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Upper bound on temperature

By Corrado Massa
Via Fratelli Manfredi 55, 42100 — Reggio Emilia, Italy

(20. VI. 1988, revised 24. X. 1988)

Abstract. It is shown that the temperature-dependent gravitational constant required by a variety
of gauge theories implies the existence of an upper bound on the temperature of the thermal

radiation. Contrary to the opinions expressed by some, a thermal radiation never attains sufficient
temperature to enter the ““antigravity” regime.

A variety of gauge theories used in the unification program imply a
gravitational constant G that is temperature-dependent [1]

G = Gy(1 — aG,T*)™! (1)

where T is the temperature, G i1s the zero-temperature value of G, very close to
the currently observed value 6.67 10 ®cm’g™"'s™?, and a is a constant whose
numerical value depends upon the coupling constants that enter the gauge theory
concerned (e.g. it may depend on the ratio of two coupling constants). It is likely
that (1) a > k*/fic’ (where k is the Boltzmann constant, # is the reduced Planck
constant, and c is the speed of light); A possible value is [1] a = 10* k?/#c® (10%
is the ratio of electromagnetic to gravitational coupling constants) namely
~1077s2g K2 cm ™.
At the first glance, equation (1) suggests that at the critical temperature

T = (aGy) "

the gravitational constant G passes through an infinite discontinuity, and becomes
negative at T > T, i.e. antigravity results (consequences of such antigravity
regime are investigated in Ref 2 and in references cited therein). What follows,
however, suggests that (contrary to expectations grounded on equation (1)) the
critical temperature T¢ is a universal upper bound on temperature, never reached
by any physical process.

The stress energy tensor T of thermal (black body) radiation is that of a
perfect fluid, namely:

T* = (p + P)U'U* — Pg* )

where [ and k run from O to 3; p is the rest frame energy density, and P the
pressure, related to p by the equation of state p = 3P.
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U' is the 4-velocity of the local rest frame of the radiation, and g is the
fundamental tensor. From p = 3P one finds:

T™ = (4/3)pU'U* - (p/3)g™ 3)

Consider now a spherical box filled with radiation in a thermal distribution, and
assume the distribution to be static, thus:

UP=0, ds’=e"c?dt*—e*dr’—dQ? (4)

where B =1, 2, 3; ds? is the line element of the spacetime, v and A are functions
of r only, dQ? means r* d9* + r*sin” 3 d@?, and r, 9, @, ct are the Schwarzschild
coordinates. The normalization of 4-velocity U'U; = 1 determines U’ = e~"” and,

by (3)(4):
T® = pe™, Te=p.

By the standard formulas for black body radiation, p is given in terms of the
locally measured temperature T by:

p=aT* (5)

where a = Nk*(fic)™ is the radiation constant, N is the number of species of
radiation (N =8Nz + 7N where Nz and N are respectively the number of
helicity states of bosons and fermions).

The radiation is a self-gravitating fluid and therefore p depends on the radial
coordinate r. From (5), T = T(r) and, for (1), G = G(r).

Assume now that no matter (and no radiation) lies outside the box, thus
T(r)=0 and G(r) =G, if r>R where R is the radial coordinate of the box’s
surface. In this case, the gravitational field equation [3]

R* — (1/2)g™R: =8aG(r)T* (6)
reads simply R* =0 and the ds* assumes the well known form:
ds? = ydt’c®* — (1/y) dr* — dQ?,
y=1-2G,M/rc* (7

where M is the total mass of the thermal radiation field (i.e. it is the mass that
governs the Keplerian motions of test particles in the distant Newtonian
gravitational field). Inside the box, the (0 0) component of equation 6 reads [4]

(8xG/cHTy=(1/r*) — e *(1/r*— (1/r) dA/dr) (8)

which integrated gives (for g,, = —e%)
Vg = —1+{Beufre® j G(r)TY(r)r dr ©)
(4]

where G = G(r) because r <R.
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From equation 7 and equation 9 one finds, respectively

r—R™*

R
lim 1/g,,=-1+ (8”/RC4)J G(r)Ty(r)r* dr (11)
r—R~ 0

Equations 10 and 11 lead (for the continuity of g,,(r) at r =R) to
R
f G(r)TH(r)r* dr = GyMc?/4n. (12)
0

The total mass inside the box is therefore:
R
M= (4ma/c®)| T*r)r*(1 — aG,T*(r)) ' dr (13)
0

because Ty=p=aT* and G =Gyl - aG,T?)". If, in equation 7, go is
negative, then the ds® has the signature (—, +, —, —) that is physically absurd.

If goo = 0, then the box is a black hole and all informations about the thermal
radiation field are totally lost. Therefore g, is positive i.e. M <rc?*/2G,, and
equation 13 gives:

RATY(1 — aG,T2)™" < Br (14)
where

0=r,=<R, To,=T(r,), and B=c*/81aG,.
As r— R™, one finds

Tard+ TiGoaf — B <0, that gives Ty<Tg.

In conclusion, T cannot reach T on the surface r =r,. Clearly T <T. at r>r,
(because a self-gravitating fluid requires dp(r)/dr<0) and T < at r<r,
(because T'(r) is continuous at r = ry).

If T cannot be increased to arbitrarily large values at r <r,, then there must
exist, mathematically speaking, a least upper bound T, to T at r <r,; Since at
r =r, the upper bound on T is T, it is very natural to think that T, = T¢.

The upper bound T <7, has been obtained at the cosmological level by
Starobinsky [5] and Pollock [6] which investigated the early (but nevertheless
classical) universe. Starobinsky considers a homogeneous but anisotropic cos-
mological metric; the nonzero classical mean value @ = (0 |@| 0) of Linde’s [2]
scalar field ¢ cannot become greater than the critical value @ whereby G <0;
the reason is that as @ — @, any departure from isotropy will grow without
bound; @ depends on the temperature T of the cosmological fluid, and @ < @
requires T < T¢.

Pollock considers a simple Friedmann cosmological model, which is isotropic
and homogeneous, and finds again, with a straightforward computation, 7 < T
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and G >0 until the singularity is reached. Both authors do not investigate the
very early universe (dominated by quantum gravity).

My argument, however, gives T < T in a quite different context, i.e. at the
local (non cosmological) level, and shows that the temperature of a black body
radiation field confined in a box surrounded by a Schwarzschild spacetime cannot
exceed 7. I thank an anonymous referee of this Review which brought Refs. [5]
and [6] to my attention.

REFERENCES

[1] P. C. W. DaviEs, Phys. Lett. 101B, 399 (1981).

[2] A. D. LINDE, Phys. Lett. 93B, 394 (1980).

[3] A. K. RAYCHAUDHURI and B. BAGCHI, Phys. Lett. 124B 168 (1983).

[4] L. D. LANDAU and E. M. LirsHITZ, The Classical Theory of Fields (Addison-Wesley, Reading,
Mass., and Pergamon, London, 1971) Ch. 11, Sec. 97, eq. 6.

[5] A. STAROBINSKY, Sov. Astronomy Lett. 7, 36 (1981).

[6] M. PoLLock, Phys. Lett. 108B, 386 (1982).



	Upper bound on temperature

