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INTRODUCTION TO CELLULAR AUTOMATA COMPUTING, NEURAL
NETWORK COMPUTING AND TRANSPUTER BASED SPECIAL
PURPOSE COMPUTERS
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D-6900 Heidelberg, Philsophenweg 19, FRG

?2ABB Asea Brown Boveri, Corporate Research Heidelberg
D-6900 Heidelberg, Eppelheimerstrasse 82, FRG

Abstract: We give a brief introduction and review the basic aspects in the theory of
cellular automata and neural network computing from the viewpoint of a physicist.
We also present the main applications for physical problems, like Ising dynamics and
hydrodynamics simulations by cellular automata evolution. In the case of neural
networks we discuss the Hopfield model with its relation to the theory of spin glasses
and report on multilayer networks. In addition we show how a reconfigurable network
of transputers can be used as a highly flexible and fast simulation machine. Hardware
configuration and software implementation for a neural network model are
presented.
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Zur Selbstorganisation ebenso fahig wie zur
Selbstreproduktion sind Zelluldre Automaten ein Modell
der Welt und doch zugleich auch eine Welt fur sich.'®

1. Cellular Automata Computing

Cellular Automata (CA) are simple mathematical objects introduced in the early
fifties by John von Neumann and Stanislaw Ulam to abstract the logical structure of
Life. Thus beside many pure mathematical papers on the theory of automata, one of
the earliest applications was for biological systems. Physicists become active in this
field only relatively recently, motivated in part by the expected proliferation of
special purpose computers built for stochastic simulations of very highly time
consuming problems and partly by the study of models for neural networks and
failure-resistant computing machines. The popularity in the physical community
arises later from the work of Stephan Wolfram on deterministic CA and from the
Game of Life discussed extensively about 1970 in the columne Mathematical Games
of Scientific American by Martin Gardner and in the famous book Winning Ways for
Your Mathematical Plays of Elwyn Berlekamp, John Conway and Richard Guy. Since
then, CA have been established as unique tools to analyze the emergence of
organization, complexity and pattern formation, including applications like dendritic
crystal growth, reaction diffusion systems, Ising models, and fluid patterns in
hydrodynamics. CA are versatile enough to offer analogies with almost all the topics
presented at this workshop, especially in complex behaviour, chaos and neural
networks.

1.a. Basic Theory and Phenomenology

CA may be used as simple models for mathematical idealizations for a wide variety
of physical, biological and computational systems. They can be considered as
discrete dynamical systems, constructed in a very simple way, however, able to
show very complex self-organizing behaviour arising from cooperative effects. Their
main features are:

* Discrete in space: CA consist of spatial cells or sites arranged on a discrete grid
or array.

¢ Discrete in time: The values of the cells evolve in a sequence of discrete time
steps.
Discrete states: Each cell can take on only a finite number of possible values.

L] Homogeneous states: All cells are constructed identically and are arranged in
a regular array.
Synchronous updating: All cells are updated in parallel.
Deterministic rule: Each cell is updated according to a fixed, deterministic rule,
depending in space only on the values of a local neighbourhood of cells around
it and depending in time only on the values for a fixed number of preceding
steps.
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In the most simple case, a CA consists of a line of cells with each cell carrying a
value either 0 or 1. For example, the rule could take the value of a cell at a given time
step to be the sum modulo two of the values of its two nearest neighbour cells on the
previous time step. E.g. if we start from a single seed, then the pattern is found to
be selfsimilar with fractal dimension log,3. Even starting with a random sequence
of initial cell values, say each with equal probability, the dynamics leads to complex
patterns due to correlations. For the considered one dimensional case we can
generalize the rules, allowing for the cell values integers in the range 0 through
k —1 with a spatial neighbourhood of at most 2r + 1 cells. These systems may
evolve by iteration of the mapping

j=r

a() = 1{Z gay -1} . (1)

where a(f) is taken to denote the value of the cell at local position i at time step t. The
a; are integer constants, taking on «; = k" for the above discussed situation and the
function f takes a single integer argument. Special rules giving equal weight to all
cells in a neighbourhood, can be defined by setting o, = 1 and are termed totalistic
rules. Let us return to our example from the beginning with k =2 and r=1. We find
the eight possible states at time t of the three adjacent states at time t — 1 as:

111 110 101 100 011 010 001 000 2)
0 1 0 1 1 0 1 0 '

This is one of k*"' =256 possible rules, coded binaer as 01011010 and thus in
decimal termed rule 90. Another example rule 22, coded as 00010110, belongs to the
subclass which can be characterized by a totalistic rule: If according to eq. (1) the
sum of the adjacent three sites of the previous time step is 0, 2 or 3, we have
a;(f) = 0 and on the other hand, if the sum is 1, we have a,(t) = 1. Thus this situation
can be characterized by the (totalistic) binaer code 0010, termed totalistic rule 2.
Stephan Wolfram has investigated all the possible rules for different situations in one
dimension with given small k and r. First he found empirical evidence for the
existence of four basic different classes of behaviour in CA, shown in typical
examples in FIG. 1.

