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Upper bound on temperature
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Abstract. It is shown that the temperature-dependent gravitational constant required by a variety
of gauge theories implies the existence of an upper bound on the temperature of the thermal
radiation. Contrary to the opinions expressed by some, a thermal radiation never attains sufficient
temperature to enter the "antigravity" regime.

A variety of gauge theories used in the unification program imply a

gravitational constant G that is temperature-dependent [1]

G G0(l-orG0r2)-1 (1)

where T is the temperature, G0 is the zero-temperature value of G, very close to
the currently observed value 6.67 10_8cm3g_1s-2, and a is a constant whose
numerical value depends upon the coupling constants that enter the gauge theory
concerned (e.g. it may depend on the ratio of two coupling constants). It is likely
that (1) a»k2/hc5 (where k is the Boltzmann constant, h is the reduced Planck
constant, and c is the speed of light); A possible value is [1] a IO40 k2/hcs (IO40
is the ratio of electromagnetic to gravitational coupling constants) namely
~10-17s2gK"2cm-3.

At the first glance, equation (1) suggests that at the critical temperature

rc (*G0)-1/2

the gravitational constant G passes through an infinite discontinuity, and becomes
negative at T>TC, i.e. antigravity results (consequences of such antigravity
regime are investigated in Ref 2 and in references cited therein). What follows,
however, suggests that (contrary to expectations grounded on equation (1)) the
critical temperature Tc is a universal upper bound on temperature, never reached
by any physical process.

The stress energy tensor T'k of thermal (black body) radiation is that of a

perfect fluid, namely:

Tik (p + P)U'Uk - Pgik (2)

where i and k run from 0 to 3; p is the rest frame energy density, and P the

pressure, related to p by the equation of state p 3P.
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U' is the 4-velocity of the local rest frame of the radiation, and gik is the
fundamental tensor. From p 3P one finds:

7* (4/3)pU'Uk - (p/3)gik (3)

Consider now a spherical box filled with radiation in a thermal distribution, and
assume the distribution to be static, thus:

Up 0, ds2 evc2 dt2 - exdr2 - dQ2 (4)

where ß - 1, 2, 3; ds2 is the line element of the spacetime, v and A are functions
of r only, dQ2 means r2 di?2 + r2 sin2 # dç>2, and r, xJ, cp, ct are the Schwarzschild
coordinates. The normalization of 4-velocity U'U, 1 determines U° e~v'2 and,

by (3)(4):

r°° pe-v, n p.

By the standard formulas for black body radiation, p is given in terms of the
locally measured temperature T by:

p aT* (5)

where a Nk4(hc)~3 is the radiation constant, N is the number of species of
radiation (N 8NB + 1NF where NB and NF are respectively the number of
helicity states of bosons and fermions).

The radiation is a self-gravitating fluid and therefore p depends on the radial
coordinate r. From (5), T T(r) and, for (1), G G(r).

Assume now that no matter (and no radiation) lies outside the box, thus
T(r) 0 and G(r) G0 if r>7? where R is the radial coordinate of the box's
surface. In this case, the gravitational field equation [3]

Rik - (l/2)gikRss 8jrG(r)Tik (6)

reads simply R'k 0 and the ds2 assumes the well known form:

ds2 y dt2c2 - (1/y) dr2 - dQ2,

y=l-2G0M/rc2 (1)

where M is the total mass of the thermal radiation field (i.e. it is the mass that
governs the Keplerian motions of test particles in the distant Newtonian
gravitational field). Inside the box, the (0 0) component of equation 6 reads [4]

(8jtG/c*)T°0 (1/r2) - e"A(l/r2 - (1/r) dk/dr) (8)

which integrated gives (for gn — ex)

1/gn -1 + (8^/rc4) f G(r)T°o(r)r2 dr (9)
Jo

where G G(r) because r < 7?.
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From equation 7 and equation 9 one finds, respectively

lim l/g„ -l + 2G0M/7?c2 (10)
r^R +

lim l/g„ -l + (8jr/.Rc4) G(r)T%r)r2dr (11)
r-^R- Jo

Equations 10 and 11 lead (for the continuity of gxx(r) at r 7?) to

f G(r)T°o(r)r
Jo

)r2 dr GoMc2/4n. (12)

The total mass inside the box is therefore:

r*
M (4;ra/c2) T\r)r2(l - aGnT2(r))-1 dr (13)

Jo

because To p aT4, and G G„(l — aGaT2)~l. If, in equation 7, goo is

negative, then the ds2 has the signature (—, +, —, — that is physically absurd.
If goo 0, then the box is a black hole and all informations about the thermal

radiation field are totally lost. Therefore gm is positive i.e. M < rc2/2Gn, and

equation 13 gives:

Rr2T4o(l - aGoT2)-1 < ßr (14)

where

0</b<7?, r0=T(r0), and ß c*/8naGQ.

As r-*R+, one finds

Tyo+T2oGoaß-ß<0, that gives 7o<Tc.

In conclusion, T cannot reach Tc on the surface r r0. Clearly T < Tc at r > r0

(because a self-gravitating fluid requires dp(r)/dr < 0) and T < oo at r < r0

(because T(r) is continuous at r r0).

If T cannot be increased to arbitrarily large values at r < r0, then there must
exist, mathematically speaking, a least upper bound Tmax to T at r < r0; Since at

r > r0 the upper bound on T is Tc, it is very natural to think that Tmax Tc.
The upper bound T <TC has been obtained at the cosmological level by

Starobinsky [5] and Pollock [6] which investigated the early (but nevertheless
classical) universe. Starobinsky considers a homogeneous but anisotropic
cosmological metric; the nonzero classical mean value cp (0 \ep\ 0) of Linde's [2]
scalar field cp cannot become greater than the critical value epc whereby G < 0;
the reason is that as cp—* cpc any departure from isotropy will grow without
bound; cp depends on the temperature T of the cosmological fluid, and cp <cpc
requires T < Tc.

Pollock considers a simple Friedmann cosmological model, which is isotropic
and homogeneous, and finds again, with a straightforward computation, T <TC
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and G > 0 until the singularity is reached. Both authors do not investigate the

very early universe (dominated by quantum gravity).
My argument, however, gives T < Tc in a quite different context, i.e. at the

local (non cosmological) level, and shows that the temperature of a black body
radiation field confined in a box surrounded by a Schwarzschild spacetime cannot
exceed Tc. I thank an anonymous referee of this Review which brought Refs. [5]
and [6] to my attention.

REFERENCES

[1] P. C. W. Davies, Phys. Lett. 101B, 399 (1981).
[2] A. D. Linde, Phys. Lett. 93B, 394 (1980).
[3] A. K. Raychaudhuri and B. Bacchi, Phys. Lett. 124B 168 (1983).
[4] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Addison-Wesley, Reading,

Mass., and Pergamon, London, 1971) Ch. 11, Sec. 97, eq. 6.

[5] A. Starobinsky, Sov. Astronomy Lett. 7, 36 (1981).
[6] M. Pollock, Phys. Lett. /OSB, 386 (1982).


	Upper bound on temperature

