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Thermodynamics of dissipative systems II

By M. Perroud

Département de Mathématiques Appliquées Ecole polytechnique de Montréal,
C.P. 6079, Suce "A", Montréal, H3C 3A7, Canada

(5. VIII. 1988, revised 30. X. 1988)

Abstract. A new model of phenomenological thermodynamics for continua is presented. This is

a sequel to the paper intitled "Thermodynamics of dissipative systems", devoted to discrete systems
[1] and covers the case of fluids.

1. Introduction

The Hamiltonian structure of continuum systems has been discussed in
several papers, particularly by V. Arnold and J. E. Marsden et al. [2,3].
However, they restrict themselves to ideal incompressible or compressible, but
adiabatic fluids rather than real fluids. The entropy production is always
neglected, therefore the systems are never dissipative. The symplectic structure of
the models is probably the main reason for this. The extension that we proposed
in [1] for a discrete system applies as well and rather easily for a continuous
medium and takes into account the dissipative effects. We follow again the
approach used by E. C. G. Stueckelberg [4].

2. Continuum mechanics

As usual in non relativistic physics, we postulate that the space-time E4 is
fibred over the time axis 91 and that each fibre is diffeomorphic to a flat
Riemannian manifold E3 equipped with a volume form dV; therefore, we have
£4 9tx£3.

A reference configuration D of a body (a fluid) is a Riemannian manifold. A
configuration is a diffeomorphism W:D—*E3 and a motion of D is a time
dependent family of configurations Vr:D—»Zs3 written as x ^^(t, X) XV,(X).
We call X e D a Lagrangian point and x e E3 an Eulerian point with coordinates
(jc1, x2, x3). The Lagrangian velocity is defined by
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and its corresponding Eulerian-velocity is given by

v(t, x) v,(x) V(t, *¥7\x)) V,oXVrx(x).

Hence, each point x e E3 belongs to a motion

x *V(t, X) or X Wrx(x)

and

<t>(k,t,x) W(t + k,WY(x))
is the one parameter diffeomorphism of E3 generated by the vector field
cp, v, V,«?,"1, with v,(x) e TME3.

The configuration space of a continuum mechanical system is therefore the

group Diff (£3) and the phase space is T* Diff (£3).
The mass of a subregion B, *P,(ß0) ç D at the time t is defined by

M(t) f M,(x) dV(x).
jb,

It has the property of being neither created nor destroyed; henceforth the mass
density m,(x) > 0 is the image of a function mo(A') defined on DQ

V:(m,)J(y,) mo,

where /(W,) is the Jacobian of W,. Using the change-of-variable formula, we have

\ m,dV=\ V?(mt)J(W,)dVo={ modV0, 7?()<=ö.
Jb, Jbo Jb„

The conservation of M is in turn equivalent to

I (Vf (m,)/(V() dVo) (div (m,v.) + d,m,) dV(x)) 0

thus

d,m, + div (m,v,) 0 (1)

is the differential form of the law of conservation of mass, known as the
continuity equation.

3. Thermodynamics

In addition to the phase space of mechanical system, there exists in
thermodynamics a state function of a special kind, the entropy. It can be defined
at each time t as the extensive functional

S(t)=\ s,(x)dV(x),
JB,

where s,(x) s(t, x) is a density function.
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The set of all states of a thermodynamical system is therefore a manifold
E D(E3)x T* Diff (£3), where D(E3) is the space of differentiable functions
defined on £3. Recall that if

P
Je,

¦ \ p.toócp^x) dV(x) € Tl Diff (£3)
Je,

and

^ [^)^-^)er,Diff(£3),
the duality is defined by

(P, V) =£ £ p,(x)vk(y)ôcp'(x)(^j^ dV(x)dV(y)

[ f Pi(x)vk(y)ô>kô(x-y)dV(x)dV(y)
Je, Je,

pk(x)vk(x)dV(x).i
We assume that a closed system is a dynamical system. In other words, the

evolution is defined by a semi-flow

U-.m+xE^E
generated by the vector field

Z(s, 0 JtU(t,s, £)|,_0, (s, £)e£.