Class 1: The chain becomes a homogeneous state.

Class 2: The dynamics forms simple localized time periodic structures.
Class 3: The evolution exhibits chaotic behaviour.

Class 4: The evolution leads to complex structures.

Patterns generated for the simplest one-dimensional CA with k =2 and r =1 do not
exhibit Class 4 behaviour. This complex behaviour is displayed only by CA that
involve more than 2 states per cell or a wider neighbourhood than 3 adjacent cells.
E.g. the approximate fraction of totalistic CA rules with f(0) = 0 belonging to Class 4
is6% fork=2,r=2andk=2,r=3and 7% fork=3.r=1.

Beside this phenomenological description one needs quantitative statistical
measures of order and chaos in patterns generated by CA evolution to distinguish
the four classes of behaviour, identified qualitatively above. Dynamical systems
theory gives us objective measures of complexity, like entropies and dimensions.
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FIG. 1. Typical examples for the four classes of CA behaviour for evolution from a
random startconfiguration. The cases shown are specified by totalistic rules 1302,
1005, 444 and 792, respectively, for k =3 (0 blank, 1 grey, 2 black) and r=1 . (From S.
Wolfram /7/)

FIG. 2. Information propagation generated by difference patterns obtained by changing
a single initial site value in the CA of FIG. 1. (From S. Wolfram /7/)
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Topolagical entropies provide characterizations of the number of possible
configurations N(n) of length n that accur in the system

S() = - logN(n) | 3)

measure entropies reflect those that are probable

1Lk
S(n) = ——4 ?p,-iogkp,- (4)

with probability p,. If we consider the CA configurations as elements of a Cantor set,
then the limiting entropies give respectively the Hausdorff and measure dimensions
of this set

d" = lim S(n) (5)
If the sequences are considered as messages we can make contact with the capacity
and the Shannon information contgnt. A tentative definition of the four classes of
CA behaviour may now be given in terms of measure dimensions. Investigating the
number of possible configurations of all values in some space N(n = X) or time
region N(n = T) we find for Class 1 CA d* = d" = 0 since the limit set contains only
a finite number of configurations. Class 2 CA have zero temporal measure
dimension, since it almost always yields periodic structures, but has a spatial
measure dimension d® >0 . For most Class 3 CA d™ decreases with time, giving
0 < d™ < 1, and suggesting that a fractal subset of all possible configurations occurs.
Class 4 CA give rise to patterns with complicated structure, that typically expands
highly irregular with time, prohibiting the definition of dimensions. Thus dynamical
system theory provides analogues to CA: simple rules exhibit simple limit points
(Class 1) or limit cycles (Class 2), while complex rules exhibit chaotic behaviour
analogous to that found with strange attractors (Class 3). No direct analogue can be
identified for Class 4 CA among continuous dynamical systems.

Information propagation, characterizing the stability or predictability of CA
behaviour under small perturbations in initial configurations, is another important
property of CA. FIG. 2 shows examples for patterns of differences generated by
changing a single cell value in the initial CA configuration. The characteristic effects
obtained allow a further classification scheme of the four different classes of CA.

Class 1: No effect on the final state.

Class 2: Changes only in a finite space region.

Class 3: Expands in space and time at an asymptotically constant rate.
Class 4: Shows irregular changes, effectively unpredictable.

® & o 9

This behaviour, describing the speed of information propagation can be related to
the Lyapunov exponents for the CA evolution, which measures the rate of divergence
of trajectories in the space of configurations. A number of inequalities can be derived
between entropies and Lyapunov exponents implying an important connection
between the static properties of CA and their dynamic behaviour. Here we have only
described the most simple examples for direct statistical measurements of complex
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behaviour in CA configurations. Beyond entropies and Lyapunov exponents,
correlation functions, power spectra or Fourier transforms provide other statistical
measures.

Such quantities suggested by information theory allow only a rough
characterization of CA. However, formal language theory and computation theory
give a more complete description of complex behaviour in CA. These theories may
in general be expected to play a role in the theory of non-equilibrium and
self-organizing systems analogous to information theory in conventional statistical
mechanics. Sets of configurations generated by a CA rule are described as formal
languages in computation theory terms. Each configuration corresponds to a word
in a language formed by definite grammatical rules. Its evolution is considered as a
computation, which processes information specified as the initial state. The output
of the CA evolution for Class 4 CA, however, cannot be predicted by an effective
short cut, that allows a more efficient computation than the evolution itself. This
means, there is no effective way to determine the evolution from a given initial state
beside the explicit simulation. Or in other words, no finite formula can be given to
describe Class 4 CA behaviour, and many infinite time limiting properties would be
formally undecidable. As a consequence, the long time behaviour t — oo of the
entropy of the limiting set of CA configurations is in general not finitely computable.
The question whether a Class 4 CA with a given finite initial configuration dies out
or not, may be equivalent to the halting problem for Turing Machines. Some of these
finite structures can have very long histories before their demise. From the formal
equivalence between CA and Turing Machines it is strongly suspected that Class 4
CA would be capable of universal computation. However, this has only be proved
in some simple cases, the most prominent one is the 2-dimensional CA Game of
Life. In this context Stephan Wolfram writes:

