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Abstract:

We review possible measures of complexity which
might in particular be applicable to situations where
the complexity seems to arise spontaneously. We point
out that not all of them correspond to the intuitive
(or "naive") notion, and that one should not expect a
unique observable of complexity. We finally concentrate
on quantities which measure in some way or other the
difficulty of classifying and forecasting sequences of
discrete symbols, and study them in simple examples.

1. INTRODUCTION

The nature which we observe around us is certainly very
"complex", and the main aim of science has always been to reduce
this complexity by descriptions in terms of simpler laws. But very
often, physicists have achieved this by studying archetypical and
simple situations ("Gedanken experiments"), and maybe for that
reason the study of complex behaviocur has not been pursued very
much in the past by physicists.

In the most complex situations studied traditionally in sta-
tistical mechanics, the large number of degrees of freedom can
usually be reduced to few "order parameters”. This is called the
"slaving principle" by H. Haken [1]. Mathematically, it is related
to central limit theorems of statistics and to center manifold
theorems [2] of dynamical system theory.

But there are extremely simple systems (like the cellular
automaton called "game of 1life" [3]) which can be programmed as
universal computers in which case a purely statistical descrip-
tion is of course inappropriate. And there are systems like those
describable by a quadratic map
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Xn+1 = a - Xn? , Xa ¢ [-a, a] , a & [0,2] (1.1)

where even the reduction to a single order parameter does not
imply a simple behaviour. The complexity of the latter can be seen
in a number of ways. First of all, the behaviour can depend very
strongly on the parameter a: there is a set of positive measure on
which the attractor is chaotic [4], but this is believed to be
nowhere dense, while windows with periodic attractors are dense.
Secondly, at the transitions from periodicity to aperiodicity
there are (an infinite number of) "Feigenbaum points" [5], each of
which resembles a critical phenomenon. The richness ' inherent in
eq. (1) becomes even more obvious if we let xu« and the parameter

a be complex. The resulting Julia and Mandelbrot sets (see e.g.
fig.l) have become famous even among a wider public for their
intricate structure [6].
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Fig.l: Julia set of the map z' = z2 -0.86 - 0.25i.

Finally (and most importantly for us), the trajectories of
eq. (1) themselves can be very complex. To specify this, let us
first discretize trajectories by defining [7] variables sn ¢
{L,R,C} with sa=L if Xn <0, sn=R if xu >0, and sn=C if su=0 (simi-
lar "symbolic dynamics" can be defined also for other dynamical
systems, with the mapping from the trajectories (xXu; neZ) onto
the "itineraries" (sn) being one-to-one for nearly all starting
points Xo). The complexity of the map is reflected then in the
fact that the itineraries obtained in this way show very specific
structure, both "grammatically" (i.e., disregarding probabilities)
and probabilistically.

Systems of similar complexity are e.g. the output of nonlinear
electronic circuits, reversals of the earth's magnetic field, and
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patterns created by chemical reactions or by hydrodynamic turbu-

lence. Beautiful examples of the latter are pictures of Jupiter,
with numerous turbulent eddies surrounding the giant red spot.

One characteristic common to all these instances is that the
complexity is self-generated in the narrow sense that the formu-
lation of the problem is translationally invariant, and the obser-
ved structure arises from a spontaneous breakdown of translational
invariance (in the case of Jupiter, it is azimuthal rotation in-
variance which is broken). But the most interesting case of self-
generated complexity in a wider sense is presumably life itself.

If we want to understand better the generation of complex
behaviour, we have at first a semantic problem: there does not
seem to exist a universally accepted and formalized notion of what
is "complexity", though most of us certainly would agree intui-
tively that such a notion should exist. As physicists used to work
with precise concepts it should thus be one of our first aims
to find such a precise notion. In the ideal case, it should be
fully quantitative, i.e. there should be an observable and a
prescription for measuring it.

In a search for such an observable, we shall in the next
section scan the literature. We shall find several concepts which
have been proposed, and all of which have advantages and draw-
backs. We shall argue that indeed no unigque measure of complexity
should exist, but that different definitions can be very helpful
in their places. In the last section, we shall apply them to
measure the complexity of some symbol sequences like those gene-
rated by the quadratic map or by cellular automata.

