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Généralisation de la supergravité all
dimensions avec les invariants d'Euler

By Julio C. Fabris,*) et Richard Kerner

L.P.T.P.E., Université Pierre et Marie Curie, T16 El, 4 Place Jussieu 75005
Paris, France

(4. X. 1988)

Abstract. The 11-dimensional supergravity proposed by Cremmer, Julia and Scherk can be
generalized by adding Euler's invariants to the lagrangian. In this paper we investigate such a

generalization comprising the invariants of second and of third order. In particular, we look for the
solutions in form of the cartesian product of two homogeneous spaces. We show that the solutions
exist which are products of Minkowskian 4-space with a 7-sphere. Next we discuss the stability
properties of these solutions, and a possibility of the supersymmetrisation of the model.

Résumé. Le modèle de Supergravité à 11 dimensions de Cremmer, Julia et Scherk peut être
généralisé par l'addition au lagrangien des invariants d'Euler. Dans cet article nous examinons les

conséquences d'une telle généralisation, en ajoutant les invariants d'Euler de deuxième et de
troisième degré. En particulier, nous cherchons des solutions sous forme de produit de deux espaces
homogènes. Nous démontrons que parmi les solutions possibles, il y a des espaces de Minkowski en
produit cartésien avec les sphères de dimension 7.

Nous discutons ensuite la stabilité de ces solutions et la possibilité de supersymétrisation du
modèle.

1. Introduction

Les théories physiques et les modèles mathématiques qui supposent
l'existence d'autres dimensions spatiales que les trois qui nous sont accessibles par
l'expérience quotidienne, sont connues depuis assez longtemps [1,2]. Elles ont
été introduites sous l'influence de la Relativité Générale, décrivant les effets de la

gravitation en termes purement géométriques, en vue d'unification d'autres
champs avec le champ gravitationnel. La théorie de Kaluza et Klein en cinq
dimensions fournit l'exemple le plus simple: on suppose que l'espace-temps total
est de la forme V4 x S1, et sa métrique est

g„v+g5.v4„j4v
Sab \ —7

g.55-^v
-*-) (LI)

Cette théorie, sous sa forme plus générale connue sous le nom de théorie de

Jordan-Thiry, réunit dans un seul et même tenseur gAB les trois champs à savoir
le potentiel gravitationnel g,lv, électromagnétique Aß et le champ scalaire g55.

*) Boursier de Capes, Brésil; Departamento de Fisica e Quimica, Universidade Federai do Espirito
Santo, Vitoria, Brésil.
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Dans le cas le plus simple, en négligeant le champ scalaire g55, c'est-à-dire en
posant g55 1, le lagrangian d'Einstein-Hilbert calculé à partir de la métrique
(1.1) est égal à:

RV\ÏÛb~\ ~ (R - ÌFuVFnV\g^\ (1.2)

où l'on retrouve le lagrangien de la Relativité Générale avec le lagrangien du
champ Maxwellien.

Le lagrangien d'Einstein-Hilbert semble être unique pour les raisons
suivantes: il ne dépend que de quantités tensorielles (invariance par rapport aux
difféomorphismes) et, sous variation, il aboutit à des équations différentielles
d'ordre 2. Toute fonction non-linéaire de 7?£vp aboutirait à des équations
différentielles d'ordre plus élevé.

Il y a cependant une exception à cette régie: l'invariant de Gauss-Bonnet

h VkrîtfW*MVAp - 47;v7?"v + t?2) (1.3)

qui sous variation, ne fournit que des identités de Bach-Lanczos. Ceci est dû au
fait que l'intégrale de I2 sur un espace compact est proportionnelle à sa

caractéristique d'Euler, qui est un invariant topologique de la variété. L'invariant
de Gauss-Bonnet est un exemple particulier d'une série d'invariants construite de
manière suivante:

/ _ oBlB2 B2„,nAiA2 T>A2m-sA2m /i a\lm - EAiA2 A2mKB,B2> • ¦ ¦ KB2m-tB2m K1^)

°ù £a\', '.'.'.'. a2Z est Ie symbole de Levi-Civita généralisé, totalement antisymétrique
en (Ax, A2m) et en (Bu B2m).

