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Généralisation de la supergravité a 11
dimensions avec les invariants d’Euler

By Julio C. Fabris,*) et Richard Kerner

L.P.T.P.E., Université Pierre et Marie Curie, T16 E1, 4 Place Jussieu 75005
Paris, France

(4. X. 1988)

Abstract. The 1l1-dimensional supergravity proposed by Cremmer, Julia and Scherk can be
generalized by adding Euler’s invariants to the lagrangian. In this paper we investigate such a
generalization comprising the invariants of second and of third order. In particular, we look for the
solutions in form of the cartesian product of two homogeneous spaces. We show that the solutions
exist which are products of Minkowskian 4-space with a 7-sphere. Next we discuss the stability
properties of these solutions, and a possibility of the supersymmetrisation of the model.

Résumé. Le modele de Supergravité a 11 dimensions de Cremmer, Julia et Scherk peut étre
généralisé par I’addition au lagrangien des invariants d’Euler. Dans cet article nous examinons les
conséquences d’une telle généralisation, en ajoutant les invariants d’Euler de deuxiéme et de
troisieme degré. En particulier, nous cherchons des solutions sous forme de produit de deux espaces
homogeénes. Nous démontrons que parmi les solutions possibles, il y a des espaces de Minkowski en
produit cartésien avec les sphéres de dimension 7.

Nous discutons ensuite la stabilité de ces solutions et la possibilité de supersymétrisation du
modele.

1. Introduction

Les théories physiques et les modéles mathématiques qui supposent
I’existence d’autres dimensions spatiales que les trois qui nous sont accessibles par
I'expérience quotidienne, sont connues depuis assez longtemps [1,2]. Elles ont
été introduites sous l'influence de la Relativité Générale, décrivant les effets de la
gravitation en termes purement géométriques, en vue d’unification d’autres
champs avec le champ gravitationnel. La théorie de Kaluza et Klein en cinq
dimensions fournit I’exemple le plus simple: on suppose que I’espace-temps total
est de la forme V, X §', et sa métrique est

8uv T 8554, A, | 8554, ) (1.1)
8ssA, | gss
Cette théorie, sous sa forme plus générale connue sous le nom de théorie de

Jordan-Thiry, réunit dans un seul et méme tenseur g, les trois champs a savoir
le potentiel gravitationnel g,,, électromagnétique A, et le champ scalaire gs;s.

gAB=(

*)  Boursier de Capes, Brésil; Departamento de Fisica e Quimica, Universidade Federal do Espirito
Santo, Vitoria, Brésil.
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Dans le cas le plus simple, en négligeant le champ scalaire gss, c’est-a-dire en

posant gss=1, le lagrangian d’Einstein—Hilbert calculé a partir de la métrique
(1.1) est égal a:

®) @)
RV|gasl~ (R — 3Fu F*)VIgu| (1.2)

ou 'on retrouve le lagrangien de la Relativité Générale avec le lagrangien du
champ Maxwellien.

Le lagrangien d’Einstein—Hilbert semble étre unique pour les raisons
suivantes: il ne dépend que de quantités tensorielles (invariance par rapport aux
difffomorphismes) et, sous variation, il aboutit a des équations différentielles
d’ordre 2. Toute fonction non-linéaire de Rj,, aboutirait a2 des équations
différentielles d’ordre plus élevé.

Il y a cependant une exception a cette régle: I'invariant de Gauss-Bonnet
L=V|g|(Ry:,R*"* — 4T,,R** + R?) (1.3)

qui sous variation, ne fournit que des identités de Bach-Lanczos. Ceci est du au
fait que l'intégrale de I, sur un espace compact est proportionnelle a sa
caractéristique d’Euler, qui est un invariant topologique de la variété. L’invariant
de Gauss—Bonnet est un exemple particulier d’une série d’invariants construite de
maniere suivante:

— «B1B3, ..., B AlA Axp 1A

L, =€4a2 " amRg8s, ..., R\ (1.4)

ou €3" ;ﬁg: est le symbole de Levi-Civita généralisé, totalement antisymétrique
en (A,,...,A,) eten (B, ..., By,).

Tous ces invariants (et ce sont les seuls!) conduisent a des équations
différentielles d’ordre 2. Dans I’espace de dimension D, le dernier invariant de ce
type est Ijpp); si D est pair, alors Ip,, est une forme fermée et sa variation aboutit
a des identités; de méme, l'intégrale sur un espace compact de dimension paire
est proportionnelle a sa caractéristique d’Euler.

C’est seulement depuis quelques années que I’étude systématique des
lagrangiens contenant ces invariants a été entreprise, notamment par J. Madore
[3], F. Miiller-Hoissen [4] et d’autres auteurs. En principe, toute théorie en plus
de quatre dimensions devrait contenir, du moins dans la partie gravitationnelle,
de tels invariants dans le lagrangien total. En outre, les résultats de la théorie des
cordes semblent indiquer la présence de telles contributions dans le lagrangien
effectif [5].

