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DYNAMICS OF DILUTED AND ASYMMETRIC NEURAL NETWORK MODELS
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Abstract

This talk is a short review of the dyvnamical properties of diluted
asymmetric neural networks. The time evolution of the projection of a
configuration on a stored pattern can be obtained exactlyl One can also
calculate the distribution of the activities of the neurons and show that the

dynamics are chaotic even in the good retrieval phase.
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1. INTRODUCTION

The theory of neural networks has become, in the last few years, a

very active field of statistical mechanics (for recent reviews see

references!~9). One of the reasons why physicists (from statistical

mechanics) are interested by the brain is rather obvious. The brain is
composed by a large number N (=~ 10'2) of neurons which interact through
synapses (102-104 per neuron). It is therefore tempting to try to describe

the properties of such a system by the technics of statistical
mechanics. Another reason which makes neural networks attractive to
physicists is that their time evolution is wusually not governed by any
hamiltonian. Thus to describe their dynamics, one needs to develop new
theoretical methods which should be useful to study all kinds of systems far
from equilibrium.

The simplest neural network models which have been considered consist
in assuming that the state of each neuron i at time t is represented by an

Ising variable §, (t)

5, (t) + 1 if the neuron i is firing

(1)

S, (t) - 1 if the neuron i is quiescent

and that the synapsis Jij between neuron j and neuron i is a real number

(Jij > 0 if the synapsis is excitatory and Jiy < 0 if it is inhibitory). In
general the matrix Jij is nonsymmetric(Jij = in) because the synapses are
non symmetric. One then has to choose a dynamical rule to make the systeno

evolve in time. A simple way consists in saying that at time t the neuron i

receives a potential V, (t) given by

v, (t) = 2 Ty %080 (2)
J

and that the state of neuron i at time t + 1 depends on V,(t) in a probabi-
listic way

S, (t+1)=+1 with probability f(V,(t))
(3)
S, (t+1)=-1 with probability 1-f(V,(t})
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f(x) is an increasing function such that f(x) - O if x -+ - and f(x) + 1 if

x - +00, For example

X

f(x) = = + %tanh[—] ()

N

T

where T plays the role of a temperature.

Dynamics like (2-4) are commonly used in Monte Carlo simulations. The
main difference with more usual spin models of Statistical Mechanics is that
here the matrix J1J is non symmetric. Therefore there is no hamiltonian, no
partition function.

The first property of such neural network models is that they can
memorize patterns by choosing properly the synapses Jij. Assume that we have
N neurons §; = £ 1 and we want to store p patterns {??} of N bits each

1%* pattern E{!)=+lor -1 1<i <N

{5)
p*" pattern E&{P)= +¢lor -1 1<i<N

We will say that pattern {;i“’} is memorized if for the dynamics (2 -4) there
is an attractor near this pattern. So the problem is to choose the Jij in
order to make the attractors as close as possible to the stored patterns. A

simple way of measuring the distance between a spin configuration {S,(t)} and
a pattern is to calculate their overlap

m,, (t) =§- E(™) 8, (%) (6)

Y IM =

1

There exist several choices of the Jij which give attractors in the
neighbourhood of the stored patterns E&{"). Some of these choices lead to
interesting effects 1like short on long term memory, forgetting!®-!!. The
discussion will be limited here to one of the simplest rules (the Hebb rule‘)

which give an expression of the Jij in terms of the patterns

1
ii — @

p
2 E*) g (1)
H=1

J



Vol. 62, 1989 Derrida 515

where C is the number of synapses of each neuron (for simplicity one can

assume that C does not depend on i).

2. THE HOPFIELD MODEL!Z2-13.%

As long as the matrix Jij is non symmetric, it is not easy to use the
methods of Statistical Mechanics (Partition function etc ...). The idea of
Hopfield was to consider a simpler situation where

C=N-1 (8)

i.e. each neuron interacts with each other neuron and the Jlj are given by
(7). Then one knows that with the dynamics (2-4) the system will evolve to an

equilibrium described by an Hamiltonian ¥ at temperature T

#({s;}) = - 2 Jiy S S (9)
ij

i.e. each configuration {S;} is visited in the long time limit with a proba-
bility P, _({S;}) = exp [- R({S,;})/T].

When one considers the J;; given by the Hebb rule (7), the Jij take
both positive and negative values and phase space is composed of many valleys
like in spin glass problems!®-15,

Amit, Gutfreund and Sompolinsky"'”’ have studied the equilibrium
properties (the thermal equilibrium) in great detail using replica technics

which had been developed previously in the study of spin glasses. They found

a phase diagram with the following shape :

T

PARAMAGNETIC

mp__:o Figure 1.