2. MEASURES OF COMPLEXITY
a) General

Among the phenomena which in the physics literature are con-
sidered as complex are, among others, chaotic dynamical systems,
fractals, spin glasses, neural networks, gquasicrystals, and cellu-
lar automata (CA). Common features of these and other examples are
the following:

(1) They are somehow situated between disorder and (simple) order
[8], i.e. they involve some hard to describe and not just random
structures. As an example, consider fig.2. There, virtually nobody
would call the left panel complex. Some people hesitate between
the middle and right panels when being asked to point out the most
complex one. But once told that the right one is created by means
of a (pseudo-)random number generator, the right panel is usually
no longer considered as complex.

(2) They often involve hierarchies (e.g. fractals and spin glas-
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ses). Indeed, hierarchies have often been considered as a main
source of complexity (see, e.g., [8]).
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Fig.2: Three patterns used to demonstrate that the pattern that
one would intuitively call the most complex is neither
the one with the lowest entropy (left) nor the one with
the highest (right). That is, complexity is not equivalent
to randomness, but rather is between order and chaos.

(3) But as the example of human societies shows most clearly, a
strict hierarchy can be ridiculously simple when compared to what
is called a "tangled hierarchy " in ref.[9]. This is a hierarchy
violated by feedback from lower levels, creating in this way
"strange loops". Feedback as a source of complexity is also obvi-
ous in dynamical systems. On the logical (instead of physical)
~level, in the form of self reference, feedback is the basis of
Goedel's theorem which seems closely tied to complex behaviour [9].

(4) In a particular combination of structure and hierachy, an
efficient and meaningful description of complex systems usually
requires concepts of different levels. The essence of self-
generated complexity seems to be that higher-level concepts arise
without being put in explicitely.

As a simple example, consider figs.3 to 5. These figures show
patterns created by the l-dimensional CA with rule nr.110'in
Wolfram's [10] notation, in decreasing resolution. In this CA, a
row of "spins" with s ¢ (0,1} is simultaneously updated by the
rule that neighbourhoods 111, 100, and 000 give a "0", while the
other 5 neighbourhoods give "1". Figure 3 shows that this CA has
a periodic invariant state with spatial period 14, i.e. a 1l4-fold
degenerate "ground state". In a first shift from a low-level to
higher-level description, we might call these "vacua", although
the original vacuum is of course the state with zeroces only.
Figure 4 shows that between different vacua there are kinks which
on a coarser scale propagate like particles. In fig.5, finally,
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sion of information and complexity will be a recurrent theme in
the following. Understanding the meaning is just the act of re-
placement of a detailed description containing all irrelevant and
redundant information by a compressed description of the relevant
aspects only.

(7) From the above we conclude that complexity in some very broad
sense always is a difficulty of a meaningful task. More precisely,
the complexity of a pattern, a machine, an algorithm, etc.., is the
difficulty of the most important task related to it.

By "meaningful" we exclude on the one hand purely mechanical
tasks, as for instance the lifting of a heavy stone. We do not
want to relate this to any complexity. But we also want to exclude
the difficulty of coding, storing, and reproducing a pattern like
the right panel of fig.2, as the details of that pattern have no
meaning to us.

A technical problem is that when we speak about a difficulty,
we have to say what are our allowed tools and what are our most
important limitations. Think e.g. of the complexity of an algo-
rithm. Depending on whether CPU time is most seriously limited or
core memory, we consider the time or space complexity as the more
important. Also, these complexities depend on whether we use a
single-CPU (von Neumann) or multiple-CPU computer.

(8) Another problem is that we don't have a good definition of
"meaning"”", whence we cannot take the above as a real definition
of complexity. This is a problem in particular when we deal with
self-generated complexity.

In situations which are controlled by a strict outside hier-
archy, we can replace "meaningful" by "functional", as complex
systems are usually able to perform some task [1l4].

But in systems with self-generated complexity it is not obvi-
ous what we really mean by a "task". Also, we must be careful to
distinguish between the mere ability to perform a task, and the
tendency or probability to do so.

Let me illustrate this again with cellular automata. As we
said, the "game of life" can be programmed as a universal compu-
ter.This means that it can simulate any possible behaviour, given
only the right initial configuration. For instance, we can use it
to compute the digits of n, but we can also use it to proof
Fermat's last theorem (provided it is right). Thus it can do
meaningful tasks if told so from the outside. But this does not
mean that it will do interesting things when given a random ini-
tial condition. Indeed, for most initial conditions the evolution
is rather disappointing: for the first 400 time steps or so, the
complexity of the pattern seems to increase, giving rise (among
others) to many gliders [3], but then the gliders collide with all
the interesting structures and destroy them, and after about 2000
time steps only very dull structures survive. This is in contrast
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Fig.5: Evolution of a random initial state for CA 110. Every pixel
represents a block of 14 spins. The pixel is white if the
block is the same as the neighbouring block to the left,
otherwise it is black. In this way, only the kinks are
seen. In order to comress vertically, only every 21th time
step is shown.

the brain has nerve cells. What is important is that there are
strong and non-trivial correlations between these parts [12].
Examples are of course fractals and critical phenomena, but the
correlations there seem still very simple compared to those in
some cellular automata [13].