The possibility of undecidable questions in mathematical models for physical
systems can be viewed as a manifestation of Gédel’s theorem on undecidability in
mathematics, which was proved by Kurt Gddel 1931. The theorem states that in all
but the simplest mathematical systems there may be propositions that cannot be
proved or disproved by any finite mathematical or logical process.

And von Neumann said in his laudatio on the occasion of the presentation of the
1951 Einstein Award for Kurt Godel: Kurt Godel hat gezeigt,

daB gewisse mathematische Theoreme mit .den akzeptierten exakten Methoden der
Mathematik weder bewiesen noch widerlegt werden kénnen. Mit anderen Worten
hat er das Vorhandensein von unentscheidbaren mathematischen Sitzen bewiesen.

Then he continues:

Es muB der wichtige Punkt betont werden, daB dies kein philosophisches Prinzip
oder eine einleuchtende intellektuelle Einstellung, sondern das Resultat eines
strengen mathematischen Beweises von besonders raffinierter Art ist.

This shows that the understanding of complexity and its origins is a fundamental
challenge for modern science. The considered CA models, which are as simple as
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possible in their basic construction, yet capture all essential mathematical features
necessary to reproduce the complexity that is seen. Their overall behaviour may be
complex enough to reproduce the complex phenomena observed in many physical
and other systems, like e.g. partial differential equations (fluid dynamics), finite
difference equations (spin systems, lattice dynamical systems), feedback shift
registers, systolic arrays, Turing Machines, random Boolean networks and neural
network models. Only two examples of this incomplete list will be considered very
briefly, the simulation of Ising spin systems in the microcanonical ensemble and
pattern formation in 2-dimensional hydrodynamic systems. In the next Chapter in
some more detail neural network models will be presented.

1.b. Ising Dynamics Simulations by CA Evolution

Numerical simulations of statistical systems has usually been carried out by
stochastic methods, especially the Metropolis Monte Carlo algorithm, and they are
a major tool in the study of phase transitions and critical phenomena. Fast
simulations of Ising models are here of special interest in the context of spin glasses,
nucleation and random field systems. A new deterministic method was originally
proposed by E. Fradkin, G. Vichniac and Y. Pomeau, as an example for a CA. Since
their algorithm is deterministic, random numbers or only required for setting up the
initial spin configuration. Furthermore the algorithm avoids exponential Boltzmann
factors required by the Metropolis Monte Carlo method and permits integer
programming with multispin coding, leading to a consequent increase in computer
speed. The largest Ising system ever studied with 15.130.968.192 spins was done
with this method by J.G. Zabolitzky and H.J. Herrmann with updating rates of about
4300 million of spins per second on a CRAY-supercomputer.

The idea of the Ising dynamics simulation by CA evolution, is based on reversible
automata, which are backward as well as forward deterministic, that means that each
configuration has a unique predecessor. This subclass of CA has an exact time
invariant quantity, which plays the role of energy. With the ergodic assumption, one
gets a model for Ising spin systems. Let us become more specific. Devide a square
or cubic lattice into two independent sublattices A and B with spins ¢2#, having
Boolean values 0 or 1 on each lattice site or cell. Then at alternating time steps a
whole sublattice is simultaneously updated in the following way:

If and only if the spin i has as many up as down neighbours it is flipped, but only on
one sublattice at a time.

Thus this is a description for the dynamics of an Ising model in the microcanonical
ensemble with conserved energy, called Q2R-rule.

The crucial question whether the Q2R-CA can really simulate the Ising model was
considered very recently. We know from CA theory that the system, or a part of it,
can settle into periodic motion, without ever reaching a time independent
equilibrium. Later it was shown, that the Q2R algorithm is indeed not fully ergodic.
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FIG. 3. Ising dynamics simulation by CA evolution: Equilibrium configuration of the 2-D
Ising model above the critical energy (left) and at the critical energy (right). (From T.

Toffoli and N. Margolus /12/)
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FIG. 4. Hydrodynamics simulation by CA evolution: Von Karman street behind a flat
plate at 5000 time steps (Re ~ 90) with wind tunnel/ boundary conditions, the mean flow

has been subtracted. (From D. d’"Humiéres and P. Lallemend /58/)
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In other words, Q2R does not explore the whole phase space and certain parts are
not accessible. To overcome such problems, at least one has to introduce a certain
degree of randomness into the algorithm e.g. by randomly flipping some spins over
long time intervals. A generalization of this Q2R algorithm was introduced by M.
Creutz. The basic idea in the CREUTZ and Creutz-like algorithms is to introduce one
(or a small number of) demon(s) which act as a movable heath bath. The updating
of the local spins conserves the total energy of the system plus demon. Thus for a
small number of demons compared to the total number of degrees of freedom in the
system, again we have a simulation in the microcanonical ensemble.