Dans ce travail, nous nous proposons d’étudier I'influence de termes de ce
type dans le cadre de la supergravité a 11 dimensions.

2. Supergravité a 11 dimensions

La théorie dite de supergravité a 11 dimensions a été proposée par
Cremmer, Julia et Scherk [6], en 1978. Elle a été I'objet d’un grand intérét,
puisqu’elle fournit un mécanisme naturel de compactification spontanée.
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La particularité de 11 dimensions réside dans le fait qu’il est assez naturel d’y
trouver la supersymétrie, c’est-a-dire I'invariance du lagrangien par rapport aux
transformations de I’extension graduée du groupe de Poincaré. La condition
nécessaire dans ce cas est d’avoir dans la théorie autant de degrés de liberté
fermioniques que bosoniques. En dimension 11, on peut satisfaire une telle
condition en considérant un seul champ de spin 3, un champ de repéres
(équivalent a la métrique, ou le champ gravitationnel) et une 3-forme (tenseur
totalement antisymétrique). :

La compactification spontanée de ce modele a été trouvée par Freund et
Rubin [7], qui ont produit une solution sous forme de V,x S’: une variété
pseudo-Riemannienne de dimension 4 en produit cartésien avec une sphere de
dimension 7. Quelques années plus tard, Biran et al [8] ont démontré la stabilité
de cette solution.

Ce qui rend cette théorie peu réaliste, c’est le fait que la variété V, est un
espace de anti-de Sitter, dont la courbure est de méme ordre que la courbure de
la 7-sphere, que I'on suppose comparable a la courbure de Planck.

Voici la théorie de supergravité a 11 dimensions telle qu’elle a été proposée
initialement [6]. Les champs sont les suivants: (¢, v,a, b=1,2,...,11)

a) Un spineur-vecteur (champ de spin 3) ,, qui, compte tenu des
conditions de jauge que l’on fixera, a 128 composantes indépendantes.

b) Un repére local, V', qui, une fois la jauge fixée, posséde 44 composantes
indépendantes

¢) Pour rendre égaux les nombres de degrés de libertés fermioniques (128)
et bosoniques, il nous faut encore 84 degrés de liberté bosoniques. Une
3-forme A,,; transverse (vérifiant 3%A,., =0) a exactement 84 com-
posantes indépendantes. La forme A,,, généralise le potentiel du champ
Maxwellien; le champ est une 4-forme F,,;, = (dA) v, -

Le lagrangien proposé par Cremmer et al. est le suivant

x = _% V |g| R - w'ur‘,upoD wg + 24F VAprwlp

V2 _ | _ )
Ty Va(9, 0By + 129 TYYPY(Fopys + Fapys)

V2

" (149)

31 B2B1BavpA
2 gssampbaiaiavp Faqazmmﬂﬂﬁ:/ﬁﬁrtAVV}t (2 1)

Ce lagrangien est invariant par rapport aux transformations
supersymétriques qui mélangent entre elles les composantes fermioniques et
bosoniques.

Ici D, est la dérivée covariante par rapport a la connexion

3w, + @) (2.2)
ou wy, est la 1-forme de connexion christoffelienne, et

D%y = Wiy + 5P Lol Yy (2.3)
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On note I', les matrices de Dirac dans 11 dimensions, et I',, = %(I‘m, —I.),
etc. Finalement,

o 3 -
F,uvpa = Fuvpa - Ti W[prvaG] (2 4)

Le lagrangien (2.1) reste invariant (2 une divergence prés) sous la transfor-
mation suivante:
a l =
oV =— V2 ey, (2.5)

8, = V2 D,(0)e + 717 (TP — 8T8 e gy

- =V2D,e (2.6)
0A s = 3E0 1 Y (2.7)

Freund et Rubin ont €tudié les solutions du secteur bosonique de cette
théorie. Les équations de mouvement sont, dans ce cas,

Ry-v - %g',wR = —TIS(SFuypanpU - gyvﬂypaFAypa) (28)
V2
FEvAY = YR aiFae o a 2.9
s 2(4|) € 1 4 s 8 ( )
La solution particuliére recherchée résulte de la substitution suivante:
F,..,=f€. , v, ...=0,1,2,3;
way =[Euwny  H (2.10a)

F,.,,=0  autrement

Si I'on utilise ’hypothése que I'espace a 11 dimensions se découple en deux
espaces homogénes, on obtient un résultat remarquable: on a un espace de
anti-de Sitter a quatre dimensions, qui contient la coordonnée temps, et un
espace a sept dimensions compact qui est une 7-sphere. Les rayons de courbures
de ces deux espaces sont donnés par [9]

K,=2f*/9 (2.11a)
K;=-f*/18 (2.11b)

La stabilité de cette solution a été vérifiée par Biran et al (8) qui ont linéarisé
le systtme (2.8), (2.9) et ont constaté l’absence de modes de propagation
correspondant aux masses imaginaires (tachyons).