Tous ces invariants (et ce sont les seuls!) conduisent à des équations
différentielles d'ordre 2. Dans l'espace de dimension D, le dernier invariant de ce

type est 7[D/2]; si D est pair, alors ID/2 est une forme fermée et sa variation aboutit
à des identités; de même, l'intégrale sur un espace compact de dimension paire
est proportionnelle à sa caractéristique d'Euler.

C'est seulement depuis quelques années que l'étude systématique des

lagrangiens contenant ces invariants a été entreprise, notamment par J. Madore
[3], F. Müller-Hoissen [4] et d'autres auteurs. En principe, toute théorie en plus
de quatre dimensions devrait contenir, du moins dans la partie gravitationnelle,
de tels invariants dans le lagrangien total. En outre, les résultats de la théorie des
cordes semblent indiquer la présence de telles contributions dans le lagrangien
effectif [5].

Dans ce travail, nous nous proposons d'étudier l'influence de termes de ce

type dans le cadre de la supergravité à 11 dimensions.

2. Supergravité à 11 dimensions

La théorie dite de supergravité à 11 dimensions a été proposée par
Cremmer, Julia et Scherk [6], en 1978. Elle a été l'objet d'un grand intérêt,
puisqu'elle fournit un mécanisme naturel de compactification spontanée.
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La particularité de 11 dimensions réside dans le fait qu'il est assez naturel d'y
trouver la supersymétrie, c'est-à-dire l'invariance du lagrangien par rapport aux
transformations de l'extension graduée du groupe de Poincaré. La condition
nécessaire dans ce cas est d'avoir dans la théorie autant de degrés de liberté
fermioniques que bosoniques. En dimension 11, on peut satisfaire une telle
condition en considérant un seul champ de spin §, un champ de repères
(équivalent à la métrique, ou le champ gravitationnel) et une 3-forme (tenseur
totalement antisymétrique).

La compactification spontanée de ce modèle a été trouvée par Freund et
Rubin [7], qui ont produit une solution sous forme de K4 x 57: une variété
pseudo-Riemannienne de dimension 4 en produit cartésien avec une sphère de
dimension 7. Quelques années plus tard, Biran et al [8] ont démontré la stabilité
de cette solution.

Ce qui rend cette théorie peu réaliste, c'est le fait que la variété V4 est un
espace de anti-de Sitter, dont la courbure est de même ordre que la courbure de
la 7-sphère, que l'on suppose comparable à la courbure de Planck.

Voici la théorie de supergravité à 11 dimensions telle qu'elle a été proposée
initialement [6]. Les champs sont les suivants: (p, v, a, b 1,2, ,11)

a) Un spineur-vecteur (champ de spin §) xp^, qui, compte tenu des
conditions de jauge que l'on fixera, a 128 composantes indépendantes.

b) Un repère local, V^, qui, une fois la jauge fixée, possède 44 composantes
indépendantes

c) Pour rendre égaux les nombres de degrés de libertés fermioniques (128)
et bosoniques, il nous faut encore 84 degrés de liberté bosoniques. Une
3-forme A^ transverse (vérifiant d^A^ 0) a exactement 84

composantes indépendantes. La forme A^x généralise le potentiel du champ
Maxwellien; le champ est une 4-forme F^vXp (dA)ßviip.

Le lagrangien proposé par Cremmer et al. est le suivant

ie -èViiîR - %r"»°Df>xpa + 4-4F^PF"vkp

V2
+ j^Vg(^r"v^>v + I2xp <TyV)(^yä + FaßYÖ)

V2
_l_ 1 caiOt2a,a4plp2l1,lUs'P^fr FA (1 l'i

(T44)2 raia2aya4tlhlhlhf)i/\VfJ>_ (z.i)

Ce lagrangien est invariant par rapport aux transformations
supersymétriques qui mélangent entre elles les composantes fermioniques et
bosoniques.