SPIN GLASS

my, >0

FERROMAGNETIC
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when the p patterns are chosen at random (i.e. : &{*) = +1 or -1 with equal
probability). The parameter o which appears in figure 1 is defined as the

ratio of the number of stored patterns p divided by the number of synapses C
per neuron (in the case of the Hopfield model C = N - 1 but this will not be

the case for the diluted model discussed in section 3)

@ = p/C (10)

The important line is the phase boundary between the ferromagnetic
phase and the spin glass phase. In the ferromagnetic phase, there exists a

minimum in the free energy landscape with m, > 0, i.e. one expects a valley

near each pattern E(") . In the spin glass an; the paramagnetic phases m, = 0
and therefore this local minimum disappears. The phase diagram obtained by
Amit at al®-1® has more structure than what is shown on figure 1 (transition
line where the symmetry of replica is broken, spin glass phase, etc ...) but
this will not be discussed here.

We see that with the Hebb rule (7) the system is able to memorize the
patterns as long as the number of stored patterns p = C @ does not exceed a
certain value o«_(T). For o > aC(T), there is a complete deterioration and no
pattern is memorized. It turns out®:1® that the transition from the
ferromagnetic phase to the spin glass phase is a first order transition and

that m, has a jump. At T = O, one finds that

o =~ 14

<

and m, jumps from a value =~ .95 to 0. Since the fraction of wrong bits is gi-
1—1111_L
ven by > we see that up to o the patterns are memorized with very few

mistakes.

The calculations done on the Hopfield model can be generalized to
various situations (see the reviewsh‘s) by modifying or by replacing the Hebb
rule (7) by other rules!?-11,

There are however several difficulties in the Hopfield model

(1) The calculations are done at equilibrium (using replica) but one
does not know how to describe analytically dynamics.

(2)The symmetry of the synapses (.IU = in) is essential in this ap-
proach although the synapses are known to be non symmetric in the brain.

(3) All the neurons are comnected (C = N -1) and that too is not

realistic.
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(4) The forgetting catastrophe : if @ > & , i.e. the number of input
patterns exceeds a maximal value, all the patterns are forgotten at once.

(5) Various difficulties when one extends the calculations to the
case of correlated patterns.

(6) With symmetric interactions, one can expect minima in the free
energy landscape but there is no way to memorize temporal sequences of

patterns.

3. NON SYMMETRIC - DILUTED NETWORKS
It turns out that one can construct a neural network model with non
symmetric synapses for which the dynamics can be solved exactly!?. The model
consists of N neurons S; = #1 and the synapses Jij are given by
p

" | =c.z E;‘E.*j* (11)
k=1

where the {?f}- is the wp'® pattern and C;; is a random number which
represents the dilution

C;; = 1 with probability C/N

C;; = 0 with probability 1 - C/N (12)
The C;; and C;, are independent random variables and therefore the matrix J,
is no longer symmetric. The spin still evolve according to the following

rules

S, (t+1) = +1 with prob p,(t)
S;(t+l) = -1 with prob 1 - p,(t) (13)
where

P (6) =5+ = tanh |2 3, S (t)/T (14)
J

ij
which gives in the low temperature limit

S; (t+1) = sgnlz Ji5 S;(t) (15)
j
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The situation for which this model can be solved is the limit N - oo,

C being finite or infinite with the constraint that
C < log N (16)

The reason why this condition makes the model soluble would be too long to ex-
plain here in detaill® 17, Let me just say that because the system is very di-
luted (see eq. 12), the structure of the network is locally a tree. At zero
temperature, and for large C, one gets a simple expression for the time

evolution of m,(t)

m,(t+1) = %ii+a>dy e‘yz sign[mp(t)-yqiaq (17)

—c0

where &« = p/C (p is the number of stored patterns). The dynamics are fully
described by the map (17). One sees from (17) that there is a critical value
o, of a

@ = 2/w (18)

If x > o, the number of patterns memorized is tooc large and the only
attractive fixed point of (17) is m; = 0. The system does not remember
anything.

If o <o, there appears an attractive fixed point m; = 0 of (17)
corresponding to the attractor near the pattern p. One should notice that the
retrieval is not perfect since m; # 1 (the fraction of wrong bits is given by
(1 - m3)/2).

In the above calculation, the typical projection of one pattern ¢ on
another pattern v was N‘%

1
§Zar)qH~N“ (19)

1

for all pairs ¢ and v. On can generalize it to describe other situations. If

one considers that p patterns are random but that two of them (patterns 1 and
2) are correlated

1
E.?; E(L) E(2) = Q (20)

1

one can write!?7 equations similar to (17) to describe the time evolution of

m, (t) and m,(t). Because of (20), the time evolution of m, (t) and m,(t) are
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coupled and one finds that there are two critical wvalues of o :
2
@, = — (1-Q)2
1]
(21)
2 2
@, = ; (1+Q)

For @ > @,, the only fixed point is m; = m; = 0. Too many patterns
have been stored. The system does not remember anything.