3. Généralisation du modele

Dans cette théorie a 11 dimensions, on peut généraliser le secteur gravita-
tionnel en ajoutant au lagrangien ci-dessus les invariants donnés par ’expression
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(1.4). A premicre vue, dans notre cas, le lagrangien le plus général contiendrait
tous ces invariants, jusqu’au cinqui¢me. Cependant, Ishikawa [10] a démontré
que lorsque I’espace a quatre dimensions est I’espace de Minkowski, les trois
premiers invariants suffisent: en effet, les deux autres ne contribuent pas aux
équations du champ.

Alors, nous généraliserons la théorie en adoptant le lagrangien suivant:

L'=L+yL+AL (3.1)

ou L est 'ancien lagrangien, I, est l'invariant de Gauss Bonnet et I; est le
troisi¢me invariant de la série (1.4); y et A sont des paramétres dimensionnels.

Il est clair que la présence de ces nouveaux termes brise la supersymétrie du
modele. Pour I'instant, nous oublierons néanmoins ce fait, pour chercher
I'influence de ces invariants sur les équations de champ. Nous retournerons plus
tard a cette question.

Les équations du champ données par ce nouveau lagrangien, plus
compliquées que les équations classiques, comprennent deux paramétres ar-
bitraires A et y. Les contributions des deuxiéme et troisiéme invariants aux
équations du champ sont données dans la référence 2. Ici nous discuterons plutot
les solutions que l'on peut en obtenir, plus particulierement celles qui se
présentent sous la forme du produit de deux espaces homogeénes: I'un a quatre et
l'autre a sept dimensions. Les composantes non nulles du tenseur de Riemann
sont alors:

R,uvly = K4(gu]|.gvy - gu'ygwl) u,v, A’) Y= 0’ 1) 2) 37 (3.23)
R,uvly= K7(gy.}\.gvl _-g‘uygvl.) u, v, A‘) = 4) “ ey 10. (3'2b)

En outre, les seules solutions qui nous intéressent sont celles ou I’espace a sept
dimensions est compact (K, <0).

On s’apercoit d’abord que I'addition du seul terme de Gauss-Bonnet ne
suffirait pas a obtenir les solutions désirées: si I’espace-temps & quatre dimensions
est bien plat dans ce cas, par contre, ’espace interne est une pseudo-sphere. Pour
trouver une configuration satisfaisante, il faudra donc que le lagrangien com-
prenne aussi le troisiéme invariant.

Dans I’hypothése des deux espaces homogeénes, si I'on utilise ’ansatz de
Freund-Rubin, on obtient deux équations algébriques couplées, pour K, et K;:

K.+ 7K; — y{70K3 + 42K, K-} — A{280K3 + 840K2K,} = —f?/6. (3.3)
2K, + 5K; — y{30K3 + 2K5 + 60K, K}
— A{40K2 + 120K2K, + T20K2K,} = /6. (3.4)
Dans ces équations vy, A et f sont des parametres libres mais on peut toujours fixer

la valeur de I'un de ces parametres. Ceci revient a fixer une échelle. Choisissons
f =1. S1 'espace quadridimensionnel est plat (K, = 0), nous avons pour K,

f2

K,=—"—
77 21(1 - 5a)

(3.5)
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avec
1+V1-20y/21
a= (3.6)
10
_ (21)*(3—25a)
A="%0 (1 - 5a)? 37

L’espace a sept dimensions est compact si a > §. D’autre part, son rayon de
courbure peut prendre de trés grandes valeurs ce qui fait I'intérét du modele.
Nous ne discuterons pas toutes les solutions des équations (3.3) et (3.4), mais
nous pouvons déja avancer que ces équations admettent des solutions du type
Freund—-Rubin et du type de Sitter-sept-sphére.

4. La stabilité des solutions

L’étude de la stabilité dans la théorie de supergravité a 11 dimensions a été
faite par plusieurs auteurs (voir les références 8, 11, 12 et 13). Ici, comme chez
Biran et al., nous nous intéressons seulement au secteur bosonique. En
linéarisant les €quations de champ obtenues avec le duexiéme et le troisiéme
invariant on peut définir les variables,

O8uv = —hyy (4.1)
OA vi = Ay (4.2)
On peut imposer 11 conditions de jauge sur h,,, et 45 sur a,,,;.
hi=hY=hy=0 (4.3a)
@ =g =gl =0 - (4.3b)
oui,j=0,...,3et M,N, P=4,...,10.

