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Adiabatic theorem and Gell-Mann—-Low formula

By G. Nenciu') and G. Rasche
Institut fiir Theoretische Physik der Universitit, Schonberggasse 9, CH-8001 Ziirich

(4.X.1988, revised 1.XII1.1988)

Abstract. Using the adiabatic theorem of quantum mechanics we give a non-perturbative proof
of the Gell-Mann-Low formulae. Also a very general form of the adiabatic theorem is proven.

I. Introduction

The present note has a pronounced pedagogical character and has two aims.

The first one is to give a non-perturbative proof of the Gell-Mann-Low
(G-L) formulae [1] relating the adiabatic limit of the evolution in the interaction
picture to quantities appearing in the time independent theory like the energy
shift and the eigenvector of the total hamiltonian. Although the content of the
G-L formulae is clearly non-perturbative, the existing proofs are (to our best
knowledge) in the framework of perturbation theory (to obtain a real proof one
has e.g. to combine the arguments in [2] with the rigourous perturbative results in
[3]) and only for the G-L switching function e~ *"!. On the other hand it is almost
evident that the G-L formulae should be related to the adiabatic theorem of
quantum mechanics. The difficulty is that while the adiabatic theorem holds for
the Schrodinger picture evolution operator U, the G-L formulae deal with the
interaction picture evolution operator U,. The latter contains an explicit time
dependence in the hamiltonian even in the adiabatic limit. We will show that this
difficulty is not a serious one and that one can obtain G-L-type formulae for
general switching functions by just applying an appropriate formulation of the
adiabatic theorem. Moreover we will express also Berry’s phase [4,5] in terms of
U,.

The second aim of this note is to give a general formulation of the adiabatic
theorem. In the last decade this has proven to be the main technical tool in a lot
of interesting phenomena, e.g. the Quantum Hall Effect [6] and spontaneous pair
production in strong fields [7] and general and rigorous proofs of the adiabatic
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theorem appeared. For its history and physical content we refer to [8,6,9] and
references therein. Here we will reformulate the results of [10] in the spirit of [6].
This formulation provides the factorisation of the secular divergences [11,12] for
the general degenerate case and to higher orders in the slowness parameter ¢. For
the adiabatic switching formalism & has no physical meaning and the higher order
corrections are mainly of academic interest. In quantum optics and quantum
electronics on the other hand & has a physical meaning coming from the
interaction of matter with classical electromagnetic fields in the low frequency
limit. We hope to come back to these problems in future work.

In the remainder of this introductory section we shall fix some notations and
technical assumptions. In section II we will formulate the adiabatic theorem and
perform the factorisation of the adiabatic evolution. For those interested only in
the G-L formulae we collect at the end of Section II the result in the particular
form needed in Section III. This particular case of the adiabatic theorem (with a
semirigorous proof and almost identical notations) is contained already in [8].
Section III contains the proof of the G-L formulae. The appendix contains the
proof of the adiabatic theorem.

We will consider hamiltonians of the form

H(et)=H + f(et)V (1.1)

where H is self-adjoint and bounded from below; V is self-adjoint and bounded
with respect to H:

IVyll<alHyll +b |lyll, a<l, vyeP(H) (1.2)

and f(s) is a switching function.

We will very often abbreviate s = &t.

We assume that f(s) is defined on (—o, +%) and has the following
properties:

0=f(s)=1

f(0)=1 (1.3)
Ff(s)=f"(s)eL'R), m=0,1,...,mp=

Actually only the last property of (1.3) will be needed to prove the adiabatic
theorem. For the G-L switching function ™' we have m,=1 since the first
derivative is discontinuous at s =0. However, e~"' can be obtained as a limit of
switching functions with mq,=2 and with [*Z|f®(s)| ds uniformly bounded, so
actually all the results for the switching functions with my,=2 apply to e bl as
well.

As a consequence of (1.2) H(s) = H + f(s)V is self-adjoint on the domain of
H [13,14]. Moreover (H(s) +i)~! is m, times norm differentiable. For example

Oy (H(s) + i)™ =fP(s)(H(s) +i)'V(H(s) + i)™ (1.4)

Many Schrédinger-type equations will appear in the following, especially in the
proof of the adiabatic theorem, and since the corresponding hamiltonians depend
on time some care is needed to assure the existence and uniqueness of the
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solutions. Due to the norm differentiability of (H(s) +i)~' and to some technical
results in [15, see Chapter IV Theorem 2.4] the existence and uniqueness of the
unitary evolutions is assured by the standard results [16,14,17].