For o, <o <a,, there is an attractive fixed point m; = m; Z 0. The
system remembers patterns 1 and 2 but cannot distinguish them.

For a <o, , there is an attractive fixed point mI >-m;. The system
can distinguish the two patterns.

There are some limiting cases which can be easily understood.

If Q » 0, the patterns become uncorrelated and ®; and o, -+ _.

If Q-1, o 0. If the 2 patterns become identical, it is
impossible to distinguish them.

4. DISTRIBUTION OF ACTIVITIES AND CHAOS IN DILUTED NETWORKS

For systems like the Hopfield model (section II), where the dynamics
are governed by an hamiltonian, one knows that at zero temperature, the spin
configuration always converges to a fixed point in phase space. The system
gets trapped in a local minimum of energy. This means that after a transient
part, all the spins S, (t) remain fixed in time for ever.

For systems with non symmetric interactions, there is no hamiltonian
and the attractors in phase space can be cycles with arbitrarily long periods
(at least if the system size is large enough). So even when the system has
reached its attractor, the spins S, (t) keep changing with time.

For the diluted network defined in section III, it is possible to
describe quantitatively the motion of the spins. For simplicity, let us
discuss the case of a configuration {S;(t)}which has a non zero projection
= m, (the fixed point of (17)) on a single pattern p.

If one defines the activity a; of spin i as

. 1
a.= lim —_

1
to —+ ©0 to

s, (¢) (22)

1] Moﬂ

t 1

it is possible!® to obtain a closed expression for the whole histogram P(a)

of the a;:
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P(a) =

Z|=

LM

§(a-2,) (23)

The final result can be parametrized in the following way

_ ZJI:;-mQ/ 20| 2
P(a) = %{353)1/2 exp[zz— ( S q__) } (24)

where

a = erf(z) = g—--J.Oze”‘zdx (25)

Fy

m, is the fixed point of (17) and q is the attractive fixed point of

2 el 341+Q(t + m;/¢§|

2
q(t+l) = -1 + — e ¥ dy erf I (26)

r N J1-qa(t)

The shape of P(a) depends on . Two typical shapes (both for a < «_ } are
shown in Fig.2

Figure 2.

Fig. 2: The distribution of activities P(a) for the diluted asymmetric model.

The fact that the distribution P(a) is a continuous function without
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delta peak means that no spin is fixed. They keep moving for ever. This is a
major difference between models with only symmetric synapses (for which all
the spins are fixed at zero temperature) and models with asymmetric synapses.

Even when the system converges to a single pattern attractor, it is
possible to show that the dynamics remain chaotic: if one considers two
configurations {S;(t)} and {gl(t)} which have both the projection m; on the
same pattern p and zero projection on all the other patterns, it is possible

to calculate the time evolution of their overlap q(t):

S, (t) S, (t) (27)
1

q(t) =

M =

Z|-

It turns out !7 that q(t) is given by the recursion (26). For

alx,, (26) has two fixed points (with a>0): g=1 and q"# 1. The fixed point

g=1 corresponds to two identical configurations {S,(t)} = {si(t)};01early if
two 'configurations are identical, they remain identical at later times. This
fixed point g=1 is however unstable whereas q° is an attractive fixed point.
This implies that if two configurations are initially slightly different,
their trajectories in phase space diverge and their overlap always converges
to q°. The fact that close trajectories have the tendency to diverge is =z
typical property of a chaotic behaviour (it means that some Lyapoinov

exponent are positive).

5. CONCLUSION

For diluted networks (Sections 3 and U4), it is possible to exterd
some of the above calculations to describe more complex svstems!'9-22. Zor
example, one can produce short and long term memory effects by considering
that the synapses Jij are bounded (IJijI < L) and that adding a new pattarn
changes the synapsis only if the constraint 1J; ;I <L is satisfied!®. One can

also choose the Jij in order to produce temporal sequences of patterns?©.

The two models described in sections 2 and 3 have the following two
simplifying features :
(1) - there is no architecture : all the neurons play similar roles
(2) - the synapses are given explicitly in terms of patterns

Recently it has been shown that none of these two symplifying
assumptions is essential for the model to be soluble.

One can construct layered networks for which the dynamics can still
be solved exactly* 23. The solution and the properties are similar to thcse
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of the diluted model.

One can also use J1J which are no longer given explicitly in terms of

the patterns (like in the Hebb rule (7)) but which are arbitrary with the
condition that there are attractors near the stored patterns?‘-27. This might

be

a first step in understanding the various learning rules which have been

proposed and consist in using iterative procedures to modify the Jij in order

to create or to enlarge the basins of attraction near stored patterns28-30,

1.

10.

11.

12.

The first part of this short review has already appeared in3!.
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