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Abstract
This talk is a short review of the dynamical properties of diluted

asymmetric neural networks. The time evolution of the projection of a

configuration on a stored pattern can be obtained exactly. One can also
calculate the distribution of the activities of the neurons and show that the

dynamics are chaotic even in the good retrieval phase.
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1. INTRODUCTION

The theory of neural networks has become, in the last few years, a

very active field of statistical mechanics (for recent reviews see
references1~g). One of the reasons why physicists (from statistical
mechanics) are interested by the brain is rather obvious. The brain is
composed by a large number N (— IO12) of neurons which interact through
synapses (102-10 per neuron). It is therefore tempting to try to describe
the properties of such a system by the technics of statistical
mechanics. Another reason which makes neural networks attractive to
physicists is that their time evolution is usually not governed by any
hamiltonian. Thus to describe their dynamics, one needs to develop new

theoretical methods which should be useful to study all kinds of systems far
from equilibrium.

The simplest neural network models which have been considered consist
in assuming that the state of each neuron i at time t is represented by an

Ising variable St(t)

S1(t) + 1 if the neuron i is firing

Sj(t) - 1 if the neuron i is quiescent
(1)

and that the synapsis Jj, between neuron j and neuron i is a real number

(Jj. > 0 if the synapsis is excitatory and Jj < 0 if it is inhibitory). In
general the matrix Jt. is nonsymmetric(Ji. ^ J¦t) because the synapses are
non symmetric. One then has to choose a dynamical rule to make the systen
evolve in time. A simple way consists in saying that at time t the neuron i
receives a potential Vj(t) given by

V.(t) S J.. Sj(t) (2)
j

and that the state of neuron i at time t + 1 depends on Vt(t) in a probabilistic

way

Sx(t+1)= + 1 with probability ffV^t))
(3)

Sj(t+1)=-1 with probability l-f(Vj(t))
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f (x) is an increasing function such that f (x) -» 0 if x -» -oo and f (x) -» 1 if
x -» +00. For example

f(x) • | | tanh|] 0»)

where T plays the role of a temperature.
Dynamics like (2-^) are commonly used in Monte Carlo simulations. The

main difference with more usual spin models of Statistical Mechanics is that
here the matrix Jl. is non symmetric. Therefore there is no hamiltonian, no

partition function.
The first property of such neural network models is that they can

memorize patterns by choosing properly the synapses Jt,. Assume that we have

N neurons St ± 1 and we want to store p patterns yî£f of N bits each

1st pattern Çj"= +1 or -1 1 < i < N

(5)

pth pattern £<?>= +1 or -1 1 < i < N

We will say that pattern ¦fSJ^'V is memorized if for the dynamics (2 -k) there
is an attractor near this pattern. So the problem is to choose the Ji, in
order to make the attractors as close as possible to the stored patterns. A

simple way of measuring the distance between a spin configuration {S^t)} and

a pattern is to calculate their overlap

N

ni (t) i 2 £<*> Si(t) (6)
i=l

There exist several choices of the J.. which give attractors in the

neighbourhood of the stored patterns ^*^'. Some of these choices lead to

interesting effects like short on long term memory, forgetting10"11. The

discussion will be limited here to one of the simplest rules (the Hebb rule
which give an expression of the J.. in terms of the patterns

P

Ju ¦ f ^ ^' er (7)
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where C is the number of synapses of each neuron (for simplicity one can

assume that C does not depend on i).

2. THE HOPFIELD MODEL12-x3-4

As long as the matrix Jlf is non symmetric, it is not easy to use the
methods of Statistical Mechanics (Partition function etc
Hopfield was to consider a simpler situation where

C N - 1

The idea of

(8)

i.e. each neuron interacts with each other neuron and the JtJ are given by
(7). Then one knows that with the dynamics (2-k) the system will evolve to an

equilibrium described by an Hamiltonian X at temperature T

X({Sj}) - I J Si S (9)
ij

i.e. each configuration {S. } is visited in the long time limit with a

probability P^ÜSJ) exp [- XUSJJ/T].
When one considers the Jt. given by the Hebb rule (7), the 3l, take

both positive and negative values and phase space is composed of many valleys
like in spin glass problems14-15.

