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Vacuum polarization and the trace anomaly

By K. J. Abraham

Institut fiir Theoretische Physik, Universitiit Bern, Sidlerstrasse 5, 3012 Bern,
Switzerland*)

(23. X. 1988)

Abstract. The trace of the energy momentum tensor (henceforth temt) in gauge theories coupled
to spinors has been known for a long time. From the physical meaning of the energy-momentum
tensor it is clear that the temt is renormalization group invariant, although this is not obviously so. In
this paper we consider a simplified theory consisting of a massless Dirac spinor coupled to a Maxwell
field, and show that the temt is renormalization group invariant to all orders in perturbation theory.
The proof proceeds as follows: we express the renormalization group invariance of the temt as a set of
relations between the coefficients of B functions and anomalous dimensions (valid in a certain
subtraction scheme) and then prove by diagrammatic techniques that these relations indeed hold. The
properties of the vacuum polarization tensor will turn out to be crucial to the proof.

Introduction

It has long been known that the temt has measurable phenomenological
consequences, e.g. in the analysis of electron proton deep inelastic scattering.
Hence it is an important consistency requirement that all the properties of the
temt, that one expects to be true on the grounds that the energy momentum
tensor is a symmetry generator, are actually fulfilled. This includes naturally,
renormalization group invariance. The field theory we consider is QED in the
limit that the electron mass vanishes. We go to this limit only to avoid
complications due to operator mixings which would distract from the main line of
the argument. The theory is dimensionaly regularized. In order to simplify the
differential equation expressing renormalization group invariance as much as
possible the S-Matrix and renormalized composite operators are defined in the
minimal subtraction scheme. (In particular no momentum dependent subtraction
constants are added to Greens functions of composite operators.) In this scheme
the differential equation may be transformed into an algebraic one which relates
the divergent pieces of different Greens functions. This algebraic equation may be
independently verified by comparing appropriate sets of Feynman diagrams,
thereby proving that the temt is renormalization group invariant.

*)  Address after November 1988: NIKHEF-H, P.O. Box 41882, 1009 DB Amsterdam, The
Netherlands.
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Part 1

By considering the temt of Non-Abelian Gauge Theories [1] and QED [2] in
the appropriate limits, the temt of the theory we are considering') can be seen to
be B(a)F? where, as is usual in dimensionally regularized theories the 8 function

o
is defined by af(a) = ya , where u is the mass scale introduced by dimensional

regularization. Renormalization group invariance of the trace anomaly requires
that

3[B(a)F’]
I

P(«) depends on u implicitly through « and explicitly through finite pieces of
counterterms. The explicit dependence may be made to vanish by adopting a
suitable scheme, e.g. minimal subtraction. In such a scheme

=0. (1)

3ﬁ alB(a')
af(w)
Ifyis the anomalous dimension of F? then
oF?
— = —yF?
[ e Y
With these definitions Equation (1) can be written as
9p(a)
LM e e ) 2
da ¥=r (2)

If B(a)=1%,B.a" and y(a) =1}, y,&" with the summations running over all
integers greater than zero, then equation (2) can be written as

nf,=1v, Vn; n=12,... (3)

This is the all loop identity we wanted to prove.

However, Feynman diagram calculations isolate not §, and v, directly, but
rather the divergent pieces of Greens functions. Hence equation (3) must be
rewritten before it can be effectively used. To do so we go back to the definition

9Z;
of y; v i1s defined by y—Zﬁa—“ where Zp is defined by the Fj= Z.F?; the
f
subscript o denoting a bare quantity. If the Greens function used to define Z.
(which will be specified later) is also minimally renormalized; then by our

previous reasoning, Z, depends on u only through a. Hence

r=(2)(5)5) -z (5 @

) As always, a is the coupling constant and F? is the square of the Field Strength.
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4 — no. of dimensions

If e= 2 ; then by virtue of our subtraction scheme Z is a

Laurent series in € with only negative powers of € and 1 as the term independent
of €. Since Z, diverges as € vanishes we need in equation (4) not only the
non-vanishing B function in four dimensions but also the pieces which vanish with
€. We now evaluate these pieces.