The vector field does not depend explicitly on time, which means that the system
is autonomous or equivalently is closed.

Moreover, this dynamical system must satisfies the two principles of
thermodynamics. Beginning with the first law, let us assume that there exists an
extensive energy state functional defined on a bounded region B c £3

H[s,p, cj>)=\ h(s(x),p(x), cp(x), Dqj(x))dV(x),
JB

where Dep is the covariant derivative of cp and h(s, p, cp, Dep) is an energy density
function, such that

izÔH - 77, - h(s„ p„cp„ Dep,) dV 0. (2)
dt dt JB,

Let us briefly recall that an extensive functional

F(t)=\ f(t,x)dV(x)
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has a time derivative (see [4])

— d

dt
F{t) - | /fc x) </V(jc) | A,/fc x) dV(jc)

f (d,f +div (fv,))(x)dV(x),
JB,

where

A,/fc x) (3,f + div («,/)(*, t). (3)

it is determined by a source density pF and to an influx —jF through dB,

I F(t) f pF(x) dV(x) - f jF(x) x „(*) dS(jc).
O» ->B, J3B,

Gauss' theorem leads to the inhomogeneous continuity equation

3,f + div (fv,+jF) pF (4)

The first law can easily be extended to systems interacting with the outside world
by means of work and heat.

The work will be defined by a 1-form possibly depending on time

W, f co,(x) dV(x),
Jn,

where co,(x) is a density of 1-form. We can write the first law for an adiabatic
closed system

izÔH ixW,

with X, denoting the part of Z, acting on T Diff (£3).
The heat entering the system is an extensive functional, possibly time

dependent,

Q, \ q,(x) dV(x).
JB,

The first law takes the general form

izÔH ixW, + Q,.

The second law states the principle of evolution of the entropy. In its equation of
continuity (see 4)

d,s + div (sv, + js) i > 0, (5)

the source density i(x) density of irreversibility) is non negative. For a system
adiabatically closed (js(x) 0), we obtain

d
S,= I i(x)dV(x)>0.

Jr.dt jB,
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4. Equations of motion.

For a functional 77 depending on s(x), p(x) and cp(x), the functional
differential can be written

ôH[s, p, cp]

Ç(ÔH[s,p,<t>]s ÔH[s,p,cp] ÔH[s,p,cp] \l\ ôs(x)
ÔS(X) +

ôpix)
ÔP{X) +

ôcp(x)
Ô4>{X))dV(x)

where

ôH[s,p,cp] ÔH[s, p, cp]
and

ÔH[s, p, cp]

ôs(x) ' àp(x) ôcp(x)

are the functional derivatives of H[s, p, cp]. In the case where we have an
extensive functional

F\ï\=\f(ï(x),DÏ(x))dV(x),
JB

the functional derivative is given by

ôFm
ÔÇ(x)

asf - Dt(dDj),

where D,-§ is a component of the covariant derivative of §.

We frequently put

ÔH[s, p,xp]=\ ÔHl*'f: *] ôs(x) dV(x) + ô0H[s, p, cp],
Jg 0S(X)

where

^fi^=3sh(six),p(x),cp(x),Dcp(x))=T(x)^0
os(x)

is the local temperature and

'ÔH[s,p, xp] ÔH[s, p, xp]

~op-(^ropix)+^w
By the extensive character of H[s, p, xp], we can set

ô0h(s(x), p(x), cp(x), Dcp(x)) 3ph(s(x), p(x), cp(x), Dcp(x))óp(x)

+ 3<ph(s(x), p(x), cp(x), Dcp(x))ôcp(x)

-div(3D4,h(s(x),p(x), ep(x), Dcp(x)))ôcp(x)

and consequently

"*¦* *i- IFiiïr*«+ÒJì£r *«*>)ivw-

ô0H[s,p, <p]=( ô0h(s(x),p(x), cp(x), Dtp(x))dV(x).
JB
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The corresponding decomposition of a vector field Z, will be

Z,Z, | (a,s,(x) ~- + *,(*)) dV(x),

where X,(x) acts on T(,%x)E3.