Amit, Gutfreund and Sompolinsky4•l6 have studied the equilibrium
properties (the thermal equilibrium) in great detail using replica technics
which had been developed previously in the study of spin glasses. They found

a phase diagram with the following shape :

PARAMAGNETIC
T

m,, 0

SPIN GLASS

mp >0

FERROMAGNETIC

Figure 1
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when the p patterns are chosen at random (i.e. : Ej^' +1 or -1 with equal
probability). The parameter a which appears in figure 1 is defined as the

ratio of the number of stored patterns p divided by the number of synapses C

per neuron (in the case of the Hopfield model C N - 1 but this will not be

the case for the diluted model discussed in section 3)

a p/C (10)

The important line is the phase boundary between the ferromagnetic
phase and the spin glass phase. In the ferromagnetic phase, there exists a

minimum in the free energy landscape with m > 0, i.e. one expects a valley
near each pattern E'^'.In the spin glass and the paramagnetic phases m^ 0

and therefore this local minimum disappears. The phase diagram obtained by
Amit at al'-16 has more structure than what is shown on figure 1 (transition
line where the symmetry of replica is broken, spin glass phase, etc but
this will not be discussed here.

We see that with the Hebb rule (7) the system is able to memorize the

patterns as long as the number of stored patterns p C a does not exceed a

certain value ctc (T). For a > a. (T), there is a complete deterioration and no

pattern is memorized. It turns out • that the transition fron the

ferromagnetic phase to the spin glass phase is a first order transition and

that m^ has a jump. At T 0, one finds that

a ^ ,1k
c

and m^ jumps from a value — .95 to 0. Since the fraction of wrong bits is gi-
l-nv

ven by ——, we see that up to ac the patterns are memorized with very few

mistakes.
The calculations done on the Hopfield model can be generalized to

various situations (see the reviews4"5) by modifying or by replacing the Hebb

rule (7) by other rules10,11.
There are however several difficulties in the Hopfield model

(1) The calculations are done at equilibrium (using replica) but one

does not know how to describe analytically dynamics.

(2)The symmetry of the synapses (Jj. Jjj) is essential in this
approach although the synapses are known to be non symmetric in the brain.

(3) All the neurons are connected (C N -1) and that too is not
realistic.
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CO The forgetting catastrophe : if a >ac, i.e. the number of input
patterns exceeds a maximal value, all the patterns are forgotten at once.

(5) Various difficulties when one extends the calculations to the
case of correlated patterns.

(6) With symmetric interactions, one can expect minima in the free
energy landscape but there is no way to memorize temporal sequences of
patterns.

3. NON SYMMETRIC - DILUTED NETWORKS

It turns out that one can construct a neural network model with non

symmetric synapses for which the dynamics can be solved exactly17. The model

consists of N neurons Sj ±1 and the synapses JXJ are given by
P

3ti - Cu 1 E? ^ (11)
V- 1

where the \^\ is the ixth pattern and Ct is a random number which

represents the dilution

Cjj =1 with probability C/N

Cjj 0 with probability 1 - C/N (12)

The Cjj and C}1 are independent random variables and therefore the matrix Jt,
is no longer symmetric. The spin still evolve according to the following
rules

S^t+l) +1 with prob Pj(t)
Sx(t+1) -1 with prob 1 - Pj(t)

where
(13)

Pj(t) - * - tanh 2 Jl} Sj(t)/T
j

(Ik)

which gives in the low temperature limit

S^t+l) sgn 2 J.j Sj(t). (15)
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The situation for which this model can be solved is the limit N -* <»,

C being finite or infinite with the constraint that

C < log N (16)

The reason why this condition makes the model soluble would be too long to
explain here in detail15,17. Let me just say that because the system is very
diluted (see eq. 12), the structure of the network is locally a tree. At zero

temperature, and for large C, one gets a simple expression for the time

evolution of m^ft)

¦^(t+l) =y'^dye-y2 sign[mp.{t)-y\f2ä] (17)

where a p/C (p is the number of stored patterns). The dynamics are fully
described by the map (17). One sees from (17) that there is a critical value

ac of a
ac 2/-TT (18)

If a > a the number of patterns memorized is too large and the only
attractive fixed point of (17) is m^ 0. The system does not remember

anything.
If a < ac, there appears an attractive fixed point i^ ^ 0 of (17)

corresponding to the attractor near the pattern m-. One should notice that the
retrieval is not perfect since m" ^ 1 (the fraction of wrong bits is given by

(1 - <)/2).
In the above calculation, the typical projection of one pattern (x on

another pattern v was N" :

-T. £{"•> E<v> ~ N-5* (19)
N j l

for all pairs tx and v. On can generalize it to describe other situations. If
one considers that p patterns are random but that two of them (patterns 1 and

2) are correlated

IX i-U) E[2> Q (20)
i

one can write17 equations similar to (17) to describe the time evolution of
mj(t) and m2(t). Because of (20), the time evolution of m^t) and m2(t) are
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coupled and one finds that there are two critical values of a :

04 - (l-Q)2
(21)

a - (l-Q)2
IT

For a > a2 the only fixed point is m* m'2 =0. Too many patterns
have been stored. The system does not remember anything.