We go to the defining equation of the bare charge a;, which is ay = u*<Z3'a;
where the limit € — 0 is assumed. (By definition the bare and renormalized gauge
potentials are related by Al = Z}?A*). Using the independence of bare quantities

on u we have

8Z;" dar
+Z37'n— 3
du 3 Hau )

0=2¢eZ;'a + na

By repeating our earlier reasoning we see that Z;, and hence Z3', like Z, must

be a Laurent series in € with only negative powers of € and 1 as the term
-1

independent of €. Hence u—é;— has singularities as € vanishes. Extracting

the non-singular terms in equation (5) and demanding that they seperately add
up to 0 gives

af(a) = —2ea+ Ba* + B’ + - - - (6)

We have determined the € dependent pieces of S(«). But equation (5) contains
still more information, which we now extract.

Let the residue of the simple pole in Z; be ¥, b,a” where the sum over n
runs as usual over integers larger than zero. Then the residue of the simple pole
of Z7' must be —Y, b,a"; implying

b,a"
Z?Tl:l—E & + .-
~ €
Hence
3Z3! nb,a"' | da
M 83 :—2——-—(#—-—-—).’....
u n € ou

d
Substituting u(a—a) from equation (6) we have
[T

3Z;!
ou

U => 2nb,a" + - - - (7)
Since the right hand side of equation (5) is a Laurent series in € the coefficient of
each power of € of must vanish separately if the series as a whole is to vanish.
Substituting the residue of the simple pole in Z3' and equations (7) and (6) into
equation (5) we see that the pieces independent of € in equation (5) vanish if

ﬁn = _2nbn (8)
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We have succeeded in expressing the f3,, which are the coefficients in the f
function in terms of the b, which are obtained by calculating vacuum polarization
graphs. A text-book calculation [3] of b, and b, shows that equation (8) correctly
reproduces the first two terms in the expansion of the f function.

We now rewrite y in terms of the divergent pieces of Z.. Let the residue of
the simple pole in € in the expansion of Z. be ), g,a". Then

Z;:'—l:l_zgna"

€
Substituting this expansion as well as equation (6) into the defining equation for y
(equation (4)) we get, after ignoring the pieces which are singular as € >0

Yn = —2ng, )

where y, was defined just preceeding equation (3). Substituting equations (9) and
(8) into equation (2) we get a new form of our all loop identity

nb, =g, Vn; n=12,... (10)

+ -

which expresses the renormalization group invariance of the temt.

In part I we will rederive equation (10) by expressing the divergent pieces of
(0| TF*A,A, |0) in terms of the singular pieces of vacuum polarization graphs.
This independent check on the validity of equation (10) completes our proof that
the temt is indeed renormalization group invariant to all orders in perturbation
theory.

Part 11

We begin by considering the tree-level Greens function (0| TF°A,A, |0). This
generates the Feynman rule for the vertex F?, which we will denote by the
symbol &®. It is easy to show [4] that in the limit that the composite operator
transfers zero momentum, the tree-level Greens function is, with a suitable
normalization merely the free Landau gauge photon propagator. This gives us a
diagrammatic prescription for going to the zero-momentum transfer limit in a
higher order Feynman diagram; remove the composite operator outright and join
the resulting photon legs to form a single free Landau gauge propagator. We now
apply this prescription to some arbitrary graph contributing to (0| TF*A, A, |0).
The graph has two external photon lines, a composite operator vertex, and at
non-zero momentum transfer is dependent on two external momenta. Setting the
inserted momentum to zero leaves a graph with two external photon propagators,
dependent on one external momentum, and from the diagrammatic prescription
just described, completely independent of any composite operator insertions.
Such a graph is a vacuum polarization graph, by definition.

The renormalized composite operator Greens function is related to the bare

Z
one by a scale factor which is Z—F , provided only one particle irreducible (1PI)
3
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graphs are taken into account. Z, depends on the g, and Z; on the b, defined in
part 1. In the zero momentum transfer limit, since we recover vacuum
polarization graphs, the scale factor is Z; dependent. Hence in the zero
momentum transfer limit, provided infra red singularities are identified and
segregated, it is possible to express Z in terms of Z; and hence g, in terms of b,,.
If equation (10) is recovered, then we will have independently rederived an
identity which was originally derived assuming the renormalization group
invariance of the temt. This we will do and thereby prove that the temt is
renormalization group invariant to all orders in perturbation theory.