Ici Dß est la dérivée covariante par rapport à la connexion

iiwU + ûU) (2-2)

où co"^ est la 1-forme de connexion christoffelienne, et

&U <»U + «Ü«rT% (2-3)
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On note T^ les matrices de Dirac dans 11 dimensions, et T^v ^(r^v — TVfl),
etc. Finalement,

3 -Fwo F^pa - -^ W rvp Vai (2- 4)

Le lagrangien (2.1) reste invariant (à une divergence près) sous la transformation

suivante:

ÔVl -^ër% (2.5)

ÔV„ y/2 D„(ô)e +^ (rf r» - 8r^öo^)eFaßY6

V2 4e (2.6)

ôA^ lêr^vxpx] (2.7)

Freund et Rubin ont étudié les solutions du secteur bosonique de cette
théorie. Les équations de mouvement sont, dans ce cas,

Ppv — hgnvP —ki8FliYpaFlpa — gllLVFXypaFXypa) (2.8)

_____
2(4!)

La solution particulière recherchée résulte de la substitution suivante:

^VvAy =fe„vxY H,v,..:= 0, 1, 2, 3;
(2.10a)

^livAy 0 autrement

Si l'on utilise l'hypothèse que l'espace à 11 dimensions se découple en deux

espaces homogènes, on obtient un résultat remarquable: on a un espace de
anti-de Sitter à quatre dimensions, qui contient la coordonnée temps, et un
espace à sept dimensions compact qui est une 7-sphère. Les rayons de courbures
de ces deux espaces sont donnés par [9]

7C4 2/2/9 (2.11a)

K7 -f2/18 (2.11b)

La stabilité de cette solution a été vérifiée par Biran et al (8) qui ont linéarisé
le système (2.8), (2.9) et ont constaté l'absence de modes de propagation
correspondant aux masses imaginaires (tachyons).

3. Généralisation du modèle

Dans cette théorie à 11 dimensions, on peut généraliser le secteur gravitationnel

en ajoutant au lagrangien ci-dessus les invariants donnés par l'expression

piivky _ _ _Y pax ¦ ¦ ¦ orgvAyp p /j q\1 ;fi '-y/A l\ al ' ' ' a* a5 ' ' ' ats V '
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(1.4). A première vue, dans notre cas, le lagrangien le plus général contiendrait
tous ces invariants, jusqu'au cinquième. Cependant, Ishikawa [10] a démontré
que lorsque l'espace à quatre dimensions est l'espace de Minkowski, les trois
premiers invariants suffisent: en effet, les deux autres ne contribuent pas aux
équations du champ.

Alors, nous généraliserons la théorie en adoptant le lagrangien suivant:

L' L + y72 + A73 (3.1)

où L est l'ancien lagrangien, 72 est l'invariant de Gauss Bonnet et 73 est le
troisième invariant de la série (1.4); y et Â sont des paramètres dimensionnels.

Il est clair que la présence de ces nouveaux termes brise la supersymétrie du
modèle. Pour l'instant, nous oublierons néanmoins ce fait, pour chercher
l'influence de ces invariants sur les équations de champ. Nous retournerons plus
tard à cette question.

Les équations du champ données par ce nouveau lagrangien, plus
compliquées que les équations classiques, comprennent deux paramètres
arbitraires A et y. Les contributions des deuxième et troisième invariants aux
équations du champ sont données dans la référence 2. Ici nous discuterons plutôt
les solutions que l'on peut en obtenir, plus particulièrement celles qui se

présentent sous la forme du produit de deux espaces homogènes: l'un à quatre et
l'autre à sept dimensions. Les composantes non nulles du tenseur de Riemann
sont alors:

Ptxvky K4(gpkgVY - g^gvx) p, v, X, y 0, 1, 2, 3; (3.2a)

RßVxy K7(gpkgvk - gßYgvk) p, v, X, y 4, 10. (3.2b)

En outre, les seules solutions qui nous intéressent sont celles où l'espace à sept
dimensions est compact (K7 < 0).