The correlations between the parts of a complex object imply
that the whole object in a way is "more than its parts". Let me be
more specific. Of course, we can describe the whole object com-
pletely by describing its parts, and thus it cannot be more than
these. But such a description will be redundant, and it misses the
fact that the correlations probably indicate that the object as a
whole might have some meaning.

{(6) Thus, finally, complexity seems somehow related to the problem
of meaning [14]. Persueing this seriously would lead us too far
from physics into deep questions of philosophy, so I will not do
this. But let me just point out that a situation acquires some
meaning to us if we realize that only some of its features are
essential, that these features are related to something we have
already stored in our memory, or that its parts fit together in
some unique way. Thus we realize that we can replace a full and
detailed description by a compressed description which captures
only these essential aspects, employing thereby already existing
information. We mention this since the relation between compres-
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to real life, which certainly has also started with a random ini-
tial configuration, but which is still becoming more and more
complex.

(9) As a consequence of our insistence on meaningful tasks, the
concept of complexity becomes subjective. We really cannot speak
of the complexity of a pattern without reference to the observer.
After all, the right-hand pattern in fig.2 might have some meaning
to somebody, it is just we who decide that it is meaningless.

This situation is of course not new in physics. It arises
also in the Copenhagen interpretation of quantum mechanics, and it
appears also in Gibbs' paradoxon. In the latter, the entropy of an
isotope mixture depends on whether on wants to distinguish between
the isotopes or not. Yet it might be unpleasant to many, in parti-
cular since the dependence on the observer is much less trivial
than in Gibbs' paradoxon.

Indeed, statistical mechanics suggests an alternative to con-
sidering definite object as we pretended above. It is related to
the observation that when we call the right panel of fig.2 randon,
we actually do not pay attention to the fine details of that pat-
tern. We thus do not really make a statement about that very pat-
tern, but about the class of all similar patterns. More precisely,
instead saying that the pattern is not complex, we should (or
could, at least) say "that pattern seems to belong to the class of
random patterns, and this class is trivial to characterise: it has
no features" [15]. The question of what feature is "meaningful" is
now replaced by the question of what ensemble to use.

We have thus a dichotomy: we can either pretend to deal with
definite objects, or we can pretend to deal only with equivalence
classes of objects or probability distributions ("ensembles"). In
the latter case we avoid the problems of what is "meaning" by
simply defining the ensembles we want to study. This simplifies
things somewhat at the expense of never knowing definitely whether
the objects we are dealing with really belong to the ensemble,
resp. whether they aren't objects appearing with zero probability.

In the following, this dichotomy will be seen more precisely
in several instances. In the tradition of physics, I will usually
prefer the latter attitude.

Also in the tradition of physics and contrary to the main
attitude of computer science, I will always stress probabilistic
aspects in contrast to purely algorithmic ones. Notice that the
correlations mentioned under point (5) are defined most easily if
one deals with probability distributions. For a conjecture that
correlations defined not probabilistically but purely algorithmi-
cally are basic to a mathematical approach to life, see ref. [16].

In this way, the complexity of an object becomes a difficul-
ty related to classifying the object, and to describing the set or
rather the ensemble to which it belongs.
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These general considerations have hopefully sorted out some-
what our ideas what a precise definition of complexity should be
like. They have made it rather clear that a unique definition with
a universal range of application does not exist (indeed, one of
the most obvious properties of a complex object is that there is
no unique most important task associated with it).

Let us now take the above as a kind of shopping list, let us
go to the literature, and let us see how the things we find there
go together with it.

b) Space and Time Complexity of Algorithms [17]

We have already mentioned shortly the complexity of algo-
rithms. The space and time complexities of an algorithm are just
the required storage resp. CPU time. A family of problems
depending on a discrete parameter N is considered complex (more
precisely "NP-hard") if the fastest algorithm solving the problem
for every N needs a time which increases exponentially, although
the formulation of the solution alone would at most increase poly-
nomially.