The basic objects we consider are the evolution operator U(t, f,; €) in the
Schrédinger picture given by

i3, U(t, ty; €) = H(et)U(t, ty; €), U(ty, ty; €)= 1 (1.5)
and the evolution operator U,(t, ty; €) in the interaction picture given by

i3,Uj(t, to; €) = f(e)e™ Ve Ut ty; €);  Ulto, to; €) = 1 (1.6)
They are related by

U, ty; €) = ei';"U(t, to; €)e ~ifity (1.7)

It is well known that due to (1.3)

lim Uj(t, to; )y = Uy, —; )y (1.8)

exists for all y € @(H). If V is bounded, the limit in (1.8) is a norm limit.
Besides (1.2) and (1.3) the main assumption concerning H(s) is that its

spectrum consists for all s of n disconnected pieces 0(s), (j=1,2,...,n<®)so
that
d = mip inf dist(o{(s), o2(s)) >0 (1.9)

We will choose the numbering such that o;(s) is bounded for j=n — 1. P, (s) are
the spectral projections of H(s) corresponding to o}(s).

Due to the norm differentiability of (H(s)+i)~' and to the Riesz formula
[13,14]

Po(s)= EJIE i' (H(s)—z) 'dz (1.10)

where C; is a bounded contour surrounding oj(s), the P, (s) are m, times norm
differentiable. Due to

n—1
Po(s) =1~ 2 Pos) (1.11)
j=1
also P, ,(s) is m, times norm differentiable.
In Section III we will deal with the particular case n =2, o{(s) = {Ey(s)},
where E(s) is a nondegenerate eigenvalue of H(s) with eigenvector y(s). In this
case P, (s) is a one dimensional projector.

II The adiabatic theorem

In this section we state the adiabatic theorem in the form as we will prove it
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in the appendix and perform the factorisation of U. To this end we first define
recursively for k=0,1,...,my—1 and sufficiently small £ the self-adjoint
operators

Hy1(s; €)= Hi(s; ) + i Py i(s; 5){ifaspk,j(3; )+ [Pk,j(s; ), H(s)]} (2.1)

with Hy(s; €) = H(s). The P, (s; ) are the spectral projections corresponding to
the j’th piece of the spectrum of H,. Actually the P, ; do not depend on &. In the
appendix we will show for all k that the sum on the r.h.s. of (2.1) is bounded and
of order £ and then by perturbation theory for small enough ¢ the spectrum of
H,(s; €) also consists of n disconnected pieces, going to the spectrum of H(s) as
e—0.

We have now all the ingredients to formulate the Adiabatic Theorem:

The operator U(t, ty; €) has for k=0, 1, ..., my— 1 the factorisation

U(t, to; €) = Ur(t, to; €)Rx(t, to; €) (2.2)
where UZ(t, to; €) is the (unique) solution of
i8,U(t, to; €) = {Hy(&t) — Hyoo(et; €) + He(gt; €)Y UR (R, to; €)
| Ui(to, to; €)=1 (2.3)
and (remember the abbreviation .s = &t, 5o = €&ly)
P f(s; €) = UZ(t, to; €)Pi j(s0; €)UL*(t, to; €) (2.4)

Furthermore, for k=0,1, ..., my—2

sup || Qx(¢, to; €) — 1| =< const g™, (2.5)
Ui (¢, to; €) coincides with the adiabatic evolution of [6]. We therefore name Uy
the ‘“‘adiabatic evolution of order k. From (2.5) it follows that for increasing k
the Uy approximate the Schridinger evolution operator U better and better.

From (2.2), (2.4) and (2.5) one can write an alternative form of the adiabatic
theorem:

| P, j(s; €)U(L, to; €£) — U(t, to; €)Py (so; €)|| = const gkt

Families of orthogonal projections satisfying this inequality have been constructed
for the first time by Garrido [18] at the formal level and for H(s) with discrete
nondegenerate spectrum. At the rigorous level and for the general case the same
construction (used also for the proof of the adiabatic theorem given in the
appendix) has been rediscovered in [9]. The construction uses solutions of certain
differential equations and then H(s) enters nonlocally in s. The crucial point of
the construction given here is that the P, (s;¢&) are constructed from H(s)
without solving any differential equation and depend only on H(s) and its
derivatives of order <k at the point s. In physical terms this means that the
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P, [(s; €) depend only on the “dynamics’ at time s and then they can be regarded
as generalised adiabatic invariants.