On s'aperçoit d'abord que l'addition du seul terme de Gauss-Bonnet ne
suffirait pas à obtenir les solutions désirées: si l'espace-temps à quatre dimensions
est bien plat dans ce cas, par contre, l'espace interne est une pseudo-sphere. Pour
trouver une configuration satisfaisante, il faudra donc que le lagrangien
comprenne aussi le troisième invariant.

Dans l'hypothèse des deux espaces homogènes, si l'on utilise l'ansatz de
Freund-Rubin, on obtient deux équations algébriques couplées, pour K4 et K7:

K4 + 1K7 - y{70K7 + 42K4K7) - A{2807<:| + 8407C?K4) -f2/6. (3.3)

2K4 + 5K7 - y{30AT-f + 2K24 + 60K4K7}

- X{40K7 + 120K24K7 + 720K2,K4} =/2/6. (3.4)

Dans ces équations y, X et / sont des paramètres libres mais on peut toujours fixer
la valeur de l'un de ces paramètres. Ceci revient à fixer une échelle. Choisissons

/ 1. Si l'espace quadridimensionnel est plat (K4 0), nous avons pour K7

K^W^) (3-5)
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avec

l±Vl-20y/21
«= iö (3-6)

(21)2(3-25a)A"
80 (l-5a)2 (3-7)

L'espace à sept dimensions est compact si a > 5. D'autre part, son rayon de
courbure peut prendre de très grandes valeurs ce qui fait l'intérêt du modèle.
Nous ne discuterons pas toutes les solutions des équations (3.3) et (3.4), mais
nous pouvons déjà avancer que ces équations admettent des solutions du type
Freund-Rubin et du type de Sitter-sept-sphère.

4. La stabilité des solutions

L'étude de la stabilité dans la théorie de supergravité à 11 dimensions a été
faite par plusieurs auteurs (voir les références 8, 11, 12 et 13). Ici, comme chez
Biran et al., nous nous intéressons seulement au secteur bosonique. En
linéarisant les équations de champ obtenues avec le duexième et le troisième
invariant on peut définir les variables,

agllv ~hßV (4.1)

oAßvX a^x (4.2)

On peut imposer 11 conditions de jauge sur h^ et 45 sur aMvA.

h^ hf hZ 0 (4.3a)

aTP «T «^ 0 (4.3b)

où i, j - 0, 3 et M, N, P 4, 10.

La linéairsation conduit à sept équations, dont les expressions générales sont
de la forme

AMj,k + A2h%,K - A3h%,p, - A4hi, - A5h.M

+ gli(A6hPp, + A7h + A8hflj + Agh^N) =Ai0giJtfK (4.4)

B\hMNP + B2hNM.p + B3hMNp. + B4hMN + B5n.M.N

+ gMNiB6hpp, + B7h + Bsh% + Bgh%iN) Bl0gMNtPp (4.5)

CpiM-pj + C2«,;/f;M + C4hMi + C5hM.j C6tiM + C7t]i aMKls (4.6)

DxtfK;i + D2tffM, + D3h, 0 (4.7)

E,a%ir'v + E2am + E3eKi'lh%., 0 (4.8)

Fxa%ma + F,aMNi 0 (4.9)

Gia^NP-a + G2aMNP G3eQRSLMNPaQRS,L (4.10)
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où tK est donné par

aKls eKlsqtV3\ (4.11)

Les coefficients sont des fonctions données de K4, K7, y et X. Nous devons
à présent déterminer le spectre de masse des champs intervenant dans le système
d'équations (4.4-4.10). Il y a en tout neuf champs, ce qui devient évident après le
découplage des équations ci-dessus.