Although this is of course a very useful concept in computer
science, and moreover fits perfectly into our broad definition
of complexity, it seems of no relevance to our problem of self-
generated complexity. The reason is that an algorithm is never
self-generated but serves a purpose imposed from outside.

¢) Algorithmic Complexity (Kolmogorov—Chaitin [18,19])

Let us consider an infinite sequence S = si1sz2... of binary
digits. Sequences and patterns using other discrete alphabets can
be encoded by binary sequences, and as we have seen in the intro-
duction, this holds also for the orbits of continuous dynamical
systems. Thus the restriction to binary sequences is not a severe
limitation.

The shortest program which produces on some given universal
computer U the first N digits of S and then stops will be called
Pr(N), and its length (in bits) is called Mg,x (S). The algorithmic
or Kolmogorov complexity (per digit) of S is then

C(s) = 1lim Mg, (S)/N (2.1)
N=>w
Notice that C(S) is independent of U since any universal computer
can be simulated by any other with a finite-length simulator. But
notice also that this independence holds only due to the limit

taken in eq.(2.1). Algorithmic complexity is not uniquely defined
for finite sequences .

Since algorithmic complexity is obviously a measure of infor-
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mation (thus called in the following also "algorithmic informa-
tion"), we might wonder how it is related to Shannon entropy h.
The first and main difference is that algorithmic information
deals with individual sequences, while Shannon entropy is a pro-
perty associated to probability distributions. Assume that S is
drawn from some probability distribution P with stationary block

probabilities pn(s182...8n). Then h is defined as
h = lim HN/N v
N=)ew (2-2)
Hh = I prx(si...88v) logprv(si...sx) .
{s1}

(here and in the following, log means logarithm to base 2). This
difference is of course somewhat blurred by the restriction to
infinite sequences, but there are cases where C(S) is clearly
different from h.

One such case are the digits 3141592... of pi. Since there
exist very efficient programs for the digits of n (of length log N
for N digits), the algorithmic information of this sequence is
zero. But these digits look completely random by any statistical
criterion [20], thus it is conjectured that their entropy is maxi-
mal.

The problem with the digits of pi is that, although the se-
quence might look random, pi is of course not just a random number
but carries a very special meaning. Technically, the difference
between C(S) and h stems from the fact that C(S) measures the
information needed to specify the first N digits, while h measures
the much larger average information needed to specify any N conse-
cutive digits.

For symbol sequences generated by self-organizing systems,
this difference is absent. There, the first digits neither have
more meaning nor are in any other way singled out from the other
digits, and we conclude that there C(S) = h for P-nearly all
sequences S.

Thus, for the instances we are interested in, algorithmic in-
formation is just a measure of randomness, and not a measure of
complexity in our sense. It does measure the difficulty of a task
(namely storing and retrieving a code for the sequence), but in
requireing the code to be faithful to all irrelevant details, this
is not the most meaningful task.

d) Ziv-Lempel Complexity [21]

For any finite sequence, we would get a trivial algorithmic
information also because we could always build a computer with a
special button just for this sequence, in which case the program
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Pr,n (S) would be trivial. But the situation is even worse.

Given an infinite sequence with unknown origin, we cannot
estimate reliably its algorithmic information, since we never
know whether we indeed have found its shortest description. More
technically, C(S) is not effectively computable. A way out of this
problem is to remember that when measuring a difficulty, we could
arbitrarily restrict our tools if this seems convenient. In the
literature, there exist several suggestions of how to restrict the
encodings of a sequence in order to obtain effectively computable
algorithmic information measures. The best known and simplest one
is due to Ziv and Lempel [21].

There, the sequence is broken into words Wi, Wz, ... such
that Wi = s;1, and Wk+1 is the shortest new word immediately follo-
wing Wk . For instance, the sequence S = 11010100111101001... is
broken into (1) (10) (101) (0) (01) (11) (1010) (01... . In this way,
each word Wk with k>1 is an extension of some Wy with j<k by one
single digit. It is encoded simply by referring to the code of Wj,
and adding the extension. The Ziv-Lempel complexity of S is then
given via the length M of the resulting encoding of S as
CzrL (S) = limnN->- M/N. It is shown in ref.[21] that Cz. = h for
nearly all sequences, i.e. the Ziv-Lempel complexity agrees again
with the Shannon entropy. Indeed, Cz1. = h holds also for sequences
like the digits of pi since, like h, the Ziv-Lempel coding is only
sensitive to the statistics of (increasingly long) blocks of
length << N.