We will now exploit (2.4) to further factorise U%. To this end we make use of
the theory of transformation functions which goes back to Daletsky and Krein
[15] and Kato [19]. The basic construction which will be used also in the proof of
the adiabatic theorem goes as follows:

Consider a continuously differentiable family of orthogonal projections
Qi(s),j=1,2,..., nwith

2 0)=1;  QUS)On(S) = 81mOms).

A transformation function [13,14] for the Q;(s) is a family T(s, so) of unitary
operators satisfying

Qj(s) =T(s, SO)Q}'(SO)T*(S: 50), T(so, 50)=1 (2.6)

Lemma 1 [15,13,8]. If K(s) is defined by

K6)= =i’3 0,(5)3.0,(5) @7)

then
(1) K(s) is self-adjoint

(ii)) Q;(s)K(s)Q;(s)=0forj=1,...,n (2.8)

(i) The (unique) solution of

i3,A(s, s9) = K(s)A(s, so); A(Ssg, 50) =1 (2.9)
is a transformation function, i.e.

Q;(s) = A(s, $0)Q)(50)A™ (s, So) (2.10)

Suppose now that T and § are transformation functions for Q;. Then from (2.6) it
follows that [T*(s, 59)S(s, 59), Q;(s0)] =0, or put in other words

S(s, 80) =T(s, so)W(s, s0) with [W(s, s0), Qi(50)] =0 (2.11)

Now (2.4) implies that Ui (s, so; €) is a transformation function for the P, (s; €).
Let A(s, so; €) be the transformation function for the P, (s;é&) constructed
according to Lemma 1 and let @, (s, sy; €) be given by

D, (s, 505 €) = AZ(S, So; €)UR(S, 503 €) (2.12)
which is equivalent to
U (s, so; €) = Ax(s, so; £)Dy (s, 50; €). (2.13)

From (2.11) and (2.12) it follows that
[®x (s, s0; €), Pi (50, €)] =0. (2.14)
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Until now we have always carefully written out all the arguments of the operators in
detail. From now on for typographical convenience we will suppress these
arguments if no confusion can arise. In particular we will drop the argument ¢ in
expressions like U(s, so; €) nearly everywhere.

The differential equation for ®.(s, s,) can be found from (2.12), (2.3), (2.9)
and the definition of A, in terms of the P, ;:

i0,®, = A:(H0 —Hyy+ He+i D, Py ;3,P ,.)Akcbk
=1

)

@i (s0, o) =1 (2.15)
This can be simplified. Due to (2.14)

Di(s, 50) = i Pk,j(so)q)k(sr 50)Pr.j(50) (2.16)

Furthermore, due to (2.8) with (2.7) and (A.19)

ia,Pk,,-(So)‘Dk(S, o) P k,j(sO)
= Pej(50)AZ(S, 50)Pej()H(5) Py () Ak(s, 50)Pr(50)Pi(s, 50)Prcj(80)  (217)

The main result of this section is contained in (2.13), (2.16) and (2.17): In order
to have U% one constructs A, from the P, ; according to Lemma 1 and solves the
differential equation for ®,, in each subspace of P, /(s,). The second step is trivial
in a one dimensional subspace. Actually, if k=0 and P, is one dimensional,
then

D Po,1 = @oPo,1
where @q(s, s,) is a phasefactor given by the equation
i13,p0(et, €ty) = trace{Ag Py Hy Py, 1A} @0
= Eo(et) po(et, €ty); @olety, etg) =1

which has the solution

Qo(Et, €ty) = exp [ ~1 f Eq(et") dt’] = exp[ —ile f Ey(s") ds’] (2.18)

The point of the factorisation (2.13) is that by construction the P, ; are
continuous for €— 0; thus also A, is continuous for £— (. This means that all the
singular e-behaviour of U% is contained in ®, which in the nondegenerate case is
just a phase-factor.

We end this section by summing up the results for the simplest case we treat
in the next section: n =2 and k =0, and P, ; corresponding to a nondegenerate
eigenvalue E, (see also [8]) (we write all arguments out!):

U(s, so; €) = U§ (s, so; €)R0(S, 5o; €) = Ao(s, 50)Po(s, 50; €)R0(s, 503 £)  (2.19)
D(s, S0, €)Fo,1(50) = @o(s, So; €)F,1(50) (2.20)
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with

@o(s, So; €) = exp[ —i/e r Eo(s") ds'] (2.21)
Using

- i}i Po,i(s)3:Fo,/(s) = i(1 = 2Py, 1(5))3; Fo.1(s) (2.22)
we have

i0,Ao(s, 50) = i(1 = 2P, 1(5))(3,Py,1(5))Ao(s, 50)