For a.y < <x < <x2, there is an attractive fixed point m* m'2 * 0. The

system remembers patterns 1 and 2 but cannot distinguish them.

For a < at there is an attractive fixed point m* > m'2 The system
can distinguish the two patterns.

There are some limiting cases which can be easily understood.

If Q -* 0, the patterns become uncorrelated and ax and a2 -* a..
If Q ¦* 1, a, -» 0. If the 2 patterns become identical, it is

impossible to distinguish them.

k. DISTRIBUTION OF ACTIVITIES AND CHAOS IN DILUTED NETWORKS

For systems like the Hopfield model (section II), where the dynamics

are governed by an hamiltonian, one knows that at zero temperature, the spin
configuration always converges to a fixed point in phase space. The system

gets trapped in a local minimum of energy. This means that after a transient
part, all the spins Sj(t) remain fixed in time for ever.

For systems with non symmetric interactions, there is no hamiltonian
and the attractors in phase space can be cycles with arbitrarily long periods
(at least if the system size is large enough). So even when the system has

reached its attractor, the spins Sj(t) keep changing with time.
For the diluted network defined in section III, it is possible to

describe quantitatively the motion of the spins. For simplicity, let us

discuss the case of a configuration {S.(t)}which has a non zero projection
n£ (the fixed point of (17)) on a single pattern m-.

If one defines the activity &L of spin i as

a^ lim — Z, Sj(t) (22)
t0 -» 00 t0 t 1

it is possible1 to obtain a closed expression for the whole histogram P(a)

of the a,:
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P(a) ì S «(a-aj
i=l

(23)

The final result can be parametrized in the following way

P(a) mn exp z -
(zvfï^q" - m^/-Ì2aj''

where

a erf(z)
z 2

e"x dx

m^ is the fixed point of (17) and q is the attractive fixed point of

yv|l+q(t) + m^/Nla
q(t+l) -1

vR
e~y dy erf

\|l-q(t)

(24)

(25)

(26)

The shape of P(a) depends on a. Two typical shapes (both for ct < a.) are
shown in Fig.2

i i ii i i—i—i i \ i i

°<»(al Q._(a)

oc 0.6
a =0.4

ii i l

I -1

(a) (b)

Figure 2.

Fig. 2: The distribution of activities P(a) for the diluted asymmetric model.

The fact that the distribution P(a) is a continuous function without
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delta peak means that no spin is fixed. They keep moving for ever. This is a

major difference between models with only symmetric synapses (for which all
the spins are fixed at zero temperature) and models with asymmetric synapses.

Even when the system converges to a single pattern attractor, it is
possible to show that the dynamics remain chaotic: if one considers two

configurations {St(t)} and /SjftjY which have both the projection m* on the
same pattern p. and zero projection on all the other patterns, it is possible
to calculate the time evolution of their overlap q(t):

N

q(t) i-S S.(t) Si(t) (27)
N i=l

It turns out 17 that q(t) is given by the recursion (26). For

a<ac, (26) has two fixed points (with a>0): q=l and q*^ 1. The fixed point

q=l corresponds to two identical configurations {Sjjt)} /st (t) V.Clearly if
two configurations are identical, they remain identical at later times. This
fixed point q=l is however unstable whereas q* is an attractive fixed point.
This implies that if two configurations are initially slightly different,
their trajectories in phase space diverge and their overlap always converges
to q*. The fact that close trajectories have the tendency to diverge is a

typical property of a chaotic behaviour (it means that some Lyapoaov

exponent are positive).

5. CONCLUSION

For diluted networks (Sections 3 slid h), it is possible to exter.d
some of the above calculations to describe more complex systems19"22. Tor

example, one can produce short and long term memory effects by considering
that the synapses 3lJ are bounded (U,1 I < L) and that adding a new pattern
changes the synapsis only if the constraint Uj,I < L is satisfied19. One can

also choose the Jt, in order to produce temporal sequences of patterns20.
The two models described in sections 2 and 3 have the following zwo

simplifying features :

(1) - there is no architecture : all the neurons play similar roles
(2) - the synapses are given explicitly in terms of patterns

Recently it has been shown that none of these two symplifying
assumptions is essential for the model to be soluble.

One can construct layered networks for which the dynamics can still
be solved exactly • 2A The solution and the properties are similar to these
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of the diluted model.

One can also use Jt, which are no longer given explicitly in terms of
the patterns (like in the Hebb rule (7)) but which are arbitrary with the
condition that there are attractors near the stored patterns2 7. This might
be a first step in understanding the various learning rules which have been

proposed and consist in using iterative procedures to modify the Jt, in order
to create or to enlarge the basins of attraction near stored patterns28"30.

The first part of this short review has already appeared in31.
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