La linéairsation conduit 2 sept équations, dont les expressions générales sont
de la forme

Alhfj;k +A2hfi;K_A3h§ P _A h _A h isj
+g,](A6hp +A7h +A h ]"‘A h N) AlOgtjt ‘K (4 4)
Bihiynip + Bahinoap + Bshfynp, + Bshaw + Bshon
+ gMN(Bth . B7h + Bsh i+ B h ) Bl()gMNt (4.5)

Cihingpa+ Cohfix + Cahpg + Cshagy = Coling + Comiapa,s (4.6)
DltK,+D2t M +D3h<—0 4.7)
EaXv + E a™ + E;e*hit, =0 (4.8)
Fa™N5° + Fa™™' =0 (4.9)

Glal;lgNP;o + GzaMNP - G38QRSLMNP(1QRS;L (4 10)
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ou tx est donné par
agis = Exisqt?/3! (4.11)

Les coefficients sont des fonctions données de K,, K;, y et A. Nous devons
a présent déterminer le spectre de masse des champs intervenant dans le systéme
d’équations (4.4—4.10). Il y a en tout neuf champs, ce qui devient évident aprés le
découplage des équations ci-dessus.

Pour déterminer le spectre des masses on utilise les harmoniques sphériques
sur la sept-sphere,

VAVAy[m - ap) = —K-/{l(l + 6) = P}y[m .. ""P];
=0 si p=0 et [=1 si p>0; (4.12)

VAV.ayamy = =Kl +6) = 2}yuny; 122, (4.13)
et les opérateurs de masse,

nik — 2K4n = K;An — spin 0; (4.14)

(Mka— Ni;x)" = K7An — spin 1; (4.15)

Nk — 20kpj + 6Kan,; = K;AK,; — spin 2. (4.16)

Nous nous intéressons surtout au cas ou k,=0. L’étude compléte de la
stabilité, qui dépend évidemment des solutions de base, est en cours. Cependant,
on peut déja obtenir, sans connaitre exactement ces solutions, des informations
trés importantes sur leur stabilité. Par exemple, les trois champs présents dans les
équations (4.9) et (4.10) imposent la condition k; < —3 pour la stabilité. Alors
quand I’espace quadridimensionnel est plat, les solutions ne pourront étre stables
que si le rayon de courbure de la sept-sphere est suffisamment grand.

5. Lasuper-symétrisation du modéle

L’introduction de ces nouveaux invariants géométriques dans le lagrangien
(2.1) en brise évidemment la super-symétrie: il est bien connu que déja
I'introduction de la constante cosmologique suffit a la détruire.

Pour rester dans le cadre d’une théorie de la super-gravité, il faut donc
rétablir l'invariance du lagrangien relativement aux transformations super-
symétriques locales.

C’est ce probléme que nous étudions a présent, et nous pouvons déja
énoncer quelques résultats, qui s’avérent encourageants pour ’obtention d’un
lagrangien super-symétrique comprenant les invariants d’ordre supérieur L, et L.
On peut en effet ajouter au lagrangien des termes de couplage du type:

W, = Y {T**, T} D e R 1y ap (5.1a)
et

Ws = Y {({T*™77, TP} Dy, - RuvapRymio (5.1b)
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Ce sont les seuls invariants contenant 1, ses dérivées et le tenseur de
Riemann, qui ont la dimension de I, et I3, respectivement. Un calcul direct, bien
que long, permet de vérifier que, sous variation supersymétrique (2.5), (2.6) et
(2.7), I’'adjonction de la combinaison

YWs + AW, (5.2)

compense les terms venant de la combinaison vyl + AlL; qui brisaient la
supersymétrie. Cependant, la supersymétrisation du modele n’est pas atteinte,
puisque la combinaison (5.2) donne d’autres contributions sous la variation, a
savoir, des termes de variation du type:

éCDYRF (5.3)

Pour annuler cette contribution, il faut modifier davantage le lagrangien, en
y ajoutant des termes du type

yI'yFR et FFR (5.4)

Cette écriture symbolique peut représenter plusieurs combinaisons venant
des contractions des indices indépendantes. L’introduction du dernier terme
(FFR) modifie le secteur purement bosonique de la théorie, ce qui changera
évidemment les résultats obtenus dans la premiére partie (excepté ceux qui
concernent 1’étude de la stabilité).

En tout état de cause, la construction d’un lagrangien supersymétrique
comprenant les invariants L, et I; implique aussi les modifications de la loi de
transformation (2.5) elle-méme.

Elle devra contenir un terme dépendant de la constant dimensionnelle y; en
fait, on peut créer dix combinaisons linéairement indépendantes du type

§FFR ou TFRe (5.5)

En choisissant les coefficients de ces termes de fagon judicieuse, on pourra
rendre le lagrangien super-symétrique.
Les résultats finaux seront publiés ultérieurement.
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