1.c. Hydrodynamics Simulations by CA Evolution

On a microscopic scale physical fluids consist of discrete particles, forming large
assemblies of atoms or molecules, which are described by the laws of continuum
mechanics, e.g. such as the Navier-Stokes and continuity equations. Thus from the
dynamics on a microscopic level we can derive rules, equivalent to those for CA,
describing discrete approximation to hydrodynamics. The most simple fluid model
is the HPP lattice gas, which has an underlying 2-dimensional square lattice with unit
bonds or links. At the most 4 particles with unit speed can be located at the vertices
having velocities of unit modulus pointing in one of the four possible link directions.
In addition we have the exclusion rule, that no two particles occupying the same
vertex with the same velocity are allowed. The evolution proceeds synchronously at
each vertex in discrete time steps, where the particles first propagate and then
collide: Each particle moves one link to the next vertex to which its velocity was
pointed. Then any configuration of exactly two molecules moving in opposite
directions (head-on-collisions) is replaced by another one, deflected 90° from the
path they were following. This HPP-automaton has been shown numerically to relax
to thermodynamic equilibrium. However, the underlying lattice produces a symmetry
which is insufficient to insure the isotropy of the fourth degree tensor, relating
momentum flux to quadratic terms in the velocity. This unisotropy, a ghost of the
lattice, yields via coarse graining macroscopic hydrodynamics which departs from
the Navier-Stokes equation. This blemish is removed by the FHP-automaton, a
triangular lattice gas model with hexagonal symmetry and hexagonal lattice gas
rules. The setup is the same as in the HPP-automaton except for different collision
rules, which can be defined in different versions, each conserving particle number
and momentum. It is worth to note, that this model can be made nondeterministic,
choosing the outcome defined by a given collision rule at random.

These CA models for lattice gas hydrodynamics compete with the traditional
computational methods. The novelty of the CA approach is the discrete version of the
theory, using only binary arithmetic instead of high-precision floating point
arithmetic, required by conventional approaches. Moreover, complicate boundaries,
barriers and container walls are more easily implemented by special collision rules.
Finally, macroscopic hydrodynamics is obtained by coarse graining the lattice gas
over a few hundred particles. In this context, however, the particles cannot
interpreted as real atoms or molecules, moreover they play the role of idealized
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super-particles, accurately enough to reproduce hydrodynamics in the limit of large
systems and for incompressible flows. So far we have considered lattice gas models
for 2-dimensional hydrodynamics. The extension of lattice gas models to three
dimensions is not straightforward since there exist no regular lattices with the
required symmetries. The study of appropriate models is under current
investigation.

2. Neural Network Computing

Neural network computing and connectionism denote a new multidisciplinary
research paradigm concerned with the analysis and construction of simplified
models of the humain brain. The idea to construct intelligent machines is relatively
old and goes back to the late fifties to John von Neumann's uncompleted work Die
Rechenmaschine und das Gehirn, which was also triggered by principles of neural
information processing. Another classical field in theoretical informatics, the theory
of finite automata which makes the contact to the previous Chapter, has its origin in
a neural network model: The classical McCulloch-Pitts-neuron. Such simple
networks define finite automata and are related to regular languages. Later, about
1960, F. Rosenblatt published his famous perceptron concept, which was
investigated intensively by M. Minsky and S. Papert. They pointed out key limitations
of perceptrons that led to mass abandonment of this line of research. However, in the
70’s, a renewed interest was borne and many researchers were working in this field,
e.g. Amari, Anderson, Feldman, Fukushima, Grossberg, Hinton, Kohonen,
McClelland and Rumelhart. Their work lead currently to an explosion of interest:
We estimate that research in this area has increased at least by two orders of
magnitude over the last five years. Both literature and number of meetings focusing
on artificial neural systems are growing at an amazing rate.

Neurobiologists, neurophysiologists, mathematiciens, physicists, psychologists,
computer scientists and engineers are studying and formulating theories with the
goal to understand better how brains work and are designing devices and computers
that emulate some of their typical computing attributes. Most neuroscientists accept
that the brain’s power arises from the huge number of relatively simple neural cells,
that are highly interconnected and process information in parallel. The cortex
contains over 10'° such neurons, each connected to thousands of others. All of our
knowledge is probably stored in the strengths of these synaptic connections. The
inputs make contact with the receiving neuron at the synapses and releases
neurotransmitters, which influence the electrical excitability of the receiving cell at
this point. The neuron collects all the different inputs and either decides to fire an
impulse or not, depending on a certain threshold value. Patterns that may occur
repeatedly will eventually become stable representations or associative memories
of the inputs that give rise to them. Thus the network produces a dynamical system
of firing patterns. Furthermore the network needs to be able to store new
information. A widely accepted assumption is, that learning modifies the efficiency
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of the synapses. Thus the learning process is described by rules about how the
connections in a network should change as a result of experience.