Before beginning with the formal proof we consider the 3 loop Feynman
graphs shown in the Appendix. They differ only in that one graph, graph II, has
an F? vertex inserted between B and C. Heuristically, this graph could have been
obtained from the vacuum polarization graph, graph I, by making the appropriate
insertion. We could also have generated another composite operator graph from
graph I by inserting the F? vertex between D and E instead of between B and C.
This exhausts all possibilities from graph I. This process can be repeated for all
distinct three loop “‘parent” vacuum polarization graphs. To O(a") each vacuum
polarization graph generates (n —1) composite operator graphs since each
vacuum polarization graph to this order has (n — 1) internal photon propagators.
In fact, to O(a") there are (n—1) times as many graphs contributing to
(0| TF 2A +A, |0) as to vacuum polarization. This can be seen as follows.

Vacuum polanzatnon to O0(a"), neglecting overall constants and irrelevant
arguments is given by

(0] TA,MAVJ'd"'xl coedXTUYMWA, (D) - - WyRWA,, (x77) |0) (11)

(0| TF*A, A, |0) to the same order in perturbation theory (once again neglecting
irrelevant constants and arguments) is given by

(0 ) @

Since the free F? vertex does not contain any spinorial fields the spinorial Wick
contractions are identical in equations (11) and (12). This leaves the gauge
potentials to be contracted among themselves. The external gauge potentials are
accounted for first. This leaves in equation (11)

W RPMC e %]

(n—=1)! (5

TFZA,,A.,J‘d“x1 coed'XPTUyMWA, (x1) - - Wy PA, (X77)

remaining Wick contractions among the gauge potentials to be performed. For
(0| TF?A,A, |0) (equation (12)), there remain (after the external gauge poten-
tials have been accounted for) **~2C, ways of Wick contracting the F* vertex.
The remaining (n — 2) gauge potentials may be mutually contracted in

2n_4C2 X 2nﬂ6C2 X+ X 1
(n—2)!

ways.
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The total number of non-spinorial Wick contractions is then

2n—4C2 X 2n—6C2 W e w v B 1

720, x =2 (14)

Comparing equations (13) and (14) we see immediately that there are to O(a”),
(n — 1) times as many composite operator graphs as vacuum polarization graphs.
This suggests that it is possible to generate all possible composite operator graphs
of a given order by making insertions of F? in the internal photon propagators of
vacuum polarization graphs of the same order. We now show that this is indeed
the case.

We begin by repeating the sequence of Wick contractions which we used to
decompose equations (11) and (12). First the spinor fields were fully Wick
contracted into loops and sets of loops which were identical for both cases.
Among the gauge potentials the external propagators were accounted for first. In
equation (11) this left (2n —2) gauge potentials to be pairwise mutually
contracted; each pair generating an internal photon propagator on contraction,
each set of contracted pairs generating a single Feynman graph with (n —1)
internal photon propagators, different sets of contracted pairs generating different
Feynman graphs, all possible sets of contracted pairs generating all possible
Feynman graphs derivable from given spinorial Wick contractions. In equation
(12) the same sets of pairs can be used to exhaust all possible remaining Wick
contractions, provided each pair generates not only an internal photon propaga-
tor but also two internal propagators threaded through the F? vertex. This
corresponds to contracting the vertex. Since each set contains (n — 1) pairs, all of
whom must be threaded in succession through the vertex in order to exhaust all
possibilities, each set generates not one, but (n — 1) separate Feynman graphs
which differ from one another only in that each time a different pair is threaded
through the F? vertex. But this amounts to inserting the F? vertex in each pair in
succession, which in turn amounts to inserting the vertex into each internal
photon propagator in the corresponding vacuum polarization graph in succession,
as each contracted pair represents an internal photon propagator in the
corresponding vacuum polarization graph. This is just what we wanted to show.

We now make a choice of gauge, the Landau gauge. We consider the (n — 1)
Feynman graphs which can be generated by making F? insertions in the internal
photon propagators of a given vacuum polarization graph, in the limit that no
momentum is transferred by the insertion. Then, as a consequence of our
prescription for going to the limit of zero momentum transfer, all the graphs
generated can be set equal to another, and equal to the ‘“‘parent” vacuum
polarization graph, provided the internal momenta are suitably relabelled. (Since
we are not dealing with an anomalous vertex, this can be without violating any of
the Ward Identities we require.) Hence we see that in going to the zero
momentum transfer limit we generate the “parent” vacuum polarization graph
with an additional combinatorical weight of (n —1). This process of making F?
insertions in vacuum polarization graphs and going to the zero momentum
transfer limit can obviously be repeated for all vacuum polarization graphs. Since
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we have shown that all graphs contributing to (0] TF?A,A, |0) may be generated
by making F? insertions in vacuum polarization graphs, it now follows that going
to the zero momentum transfer limit merely reproduces vacuum polarization with
an additional combinatorical weight (r — 1).