In practice, Ziv-Lempel coding is a very efficient method of
data compression [22], and methods related to it are among the
most efficient ones for estimating entropy [23]. But it should be
clear that Ziv-Lempel "complexity"” is a measure of randomness
(even in cases where algorithmic information is more subtle), and
not a measure of complexity in our sense.

e) Logical Depth [24]

A complexity measure more in our spirit is the "logical
depth" introduced by C. Bennett [24]. The logical depth of a
string S is essentially the time needed for a general purpose
computer to actually run the shortest program generating it. Thus
the task is now not that of storing and retrieving the shortest
encoding, but that of actually performing the decoding. The dif-
ference with time complexity (sec.2b) is that now we do not ask
for the time needed by the fastest program, but rather the
shortest.

The reason why this is a good measure in particular of self-
generated complexity is Occam's razor: if we find a complex pat-
tern of unknow origin, it is reasonable to assume that it was
generated from essentially the shortest possible program. The
program must have been assembled by chance, and the chance for a
meaningful program to assemble by chance decreases exponentially
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with its length.

For a random string S, the time needed to generate it is es-
sentially the time needed to read in the specfication, and thus it
is proportional to its length. In contrast to this, a string with
great logical depth might require only a very short program, but
decoding the program takes very long, much longer than the length
of S. The prime example of a pattern with great logical depth is
presumably life [24]. As far as we know, life emerged spontane-
ously, i.e. with a "program" assembled randomly which had to be
very short. But it has taken some 10° years to work with this
program until life has assumed its present forms.

A problem in the last example is that "life" is not a single
pattern but rather an ensemble. Noise from outside was obviously
very important for its evolution, and it is not at all clear
whether we should include some of this noise as "program" or not.

A more formal example with (presumably) large logical depth
is the central vertical column in fig.6. This figure was obtained
with cellular automaton nr. 86, with an initial configuration con-

Fig.6: Pattern generated by CA #86, from an initial configuration
having a single "1".

sisting of a single "1". Since both the initial configuration and
the rule are very easy to describe, the central column has zero
Kolmogorov complexity. From very long simulations it seems however
that it has maximal entropy [25]. Furthermore, it is believed that
there exists no other way of getting this column than by direct
simulation. Since it takes o N2 opeations to iterate N time steps,
we find indeed a large logical depth.

Logical depth shares with algorithmic complexity the problem
of not being effectively computable. This problem is indeed even
worse here. While we never could know whether there wasn't a
shorter program for a not yet fully understood sequence, this
shorter program could take either more or less time to execute.
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f) Sophistication [26]

In practical computers there is a distinction between program
and data. While the program specifies only the class of patterns,
the data specify the actual object in the class. A similar dis-
tinction exists in data transmission by conventional (e.g., Huff-
man [27]) codes, where one has to transmit independently the rules
of the code and the coding sequence.

It was an important observation by Turing that this distinc-
tion between program and data is not fundamental. The mixing of
both is e.g. seen in the Ziv-Lempel code, where the coding se-
quence and the grammatical rules used in compressing the sedquence
are not separated. For a general discussion showing that the rule
vs. data separation is not needed in communication theory, see
ref.[28].

What the conventional separation into data and proper program
suggests is that the combined program length My is a convex func-
tion of the sequence length, and increases asymptotically like
My = const + hN, where the additive constant is the program length.
For a sequence of finite algorithmic information, e.g., the total
program length is shown schematically in fig.7. The offset of the
asymptotically tangent line on the y-axis is the proper progran
length.
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Fig.7: Total program length for a typical sequence with finite
algorithmic information per digit, and with finite proper
program length ("sophistication"; schematically).

It was shown by Koppel and Atlan [26] that this is essential-
ly correct. The proper program length, called by them "sophistica-
tion", can moreover be defined such that it is indeed independent
of the computer U used in defining Mw.

Sophistication is a measure of the importance of rules in the
sequence. Equivalently, it is a measure of the importance of cor-
relations. Rules imply correlations, and correlations between suc-
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cessive parts of the sequence S imply that the description of a
previous part of S can be re-used later, reducing thus the overall
program length. This aspect of complexity in an algorithmic set-
ting had been stressed before in ref.[16].

As we said already, the increase of average code length with
N has been studied for probabilistic models in [28]. In particu-
lar, it was shown there that for simple models such as moving
average or autoregressive models which depend on k real parameters
one has

{Mx> = hN + ¥k log N . (2.3)

This is easily understood: for an optimal coding, we have somehow
also to encode the k parameters, but for finite N we will only
need them with finite precision. If the central limit theorem
holds, their tolerated error will decrease as N-%, whence we need
¥ log N bits per parameter.