As shown by examples, electronic and optical realizations of neural networks are
capable of performing various and surprising processing functions, such as
associative memory and learning systems, combinatorial optimization, source
encoding and channel decoding, pattern recognition and image restoration, speech
recognition and synthesis, control of robot motion. and many others. The basic
elements of such artificial neural networks are: Network properties, cell properties,
dynamic properties, and learning properties:

® Network Properties: A neural network model consists of autonomous
processing units called neural cells or neurons which are joined by lines having
a given weight called synaptic efficiencies. The network structure can be
classified according to its topology: Simple networks, e.g. of the Hopfield type,
with only input and output units, and hierarchically structured networks with
cells between intermediate layers, called hidden units, which become necessary
for more complex processing functions.

® Cell properties: Neural cells compute their activation or output from the
activations of the other cells directly connected to them and the corresponding
synaptic efficiencies for these connections. Cell activations may be discrete,
taking on values {0,1} or { —1,0,1} , or continuous, assuming values in the
interval [0,1} or [ —1,1].

¢ Dynamic properties The dynamics of neural cells can be chosen in different
ways, e.g. parallel or synchronous and sequential or asynchronous. In the first
case all cells are updated at the same time, and in the second case one after
another according to a given rule.

® Learning properties: Learning is an adaptive self-organizing process, which
makes it very intriguing, complex and difficult to understand. It is widely
accepted that learning is achieved by changing the efficiency of the synapses.
Hopfield-like models start with a given input information, whereas networks with
hidden units learn from examples.

2.a. Hopfield Model and Spin Glass Analogy

To become more specific let us consider the Hopfield-Little model, a
thermodynamic extension of the McCulloch-Pitts program for the realization of the
basic features of a neural network. The model consists of NxN mutually
interconnected neurons with a phase space of 2" states represented by outputs {o,}
taking on values +1 (active) or -1 (inactive neurons). The dynamics of these neurons
can be assumed to be parallel (Little dynamics) or sequential (Hopfield dynamics),
whereas the performance of both dynamics appears to be similar. There are still
other possibilities and we like to mention the dynamics proposed by Horner, where
that neuron is updated with the largest local field pointing in opposite direction. The
local fields h, are evaluated from the inputs J o,, which each neuron ¢, receives from

i
all the other neurons ¢;, and a bias input (), associated with itself
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h(t) = %Ji,-a,»(t) ro ®)

where the synapses J; describe the strengths or weights of the connections. At given
times switches are turned on or remain off, and the inputs h, are fed back to
corresponding neurons o; to change their states or to leave them fixed, according to
a given threshold rule g(h), so that

ot +4dt) = g(h(t)) (7

where g(h) = — 1 for h <0 and +1 for h < 0. Thus neurons take binary values either
+ 1 and the binary outputs are sent again out or distributed through the
interconnection network to regenerate new inputs. Learning is performed by an
appropriate choise of the synapses Jj. The relation between the J; ‘s and stored
patterns or memories, which is the encoded information in the system, will be
termed the learning rule. Hopfield’s model employs the so called Hebb-rule, where
the p —memories {¢4}, i=1, .. N, u=1,.. p, & =41, are learned at the very
beginning after the recipe

1 P
ye S5y ®

It is evident that this is a rather simple form of learning and more sophisticated
learning rules can be constructed.

Hopfield has shown that if J; = J;, neurons always change theire states in such a

manner that they minimize an energy function defined by

E = —%”EG,JUU] - ’ZB,;U_,' (9)
and stop at minima of this function. Now we are coming closely related to the
extensively studied problem of spin glasses. In fact we have precisely the same
energy function and the same equation describing relaxational dynamics of Ising
spins at zero temperature. The dynamic rule (7) in spin glass theory means, that the
energy (9) is described by flipping spins g, aligning with their internal field b, , eq. (6),
until a stable state or local minimum is reached. Translating this back to neural
networks, we see that stable states are associated with stored patterns. Building an
associative memory with high storage capacity, one has to construct an energy
function £ with a connection matrix J;, leading to many local minimas, precisely the
property of spin glasses. However, the typical question asked is rather different in
neural network and spin glass theory. In spin glasses the connection matrix J;
according to a given probability distribution P(J,) is given and one investigates the
phase space. For associative memories the situation is just the opposite. For a given
set of pattern pixels {{#} in phase space, one has to construct the connection matrix
J; via a learning rule in such a way, that the resulting energy function will have local
minimas at positions {4 Nevertheless, methods of statistical mechanics and spin
glass theory can be applied to such neural network models and can help to answer
questions e.g. about the memory capacity and the basin of attractions for the stored
patterns. The first question can be answered by analytical methods, showing that
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M ~ 0.14N patterns are memorized only with minor errors, where in the limit
N — oo the system has a sharp transition at M/N = 0.144. The second question was
investigated numerically, demonstrating that the size of the basin of attractions
depends on the amount of stored patterns and increases with decreasing M/N .