In practice though, (0| TF?A,A, |0) at zero momentum transfer is not
infra-red safe. We will show that the infra-red divergences can be understood in
terms of the ultra-violet divergences of the S-Matrix. This will also provide a
recipe for removing the infra-red divergences. To illustrate these remarks we now
turn to the two Feynman graphs shown in the Appendix.

In the zero momentum transfer limit, and with a suitable choice of gauge
(the Landau gauge), the two graphs are equal. However, in order to cancel the
non-local singularities lower order ultra-violet counterterms must be added.
Simple inspection reveals that the permissible counterterms are different for the
different graphs. Graph I for example, requires a counterterm to compensate for
the two loop vertex renormalization sub-graph ABCDE. It is not permissible to
add the same counterterm to graph II, the one contributing to (0| TF?A,A, |0).
(Both the graphs of course, requires a common one loop vacuum polarization
counterterm to compensate for the vacuum polarization bubble CD.) At non-zero
momentum transfer the two graphs are distinct, and the mis-match between
permissible sets of counterterms is then only to be expected. However, at
zero-momentum transfer the mis-match persists, even though the two graphs are
no longer distinct.

A similar mis-match may be found by considering many other pairs of graphs
to three loops or any other higher order in perturbation theory. Given the fact
that a mis-match is inevitable, we see that evaluating our composite operator
Greens function at zero momentum transfer amounts (up to a factor of (n — 1) to
O(a™)) to evaluating vacuum polarization graphs without the full complement of
lower order ultra-violet counterterms. This results in uncancelled non-local
divergences.

We claim that these non-local divergences are infra-red. If they were not so,
i.e. that they were ultra-violet divergences, then it would imply that F? is not
multiplicatively renormalizable. In our massless theory this is clearly not the case.
Hence our claim.

Before explaining how both the local and non-local infra-red divergences
may be segregated, we draw some general conclusions about the nature of the
ultra-violet divergences based on the requirement of multiplicative renor-
malizability. The Greens function calculated at zero momentum transfer is a
second rank tensor dependent on one momentum which is the same as the
momentum of the two external legs. The product of the two external propagators
and the divergent pieces of the Greens function must have the same functional
form as at tree-level; this is a condition imposed by multiplicative renor-
malizability. But the tree level Greens function is merely the free Landau gauge
photon propagator. Hence the divergent pieces of the Greens function must be
transverse, in addition to being local. This transversality requirement plays an
important role in what follows.
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Since our zero momentum transfer calculation is related to that of an
S-Matrix element, vacuum polarization, we know that the full complement of
ultra-violet lower order counterterms is required to completely cancel non-local
divergences. The missing counterterms are then added in the guise of infra-red
counterterms. This identification is permissible as we have already reasoned that
the non-local divergences are infra-red divergences. The complete set of lower
order counterterms together with the requirement of transversality is enough to
fully specify the divergent pieces which are (since we are now computing vacuum
polarization with no missing lower order counterterms) those of vacuum
polarization, modulo a factor (n — 1) at G(a”).

As a precaution against local infra-red divergences the non-zero external
momentum is chosen to be non-exceptional. The theorem of Poggio and Quinn
[5] then guarentees infra-red finiteness. Our recipe of completing the complement
of lower order ultra-violet counterterms and holding the external momentum
non-exceptional then ensures cancellation not only of non-local divergences, but
also of local infra-red divergences. The remaining divergences are therefore local
and purely ultra-violet. They are related to those of vacuum polarization by the
additional combinatorical weight of (n — 1). We are now in a position to evaluate
the g, in terms of the b, and thereby check the validity of equation (10).

Z . i :
At tree-level Z_F is 1. We have just shown how to higher orders in
3

; Zy . : ; -
perturbation theory, Z_F is related to the divergent pieces of vacuum polarization
3

which however are themselves contained in Z;. Hence we have from the
definition of the b,

Zp

(n —
7. Z

1)b
=Dt

Using this and the definition of Z;,

ZF=(1+E————("_1€)b"0{+'~)( --)=1+anza+-
(15)
This implies, however from the definition of g,, that
nb, =g, Vn; n=1,2... (16)

But this is identical with equation (10) which was derived assuming the
renormalization group invariance of the temt.

Hence we have recovered an identity which is a consequence of the
renormalization group invariance of the temt. This proves that the temt is
renormalization group invariant to all orders in perturbation theory.
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