Equation (2.3) shows that unfortunately sophistication is in-
finite already in rather simple situations. This problem that the
proposed measures tend often to degenerate to zero or infinity is
also common to other complexity measures.

g) Effective Measure Complexity [15]

Let us now discuss a quantity similar in spirit to sophisti-
cation, but formulated entirely within Shannon theory. There, one
does distinguish between rules and data, with the idea that the
rules are encoded and transmitted only once, while data are enco-
ded and transmitted again and again. Thus the effort in encoding
the rules is negligible.

The average length of the data of a sequence of length N is
the block entropy Hv defined in eq.(2.2). Just like the code
lengths My, the Hv are convex, and thus their differences

hy = Hx+1 - Hx (2.4)

are monotonically decreasing to the entropy h. When plotting Hx
versus N, we get a figure exactly like fig.7. The quantity corres-
ponding to the sophistication is now called effective measure com-
plexity (EMC),

EMC = 1im [ Hv - N(Hx-Hsx-1) 1]
N->n {(2.5)

E (hk - h) .

k=0

The EMC has a number of interesting properties. First of all,
within all stochastic processes with the same block entropies up
to some given N, it is minimal for the Markov process of order N-1
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compatible with these Hx. In particular, it is finite for Markov
processes even if these depend on real parameters (in contrast to
sophistication), so that it seems to be non-trivial.

Secondly, it can be written as a sum over the non-negative
decrements Shn = hx-1-hn as

EMC = I N dhw . (2.6)

N=1

The decrement 3hy is just the average amount of information by
which the uncertainty of sn:1:1 decreases when learning s:, and when
all spins sk between are already known. Thus EMC is the average
usable part of the information about the past which has to be
remembered at any time if one wants to be able to reconstruct the
sequence S from its shortest encoding. Consequently, it is a lower
bound on the average information kept about the past if one wants
to make an optimal forecasting.

Finally, in contrast to all previous complexity measures it
is an effectively computable observable, to the extent that the
block probabilities pnx (s1...sx) can be measured.

The main drawback of the EMC in comparison to an algorithmic
quantity like sophistication is of course that we can apply it
only to sequences with stationary probability distribution. This
includes many interesting cases, but it excludes many others.

h) Complexities of Grammars [17]

A set of sequences (or "strings") over a finite "alphabet" is
usually called a formal language, and the set of rules defining
this set is called a "grammar". In agreement with our general
remark that complexities are preferably to be associated to sets
or ensembles, it is natural to define a complexity of a grammar
as the difficulty to state and/or apply its rules.

There exists a well-known hierarchy of formal languages, the
Chomsky hierarchy [17]. Its main levels are in increasing comple-
xity and generality: regular languages, context-free languages,
context-sensitive languages, and recursively enumerable sets.
They are distiguished by the generality of the rules allowed in
forming the strings, and by the difficulty involved in testing
whether some given string belongs to the language, i.e. is "gram-
matically" correct.

Regular languages are by definition such that the correctness
can be checked by means of a finite directed graph. In this graph,
each link is labeled by a symbol from the alphabet, and each
symbol appears at most once on all links leaving any single node
(such graphs are called "deterministic"). Furthermore, the graph
has a unique start node. Any grammatically correct string is then



504 Grassberger H.P.A.

a)

Fig.8: Deterministic graphs for the regular languages generated in
1l time step by CA rules nr. 76 (a) and 18 (b). The heavy
nodes are the start nodes.

represented by a unique walk on the graph, while any wrong string
is not. Scanning the string consists in following the walk on the
graph.

Examples of graphs for regular languages are given in fig.8.
They correspond to strings allowed in the second generation of two
cellular automata, if any string is allowed as input in the first
generation. Figure 8(a) corresponds e.g. to the set of all strings
without blocks of three consecutive "1"s, and with no further re-
striction.

One migth define the complexity of the grammar as the diffi-
culty to write down the rules, i.e. essentially the number of
nodes plus the number of links. However, in ref.[29] the regular
language complexity (RLC) was defined as

RLC = logn , (2.7)

where n is the number of nodes alone, of the smallest graph giving
the correct grammar (usually, the graph of a grammar is not unique
[17]). This makes indeed sense as the so defined RLC is essential-
ly the difficulty in performing the scan: during a scan, one has
to remember the number of the present node, in order to look up
the next node(s) in a table, and then to fetch the number of the
next node. If no probabilities are given, the average information
needed to fetch a number between 1 and n (and the average time to
retrieve it) is log n.

