest models
discussed in non-linear dynamics. In particular, cascade of
bifurcations and chaotic solutions are present. In the
devices presented here, we point out that not only the
periodic behaviour is interesting for actual applications.
Indeed , it might well happen that the chaotic regime is
precisely the one to be tuned for the requested task. This
situation can be intuitively expected when, for instance, the
behaviour of a non-linear dynamical system has to be
relatively insensitive to variations of the external
parameters which govern the equations of the motions.
Indeed, once in the chaotic regime, the details of the motion

become almost irrelevant ; only the invariant distributions
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of the pseudo-stochastic variables contain the relevant
informations.

Although its ubiquous presence, the influence
of external noise has been omitted in this paper. lIis
presence has a tendancy to smooth the invariant measures
and hence, to favour the property of chaotic regimes to be

less sensitive to small variations external parameters.
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