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Equation of hydrostatic equilibrium and
temperature dependent gravitational constant

By Corrado Massa
Via Fratelli Manfredi 55 42100-Reggio Emilia Italy

(21. XII. 1988 revised, 7.11.1989)

Abstract. The Oppenheimer—Volkoff (shortly OV) equation of hydrostatic equilibrium describes
the balance between gravitational force and pressure gradient in a self-gravitating perfect fluid. In the
following, a generalized form of the OV equation is obtained by the assumption that the gravitational
constant G is temperature-dependent according to the law G = Gy(1 —bT?)™! where b is a positive
constant. Such a law is required by a variety of gauge theories used in the unification program. A
direct consequence of the generalized OV equation is the existence of an upper bound T < (2/b)"* on
the temperature of any self-gravitating radiation field.

A variety of gauge theories used in the unification program imply a
temperature-dependent gravitational constant G given by:

G =Gy(1—-bT?)™! (1)

where T is the temperature, G is the zero temperature value of G, very close to
the currently observed value 6.67 1078 cm™> g~ 's™2, and b is a positive constant
whose numerical value depends on the details of the theory concerned [1-3]. The
simplest way to fit the law (1) on the framework of Einstein’s gravitational theory
is to write the gravitational field equations [1, 4]

R* — (1)g™R = 8nGT* )

where G = G(T) according to equation (1). R* is the Ricci tensor, g is the
fundamental tensor, R = g*R;, is the spacetime curvature scalar, and T is the
energy tensor. In this paper, latin indices run from 0 to 3, greek indices run from
1 to 3; commas denote partial derivative and semicolons denote covariant
derivative with respect to the spacetime coordinates x'; dots denote
differentiation with respect to x°, and apices denote differentiation with respect to
x'.

By equation (2) and by the Bianchi identity RY, = (3)R ; we have (GT*),, =
0, namely

GT®+ Gt°=0 (3)
G'T"'+Gt'=0 (3a)

where ' = T%.
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Consider now a self-gravitating mass described by the energy tensor.of a perfect
fluid:

T*=(p + P)U'U* — Pg'* “4)
where p is the rest frame mass density and P the scalar pressure; U’ is the

4-velocity of the local rest frame of the fluid.
Consider a static, spherically symmetric field; thus:

UP=0, ds’=e*(cdt)’—e’dr’—dQ? (5)
where ds’ is the spacetime line-element, v and A are functions of r only, and dQ?
means (r d®)>+ (r sin # dp)* where (ct, r, &, @) =x' are the Schwarzschild coor-
dinates (7 is the radial coordinate).

The normalization of 4-velocity U'U;=1 determines U°=e~"?, and, by
4)(5), T®=pe™", To=p, T''=Pe * For G =0, equation (3) gives t°=0
(neither creation nor destruction of matter) and we have to consider equation
(3b) only. Equation (3b) with T = pe™ ¥ and T'' = Pe™* gives:

(G'/G)+P' +(G)(p+P)v' =0 (6)

The (00) component of the field equation (2) in the proper reference frames of
fluid elements is;

1/r)(d/dr)[r(1 —e ] =8xaGp,

which integrated gives;

(4—1—5) (r)= Lr Gpr®dr (7)

where 2m(r)=r(1—e™?).
The (11) component is
-1/ + 1/r)e *+ (1/r)e *v' =8aGP,

that gives:

vi2

G = (m + 4xPGr’)(r* — 2mr)™! (8)
Equations (1) (8) lead to;
P'=—(p + P)(m + 4xPGr)(r* — 2mr)"' — PG'/G 9)

with m =m(r) given by equation (7). Equation (9), with G = G, = constant,
reduces to the usual OV equation for a perfect fluid [5-7]. Consider now
equation (1), which gives G'/G =(T'/T)2bT*(1—bT?*'. If the fluid is a
radiation field with the equation of state p =3P =aT* (a=the radiation
constant) then equation (9) reads:

AT'|T + [Bm + (47/3)aT*r’G,)(BC)™ ' =0, (10)
where;

A=1+@G)T*B7!, (10a)

B=1-bT?, (10b)

C=r"-2mr. (10¢)



426 Corrado Massa H. P. A.

A direct consequence of equation (10) is the existence of an upper bound on the

temperature 7T of the fluid. To see this fact, assume T >1 /Vb at some point r,
inside the fluid, namely B <0. For equation (1), the equation (7) gives m(ry) <0,
viz. (for equation (10c)) C >0, and equation (10) leads to

AT'>0 (11)

T' is certainly negative. Indeed, if 7' >0, then A >0, and (for equations (10,a,b)
and for B<0) T>(2/b)"?; all values between (1/b)'? and (2/b)"* would be
forbidden, and T could not be continuous.

Put T' <0 into equation (11) and obtain A <0, viz. T <(2/b)"* that is an
upper bound on T.

A more severe bound, namely T < (1/b)"?, can be obtained via the quite
different procedure described in Reference (1). In the special case of the
Hawking black hole temperature, the bound T < (1/b)"? can be derived by the
very simple procedure of Reference (2). My thanks to an anonymous referee of
this Review which brought Reference (3) to my attention.
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