Elements of the presented model go back to the work of Cooper, Hebb, Kohonen,
Steinbuch and many others. Since its introduction in 1982 the considered Hopfield
model has been analyzed, modified and-improved in many different directions by
people of the spin glass industry. Estimates of the storage capacity, memories for
correlated and hierarchically structured information, sequences of patterns, learning
by clipping off and dilution of synapses, asymmetric connection matrix elements,
learning and forgetting, etc. were investigated. This is only a very incomplete list of
recent advances by physicists in this field and we apologize the developments which
we have not mentioned so far.

2.b. Multilayer Networks

The most simple case, that of a single layer neural network, known as the
perceptron model, is well investigated and a simple theory exists. Perceptrons
consist of an array of input units, taking values 0 or 1, and another array of output
units, which have in between a single layer of connections J,. For a given connection
matrix J; and values for the input units ¢, the net activity b, (identified as local fields
in the previous section) into output unit / is defined as h, = Z,J,0; , from which the
state of unit i can be determined according to o, = @(h,). where ©(x) is the unit step
function. Learning results from a simple learning heuristic , also called supervised
learning process, which gives the network the ability to form and modify its own
connections in ways that often rapidly approach a performance optimum. This is
done by the delta learning rule (or Widrow-Hoff rule), which determines the
appropriate values of the connection matrix J, in the following way: On a given trial
the network first generates an output pattern ¢© in response to the input pattern o
of a training pair. This defines an error signal (or delta) with respect to the desired
output or training target ¢ |, which is used to adjust the connection matrix, in that
way to reduce the error by a simple gradient or steepest descent procedure

Ay = e(af" - ool | (10)

where ¢ represents a learning rate, controlling the size of the discrete learning steps.
Thus perceptrons can learn to recognize patterns by adjusting the strengths of
connections between the arrays of input and output units. However, certain patterns,
e.g. the exclusive disjunction or parity function cannot be computed by single layer
perceptrons. This can easily be understood. As an example we consider the
computation for an exclusive-or (XOR) on two inputs A and B, linked to a single
output with synapses J, and Jg , respectively. We can consider four different cases:
) A=B=0, ij) A=0, B=1, iij) A=1, B=0, and iv) A=B=1. Case i) requires
®(0) = 0, case /i) requires J, > 0 so that ®@(J,) = 1, iii) similarly with J,, and case iv)
Jy+J <0, so that ©(J, + J;) =0 . This contradicts the conditions for case ii) and
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FIG. 5. A neural network with a hidden unit that recognizes an exclusive disjunction
(XOR). Each unit fires when its threshold (given within the unit) is exceeded by the sum
of its inputs.

FIG. 6. Block diagram of the INMOS T800 transputer, a 32bit CMOS microprocessor
with a 64bit floating point unit. It has 4Kbytes on-chip RAM for high speed processing
and for communication links. The instruction set achieves efficient implementation of
high level languages and provides direct support for the OCCAM model of concurrency.
(From INMOS /120/)

FIG. 7. Example for a link configuration of 4 Transputers. Note the selfsimilar structure.
(From D. Wartz and G. Hartung /127/)
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iii). From this Minsky and Papert concluded, if the perceptron could not compute
such simple functions it could hardly perform the complex tasks required for
perception and intelligence.

However, if we add one more layer or multiple layers of hidden units between the

array of input and output units, the computational power of the artificial neural
network rises abruptly, and Minsk and Papert’s critique no longer applies. The
network solution for the XOR-problem with one hidden unit is shown in FIG. 5. Thus
through hidden units the network is able to simulate logic functions, like e.g. XOR,
OR, AND and the MAJority rule. Note, however, the strengths of the synapses,
necessary to implement these funtions are not unique. Feedforward neural nets of
the 80’s are the best known examples for adaptive multilayer networks and the
back-propagation method of D. Rumelhart and coworkers is the most prominent
member of this class of models. The equation from which we can evaluate the
synaptic weights is similar in form to that of the delta-rule, but the back-propagation
rule provides a more general means of computing the delta of a neural unit. The
process of back-propagation consists essentially of two parts: First, the input into the
network is forward-propagated until the output is created. Secondly, the output will
be compared with the learning input, and the resulting error will be back-propagated
through the system, so that the synaptic weights will be adjusted starting from the
output array in direction of the input array.
A = e(0l” ! g'(net) s (11)
where g’ is the derivative of the activation function, operating on the sum of the
inputs in order to determine the unit’'s output. The real power of this
back-propagation rule arises of its assignments of deltas to hidden units that receive
no direct feedback from training or learning patterns in the outside world. Thus, like
the basic delta-rule, back-propagation is a gradient descent heuristic, however,
modified for internal units again based on discrepancies between the values of
output units and a training pattern.