Pour déterminer le spectre des masses on utilise les harmoniques sphériques
sur la sept-sphère,

V^>v, ...„,, -K7{l(l + 6) - P}y[ai... ap];

/5=0 si /7 0 et /3=1 si p>0; (4.12)

VAVAy<MN) -K7{l(l + 6)-2}yiMN); />2, (4.13)

et les opérateurs de masse,

rç£-27(:4r/ 7«:7Ar7-spin0; (4.14)

(Vk,i --Ilk)'= K7Xr] - spini; (4.15)

V**-, - 2j?_[,;,] + 6K4llu K7XK,j - spin 2. (4.16)

Nous nous intéressons surtout au cas où k4 0. L'étude complète de la
stabilité, qui dépend évidemment des solutions de base, est en cours. Cependant,
on peut déjà obtenir, sans connaître exactement ces solutions, des informations
très importantes sur leur stabilité. Par exemple, les trois champs présents dans les

équations (4.9) et (4.10) imposent la condition k7<—\ pour la stabilité. Alors
quand l'espace quadridimensionnel est plat, les solutions ne pourront être stables

que si le rayon de courbure de la sept-sphère est suffisamment grand.

5. La super-symétrisation du modèle

L'introduction de ces nouveaux invariants géométriques dans le lagrangien
(2.1) en brise évidemment la super-symétrie: il est bien connu que déjà
l'introduction de la constante cosmologique suffit à la détruire.

Pour rester dans le cadre d'une théorie de la super-gravité, il faut donc
rétablir l'invariance du lagrangien relativement aux transformations
supersymétriques locales.

C'est ce problème que nous étudions à présent, et nous pouvons déjà
énoncer quelques résultats, qui s'avèrent encourageants pour l'obtention d'un
lagrangien super-symétrique comprenant les invariants d'ordre supérieur I2 et 73.

On peut en effet ajouter au lagrangien des termes de couplage du type:

W2 xp,{r"p^v, T^jD.xp.R^ß (5.1a)

et

W, xpk{{r^»v™, raP}TKa}DpxpT ¦ R^aßRYVKa (5.1b)
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Ce sont les seuls invariants contenant xp, ses dérivées et le tenseur de

Riemann, qui ont la dimension de 72 et 73, respectivement. Un calcul direct, bien

que long, permet de vérifier que, sous variation supersymétrique (2.5), (2.6) et
(2.7), l'adjonction de la combinaison

YW2 + XW3 (5.2)

compense les terms venant de la combinaison y72 + A73 qui brisaient la

supersymétrie. Cependant, la supersymétrisation du modèle n'est pas atteinte,
puisque la combinaison (5.2) donne d'autres contributions sous la variation, à

savoir, des termes de variation du type:

STDxpRF (5.3)

Pour annuler cette contribution, il faut modifier davantage le lagrangien, en

y ajoutant des termes du type

xpTxpFR et FFR (5.4)

Cette écriture symbolique peut représenter plusieurs combinaisons venant
des contractions des indices indépendantes. L'introduction du dernier terme
(FFR) modifie le secteur purement bosonique de la théorie, ce qui changera
évidemment les résultats obtenus dans la première partie (excepté ceux qui
concernent l'étude de la stabilité).

En tout état de cause, la construction d'un lagrangien supersymétrique
comprenant les invariants 72 et 73 implique aussi les modifications de la loi de
transformation (2.5) elle-même.

Elle devra contenir un terme dépendant de la constant dimensionnelle y; en
fait, on peut créer dix combinaisons linéairement indépendantes du type

êTFR ou TFRe (5.5)

En choisissant les coefficients de ces termes de façon judicieuse, on pourra
rendre le lagrangien super-symétrique.

Les résultats finaux seront publiés ultérieurement.
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