The first law for a closed system:

can be written

1 (r,(*)A(.s((*) + ix,(xA)h(s„ p„ cp„ Dep,)) dV(x) 0
B,

hence

A,s,(x) -—— Jx,(,)<50/i(^(*)> a(*)> <t>tix), Dep,(x)).
1,\X)

The second law imposes A,s(>0. In order to satisfy this inequality, we will
adopt the Onsager hypothesis by writing

A,s,(x) -J- A.v(*)(*,(*), *,«), (7)
i,(xj

where As(x)(X(x), X(x)) is a positive semidefinite quadratic form. (The subscript
5 indicates that Ay(jc) is symmetric). Consequently, we have

ix,(xA)h(s,(x), p,(x), ep,(x), Dep,(x)) -A(x)(X,(x), X,(x)).

Actually, we shall postulate that the vector field X, is defined by

ôoh(s,(x), p,(x), ep,(x), Dep,(x)) -A(x)(X,(x)), (8)

where A(x) is a positive semidefinite regular bilinear form on T(( ^£3.
Since a bilinear form A(x) can always be decomposed into the sum of a

symmetric part A,(x) and an antisymmetric part Aa(x) form, we recover equation
(7)

If the system is not isolated, the vector field X,(x) is simply defined by

ix,(x)àoh(s,(x), p,ix), ep,(x), Dep,(x)) -A(x)(X,(x)) + co,(x). (8')

The first principle

iz.oH (A,s,(x) + iXMôoh(s,(x), p,(x), ep,(x), Dep,(x)) dV(x)
JB,

co,(X,(x) + q,(x)) dV(x)IJB,

gives

btStix) ~^ (As(x)(X,(x), X,(x)) + q,(x)). (8")
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Equations (7) and (8") defined the vector field Z completely and satisfy the
two principle of thermodynamics by construction.

In symplectic mechanics, where the state space reduces to the manifold
T* Diff (£3), the vector field X is defined by

Ô0H -Q(X),
where Q is a symplectic 2-form. From this point of view, our model appears as an
extension of mechanics if we put in place of Q

A \ A(x) dV(x).
JB,

Indeed, the symmetric part, absent in mechanics, has been introduced to take
dissipation into account.

Example. A finite dimensional case [1]

A damped harmonic oscillator is defined by

£ 3ixM 3ix!H2= {(5, p, q)}

with

H(S, p, q) ^p2 + ±k(S)q2 +f(S).

A(S, p, q) dp Adq + AS(S, q) dq <8> dq,

where m is the mass, k(S) the spring constant, f(S) a purely thermal energy and
As(5, ^) > 0 is interpreted as the friction coefficient.

With the notation Z (S, p, q) the equation d077 —A(X) gives

-jT.pdp + k(S)qdq qdp — pdq — AS(S, q)qdq,

from which we get

Mq p

p -A,(5, q)q - k(S)q.

The equation for the entropy, S (l/r)Av(.Y, X) reduces to

S ^,As(S,q)q2^Q.

Now let us examine the case of a fluid with friction. The energy density is

given by,

h Y~^ 1^WI'+ "M*)' D4>W]>
2m(x)
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the bilinear form

A(x) òp(x) a ôcp(x) + &(x)ôDcp(x) <g> ôDep(x)

ôp,(x) a ôep'(x) + &!}(x)ôDi<pi(x) ® ôDkep'(x) (9)

and the work density

co,(x) ki(x)òep'(x).