Assume now that one is given not only a grammar but also a
stationary probability distribution, i.e. a stationary ensemble.
This will also induce probabilities Px (k=1l,...n) for being at the
k-th node of the graph at any given time. Unless one has equidis-
tribution, this will help in the scan. Now, both the average
information about the present node and the time to fetch the next
one will be equal to the "set complexity" (SC),
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SC = - % Px log Px . (2.8)
k=1

It is obvious that the SC is never larger than the RLC, and
is finite for all regular languages. It is less obvious that while
the RLC is by definition infinite for all other classes in the
Chomsky hierarchy, the same need not hold for the SC. Indeed, at
least all context-free and context-sensitive languages can be
represented by infinite deterministic graphs [30], and very often
one has measures whose Px decrease so fast with the distance from
the start node that the SC is finite [15].

i) Forecasting complexity [15,31]

Both the RLC and the SC can be considered as related to a
restricted kind of forecasting. Instead of just scanning for cor-
rectness, we could have as well forecasted what symbol(s) is resp.
are allowed to appear next. In a purely algorithmic situation
where no probabilities are given, this is indeed the only kind of
meaningful forecasting.

But if one is given an ensemble, it is more natural not only
to forecast what symbols might appear next, but also to forecast
the probabilities with which they will appear. We call forecasting
complexity (FC) the average amount of information about the past
which has to be stored at any moment, in order to be able to make
an optimal forecast.

Notice that while the Shannon entropy measures the possibili-
ty of a good forecast, the FC measures the difficulty involved in
doing so. That these need not be correlated is easily by looking
at left-right symbol sequences for quadratic maps (the symbol "C"
appears for nearly all start values Xo with zero probability, and
can thus be neglected in probabilistic arguments). For the map
x' =2 - x2, e.g., all R-L sequences are possible [7] and all are
equally probable. Thus, no non-trivial forecasting is possible,
but just for that reason the best forecast is a trivial guess.

In contrast, at the Feigenbaum point [5] the entropy is zero and
thus perfect forecasting is possible, but as shown below, the ave-
rage amount of information about the past needed for an optimal
forecast is infinite.

Notice that the FC is essentially just the logical depth,
applied to the case of an infinite string drawn from a stationary
ensemble. Assume we want to reconstruct such an infinite string
from its shortest code. Then we are provided only an information
of h bits per symbol (h = entropy), and we are supposed to get the
rest of 1-h bits per symbol from the past. But this involves
exactly the same difficulty as an optimal forecast.

In addition to be related to the logical depth, the FC is
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also closely related to the EMC. As discussed in sec.g, the EMC is
a lower bound on the average amount of information which has to be
stored at any time, since it is the time-weighted average of the
amount of information by which the uncertainty about a future
symbol decreases when getting to know an earlier one. Thus, we
have immediately [15]

EMC < FC . (2.9)

Unfortunately, this seems to be a very weak inequality in most
cases where it was studied [15,31].

The difficulty of forecasting the Feigenbaum sequence menti-
oned above comes from the fact that eq.(2.5) for the EMC is loga-
rithmically divergent there.

3. APPLICATIONS
a) Complexities for the Quadratic Map [32]

For the R-L symbol sequences generated by the quadratic map,
we have different behaviour in chaotic, periodic, intermittency,
and Feigenbaum points. In the chaotic domain, we have also to dis-
tinguish between Misiurewicz (band-merging) points and typical
chaotic points.

While all complexities are zero for periodic orbits, the EMC
(and the SC) is infinite at Feigenbaum and intermittency points.
The reason is that there the block entopies Hx diverge logarithmi-
cally. Thus the symbol sequences are there very restricted, but
checking such a sequence for correctness is very difficult (the
same holds, by the way, also for Penrose tilings of the plane).

For chaotic orbits, we have the problem (mentioned already in
the analog context of sophistication) that for sequences depending
on real parameters the forecasting complexity is infinite: when
forecasting a very long sequence, it helps in using the control
parameter a with ever increasing precision, leading to a divergent
amount of work per symbol.