3. System of Parallel Organized Transputers (SPOT) for Cellular
Automata and Neural Network Computing

Large systems of CA and neural network models have a large number of possible
parameters and their simulation requires powerful computers. In addition they
process immense quantities of information in parallel, which is handled by serial
computers less efficiently. On the other hand if you have your own special purpose
computer you have not to share the machine with other users and you will have no
limited access, resulting e.g. in a restricted number of CPU hours. The financial
aspect is also important, compared with 2 x 10’ US$ for a CRAY-2, you need only
tools and components for your special purpose computer, which are usual less than
105 US$. The third argument concerns the speed. Now there are highly integrated
ultrafast chips on the market, so that special purpose computers can be as fast or
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even faster than a supercomputer. These three points are the reason why special
purpose computers were developed during the last couple of years. Now the
situation is again changing, and so called Neurocomputers, hardware on which
neural nets can be implemented efficiently, are becoming commercially available.
These machines are usually coprocessor boards that plug into conventional personal
computers or work stations.

One of the first special purpose computers that have been built was the Cellular
Automata Machine (CAM) developed at MIT in Cambridge. For the simulation of
hydrodynamic problems a similar machine was constructed at ENS in Paris. On the
side of neural network computing many prototype machines were constructed based
on usual microprocessor concepts. Recently there appeared a new RISC-
microprocessor on the market, the Transputer, which seems to be very suited for
powerful low-cost special purpose mini-supercomputers. The Parsytec and Meiko
Computing Surfaces are machines which are based on the Transputer technology
and which are commercially available. CA and neural nets were succesfully
implemented on these computing surfaces. Our machine SPOT, a system of parallel
organized transputers, makes also use of the transputer microprocessor concept,
and is a highly flexible and reconfigurable personal mini-supercomputer system,
which allows both, CA and neural network computing in a very efficient way.
Flexibility and reconfigurability guarantee that several type of models of CA and
neural nets can be implemented which is important in research, application studies
and early applications.

3.a. Hardware Configuration

We have investigated hardware configuration and software implementation, which
allow for simulations on a massive parallel computer architecture. To realize this we
were looking for new routes and have chosen the transputer as the central unit for
our simulation machine. The INMOS T414 transputer is a powerful 32-bit
multiprocessor capable of performing about 10 million instructions per second and
carrying 2-Kbytes of fast on chip memory for high speed processing. The block
diagram of the new T800 transputer is shown in FIG. 6. In contrast to the T414
transputer this microprocessor has in addition a 64-bit floating point unit and a
doubled on chip fast memory. The main advantage of these chips in contrast to usual
microprocessors are the four bidirectional communication links with a capacity up to
20-Mbits/sec supporting communication between programs running on different
transputers. A simple possible configuration for 4 transputers is shown in FIG. 7. and
many other topologies can be constructed like square and toroid arrays, trees, etc.,
depending on the considered model. The transputers allow for a direct point-to-point
communication between these links without any data bus. So in contrast to usual
multiprocessor systems connected by a shared bus, problems by bus contention are
unknown in multi-transputer systems. Also no additional control logic is required to
control sharing of the bus. Each transputer can address 4-Gbytes and is connected
via an own and independent data bus to additional off-chip memory. It is worth to
note, that in contrast to a large global memory, the overall channel capacity is
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FIG. 8. Computing surface module SPOT. Two connected SPOT’s can be seen

operating together with an additional external host environment. (From D. Wiirtz and
G. Hartung /127/)
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FIG. 9. Standard computing element with one transputer, 256Kbyte external memory
and other device support. (From D. Wartz and G. Hartung /127/)
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proportional to the total number of transputers preventing an overtax of the data bus
capacity.

The INMOS transputer was designed to implement the OCCAM model of
concurrency. OCCAM is a high level language and is the transputer’s native tongue.
The language enables a system to be described as a collection of concurrent
processes, which communicate with each other through channels. Programs are built
from primitive processes and then are combined to form sequential or parallel
constructs. Each channel, which can be either a software construct or mapped onto
physical links between transputers, provides a one way connection between two
concurrent processes. Independent processes can be executed in parallel, each
having its own physical region of program and data storage. So the transputer
processor and the OCCAM language are ideally suited to one another.