The vector field X,(x) takes the form

d0 (jc) 3pj(x)

Then we obtain

A(x)(Ai(x)) A,ptf(*)00'(*) - #(*)«/>,(*) + eJ?(*)A^(*)ÓD^'(*),
but ct£>$ Dô$. Supposing ôep(x) is of compact support in B, and applying
Green's theorem

f &l1(x)Diepi(x)Dkôepl(x)dV(x)- \ Dk(&^(x)DiepÌ(x))oep'(x)dV(x),
JB, JB,

by setting

rY^k(x) &l1(x)epi,i(x), (10)

the frictional part of the stress tensor, we obtain

At»(*,(x)) A,p„(x)öep'(x) - epÌ(x)óPi(x) - div (r^)ôep'(x).

On the other hand, we have

ô0h =——p;(x)<5/»,-(x) - Dk(3Dl<„,u[s,(x), Dep^x^ôep^x),
m,(x)

where pj(*) =8lk(x)p,k(x). Here (g'*(x)) is the Riemannian metric.
By definition, the elastic part x\e)k(x) of the stress tensor is

xY)k(x) 3Dk<t,,u[s,(x), Dep,(x)]. (11)

Generally, we have

is the scalar pressure. Hence, we obtain

öoh -L-p't(x)öPl(x) - div (rY')ôep'(x).
m,(x)

The equation otìh -A(^l",) + co, gives

-4tPÌ(*)OP,(*) - div (tfW(*)
#(*)óp,(jc) - (A,p„.(x) - div (tF)))ô^)/(jc) + fc,.(oc)ô^(jc).
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Thus we get Hamilton's equations

m,(x)ep,(x) m,(x)v,(x) =p\(x)
A,p,,(x) div (xY\x)) + div (xY\x)) + k,(x).

By putting

xf(x) xY)k(x) + (xY)k(x) (12)

and using (1), the second equation is equivalent to

3,m,(x) + div (m,(x)v,(x)) 0 (1)

and

m,(x)(3,v„(x) + vkDkv„(x)) div (x,)(x) + k(x), (13)

which we recognize as Cauchy's equation.
The equation (8")

m,(x)A,s,(x) —— (As(x)(X,(x), X,(x)) + q,(x))
1,(X)

becomes

Aa(jt) =J-r (xY,k(x)Dkv',(x) + q,(x)).
T,(x)

We define the components of the tensor O to be ®)k 2rj[s, ep]ô',ôk +
(Ç[s, ep] — ^r][s, ep])ô'jôf, where r][s, cp] is the transversal viscosity coefficient and
%[s, ep] is the longitudinal viscosity coefficient.

Thus, we obtain

xY,k 2n[s, ep]D,vk + (|fr cp] -23ri[s, ep])DlV{ôk.

By introducing the decomposition of Dv, in its trace D,v', and its trace-less
irreducible part with respect to the Galilei group D;v',m

Djv'^DfV^ + ^viô'j,
the term A,(x)(X,(x), X,(x)) can be written

A,(x)(X,(x), X,(x)) 2r1Dlvr)ix)Dkv'r(x) + C(D,v<,(x))2. (14)

The heat density q,(x) is given, in the Fourier conduction law, by

q,(x) -div (T,(x)js(x))

with

i'(x) -y7Y>giadT'(x)'
lt\X)

where k[s] > 0 is the thermal condictivity coefficient.
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Consequently,

A,s,(x) -j- (As(x)(X,(x), X,(x)) - T,(x) divy, + -f- |grad T,(x)|2).
W) M*)

In this way, we have obtained the inhomogeneous equation for the entropy

3,s,(x) + div (s,(x)v,(x)) + div js(x) i(x) (15)

with

Kx) ^) 2^f<0)«A^,'V) + S(D,vl,(x))2 +~- Igrad T,(x)\2). (16)

Conclusion

The set of equations (1), (13), (15) and (16) describes a fluid with friction. It
would be easy to adapt these results to elasticity, in the Lagrangian description.

In general, the literature devoted to ideal fluids considers the Hamiltonian
structure by means of the Poisson bracket.

In our model, we would have to consider a "metriplectic" structure [5],
where the Poisson bracket does not satisfy the Jacobi identity.
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