This does not apply to the EMC and to the SC. Block entropies
seem (numerically) to converge exponentially, so the EMC seems to
be finite in general [33]. Also, there exists a simple algorithm
for approximate grammars which accept all sequences which contain
no forbidden words of length € n with any n [34]. Except at Misiu-
rewicz points, the size of these graphs diverges with n (so that
the RLC is infinite), but numerically the SC seems to stay finite.
Thus one needs only a finite effort per symbol to check for gram-
matical correctness, for nearly all sequences with respect to the
natural measure [32].
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b) Complexities of Grammars for Cellular Automata [29, 15]

Wolfram [29] has studied the grammars of spatial strings si,
i ¢ 2, generated by l-dimensional CA's after a finite number of
iterations (the input string is taken as random). He finds that
after any finite number of iterations the laguages are always
regular (this holds no longer if one goes to CA's with 22 dimen-
sions, or to the strings after infinitely many iterations [35]).

One finds that for some rules the RLC increases very fast
with the number of iterations. In many cases this corresponds to
an actually observed intuitive complexity of the generated pat-
terns, but for some rules (like, e.g., rules 32 or 160) the gene-
rated patterns seem rather trivial. In these latter cases, there
is indeed a large difference between the RLC and the SC, the
latter being very small [15]. Thus, most parts of the determinis-
tic graphs needed to scan a sequence is hardly ever used there.

c) Forecasting Complexities for Cellular Automata [31]

The only class of sequences for which we were able to compute
finite forecasting complexities exactly were sequences generated
by CA's after a single iteration step. Cellular automata with just
one iteration are of course ridiculously simple systems, and one
might expect very trivial results. But this is not at all so.

Assume there is a random stream of input bits, and at each
time step one output bit is formed out of the last 3 input bits.
The question one is asked is to predict as good as possible the
probbilities pi (0) and pi (1) for the i-th output bit to be 0 or 1,
based only on the knowledge of previous output bits (in physics
language, the input sequence is a "hidden variable").

It is possible to give the optimal stategy for such an fore-
cast [31]. It involves constructing a deterministic graph similar
to those needed for regular languages, but now to each link is
attached, in addition to the label s, a forecast p(s). The FC is
then given by the Shannon formula (2.8). While it is true that the
FC is finite for all elementary CA's, the graphs are infinite for
many rules [31]. Part of the graph for rule 22 (described in more
detail below) is given in fig.9. For more details, see ref.[31].

d) Effective Measure Complexity for Cellular Automaton i22 [13]

The most interesting application in view of possible self-
generation of complexity is to the CA nr.22. In this cellular
automaton, rule for spin updating is that 001, 010, and 100 give
"1", while the other 5 neighbourhoods give "0". When starting from
a single "1", one get a Pascal's triangle, and when starting from
a random configuration one finds a pattern (£ig.10) which at first
sight looks not very interesting.
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A closer inspection shows, however, that the block entropies
for horizontal and for vertical blocks in the stationary state
(reached after several thousand iterations) do not seem to in-
crease linearly with the block length. Otherwise said, the diffe-
rences hy seem to decrease like powers of N (fig.11l), such that
both temporal and spatial strings have zero entropy in the statio-
nary state. This is very surprising as the block entropies do
diverge. Hence these strings are neither periodic nor fractal nor
quasiperiodic nor random. Indeed, to my knowledge they are not
like anything which other authors have encountered anywhere else.

The interesting aspect of this result is that it is very
similar to an important aspect of life. Life is self-organizing in
the sense that it leads to very special forms, i.e. from a wide
basin of attraction it leads to a much narrower set of meaningful
states. But this alone would not yet be surprising. The surprising
aspect is that this attraction is not at all rigid. Although the

0.9

0.8 -

entropies
+

RULE 22 "

0.6 [~

t | | Lt t 11ttt

1 5 10
N

Fig.1ll: Entropies hy for spatial sequences in bits (dots) and time
entropies in natural units (crosses) in the stationary
state of CA 22.

"attractor" is very small compared to full phase space, it is
still huge and it therefore allows for a wide spectrum of behavi-
our. It is exactly this which is shared by rule 22. Having zero
entropy, the attractor is extremely constrained, but having diver-
gent block entropies it is still vast.

I have looked at a number of other sequences whether they
show similar long-range correlations, leading to a similarly small
entropy. One does not seem to encounter this in symbol sequences
generated by dynamical systems with few degrees of freedom. One
does however encounter it to some degree in natural languages. In
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written English, e.g., the entropies hn decrease from 4.4 bits per
character for N=1 to less than 1 bit for large N [23]. Finally,

an attempt to analyse in a similar way DNA sequences failed due to
extremely high repetition rates and non-stationarities. While the
assumption that written English forms an ensemble with well-
defined statistical properties seems reasonable, this is not so
for DNA.
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