Since the transputer was introduced by INMOS this processor.has found many
applications as well in universities and industry. Edinburgh is one of the most
famous universities where highly concurrent computers for physics are exploited
and a machine is planned containing over a thousand of T800's. To our knowledge
smaller projects are under current investigation at University of Southampton,
Mainz, and Bonn, essentially all planning to solve physical problems which were not
accessible so far to available supercomputers. Also large supercomputers of the fifth
generation are under construction on the basis of transputer networks. In industrial
projects the transputer may offer new routes in areas like molecular modelling, radar
signal recognition, helicopter rotor control systems, robotics and artificial
intelligence based language research. These are only a few examples. At ABB
Corporate Research Heidelberg the transputer was investigated for distributed real
time systems in process control based on flexible multiprocessor systems. A
prototype system SPOT (System of Parallel Organized Transputers) was developped
consisting of up to 25 transputers, to investigate the possibilities for applications of
this rather new technology. Therefore the architecture of the transputer based
computer system SPOT was kept highly flexible, which makes it possible to
reconfigurate it easily for special purposes like neural network simulations.

All computing elements are housed in a computing surface module, see FIG. 8,
which consists essentially of two parts: the host environment and an assembly of
standard computing elements with a capacity of 24 boards. The computing elements
of different modules can be configurated together as if they were in the same
module. So the module can be considered as a 200-MIPS personal supercomputer!
The host environment consists of an integrated IBM-XT (compatible) personal
computer with display and mass storage element. Furthermore it involves the INMOS
standard board B004 with the master transputer and 2-Mbyte on board memory. The
standard computing elements, as shown in FIG. 9 are boards, consisting of one
transputer T414 or T800 with 256-Kbyte of local storage, an interface to the
configurable communication network and other device support. Thus each board can
be regarded as a powerful 32-bit computer in its own right. The links of the individual
boards are connected together via lines on a switchboard, providing a full crossbar
switch between the links of different transputers.
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3.b. Software Implementation for a Neural Network Model

-«

Our aim was to construct a simulation machine that, allows to investigate
memories with following properties: content addressable, associative and fault
tolerant. From our machine we expect, that it can solve wide classes of problems.
Finally we demand for fast retrieval from which we conclude that the network should
operate in a massively parallel fashion. In the following we investigate essentially the
last point and present as an example the software implementation for Hopfield like
neural network models.

The main task required for neural network simulations is the individual updating
of the spins or neurons according to eqs. (6,7). First let us discuss the paraliel
Little-dynamic. The calculations performed for each spin are completely independent
so they can be done in any order and on any number of processors. One way of
distributing the work to a number of 21 processors is schematically illustrated in
FIG. 10. The whole system consists of the master transputer in the host environment,
2 control transputers and 18 work transputers. Their link connections are shown in
FIG. 11. As already described, neural network models are intrinsically parallel and
map well onto the presented processor topology. Each work transputer needs only
the data access to 1/18 of all the elements of the synaptic matrix J; and also updates
1/18 of the neurons according to

O'ma — g(nzﬁujmanﬁ()'np) 3 (12)

where the latin letters label the processors and the greek their part of the connection
matrix elements, which are needed for updating their part of neurons. So we keep in
the local memory of each transputer 1/18 of the J, matrix elements and in addition
the whole set of neurons.

The information flow between the workers and the two controllers is shown in FIG.
11. After updating of 1/18 of the neurons in each work transputer (a0,a1,a2, ...,
f0,f1,f2) the information is sent around in each group (a,b, ..., f) over the links as
shown in FIG. 11. After this we have in each work transputer group the information
of 3/18 of the updated neurons. How the information flow will then proceeded, will
be explained for the work transputer group (a0,a1,a2). Parallel to this the remaining
5 worker groups work in the same way. (a0) is sending his datas to the controller
(C2) and to the worker (d0), (a1) and (a2) were sending to (b2), (c2) and (e1), (f1),
respectively. On the other hand (a0), (a1) and (a2) get simuitaneously datas from the
same processors to whom they were sending their datas. After this parallel data
exchange we have in each work transputer group the whole information of the
updated neurons. Again sending the datas around in each group leads to the whole
information available in each transputer. Worker ‘0’ in each group has also sent 3/18
of the updated neurons either to the controller (C1) or (C2). The controllers supervise
the workers, but are themselves inspected by the master transputer (M). The
controllers have to process the incoming datas from the work transputers and to
supply the master transputer with the results, which are managed and interpreted in
the host environment. In the case of the maximum field dynamic the information flow
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is rather similar. The actual values h;, g; are distributed in the same way over the
work transputer array as it was done for the neurons. The maximum value of —h,o;
is detected in the following way. Each worker is looking for the largest value in his
table. Then the largest value is sent around in each work transputer group, where the
largest value of a group is determined in each work transputer group. These values
then are distributed over all transputers as already indicated and finally the largest
value is sorted out. Keeping the index of the values during the data exchange we can
determine the whole set of updated fields according to h’** = h?"? — 2J,0, , where k
is the index of the maximum value and o, the neuron changed from o, = — o, . At the
moment different demonstration programs simulating neural networks are available
and a network for storing correlated and hierarchical organized patterns is being
implemented. Results of the simulations will be presented elsewhere.

Summary

We have given an introduction to cellular automata and neural network computing.
In addition hardware configuration and software implementation for a transputer
based simulation machine were presented.
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