(2.23)
Ao(S0, 50) =1
Ag (s, 50)Po,1(5)Ao(s, s0) = Po,1(s0) (2.24)
and
sup ||Lo(s, so; €) — 1]| =const (2.25)

5,50

III. The Gell-Mann-Low Formulae

In this section we will apply our results to a piece of the spectrum, which
consists only of one (isolated) nondegenerate eigenvalue of H(s). For con-
venience we suppress the index j corresponding to the one-dimensional subspace
in question. We will only use the quantities of the lowest adiabatic approxima-
tion; therefore we also can suppress the index k = 0. |

We thus have the eigenvalue E(s) with E(®)=E(—®)=FE and the
one-dimensional projector P(s) with

P(w)=P(—»)=P 3.1)

where E and P are the eigenvalue and the projector of H.

The evolution operator in the interaction picture is given by (1.7). Since the
limit ,— — o does not exist for U(t, ¢); €), in order to make use of the adiabatic
theorem we first compute U,(¢, t,; €)P and then take the limit t,— — . In the
following we conveniently suppress the dependence on ¢ again. But remember that
s = ¢t and s, = &t,.

Using the factorisation (2.19), the definition

o

A,(S, S()) — eiIﬁA(s, S())e_”H

and the fact that
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we have

Ui(t, to) B = e EA (s, 50)e™®(s, s0)P + R(¢, to) (3.2)
Here

R, to) = e EeFA(s, 50)D(s, 50)(Qs, s0) — 1)B (3.3)

with (due to (2.25))
sup ||R(2, ty)|| = const £
Lty

Using (2.20) we have
e"™(s, 50)P = e (s, 50)P(s0) + e D(s, 50)(B — P(50))
=e"E@(s, s0)P + e"A(P(s0) — B)g(s, 50) + €D (s, s6)(P — P(s0))
(3.4)
Inserting (3.4) into (3.2) and using (3.1) as well as (2.21) one gets:

Uy(t, —©)P = A (s, —»)P exp[ = f t (E(et') — E) dt’] +R(@t, —»)  (3.5)

This i1s the adiabatic theorem in the interaction picture for a one dimensional
subspace.
For ¢t =0 we get

U,(0, —=)P = A(0, —x)P exp[ —ile f (E(s") - E) ds’] +R(0, —®)  (3.6)

Note that A(0, —) does not depend on ¢ so that (up to terms of order & coming
from R(0, —)) all the dependence of U, on ¢ is contained in an explicit form in
the phase.

Now let 1?)0 be a unit vector corresponding to B, ie. 13171 = 121 Remembering
that A(0, —»)P = P(0)A(0, —x) it follows that

P(0)A(0, —)¢p = A(0, —=)Pyp = A(0, —)y

This means (because of the unitarity of A) that A(0, —00)1]3 iS a unit vector
corresponding to P(0) and thus it is a normalised eigenvector of H(0).
Since

P(0)y = A0, —=)PA*(0, —=) 9 = (3, A*(0, —=)P)A(0, —)3
= (9, A(0, —=)P)A(0, —)y (3.7)

one concludes that

(¥, P(0)y) = |(y, A0, —=))|?

We assume that (v, P(0)y)+#0, which is equivalent to the condition ||P —
P(0)|| < 1.
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From (3.6) and (3.7) we then get

- DUI(O, —5 8)12'0 — OA(O: —OO)J}O — OP(O)JJO
=0 (¢, Uj(0, —; €)y) (v, A0, —=)y) |(y, P(0)y)
=_P@§/’_2 (3.8)
IPO)yl

This is the G-L result for the eigenvector of H(0); it has been derived here for
the general form (1.3) of the switching factor.
From (3.5) we have

(D, U, =) = (G, AGs, —)d) exp| —ile | (B~ By as']

+(, R(t, —)9)

Here one can take the limit t— « and we obtain:
—+oc
(9, Uilen, —)9) = (B, A, —)§) exp| —ife [ (EGs")— Eyas'|

+ (0, R(, —)9) (3.9)
From P(®)A(®, —x) = A(®, —x)P(—x) and (4.1) it follows that
PA(w, —) = A(, —®)P

so that A(, —00)17) is another unit vector corresponding to P and can differ from
¥ only by a phase factor:

A, —0) i = e "y (3.10)

x is associated with switching on and off the interaction and is independent of &.
It is known as “Berry’s phase” [4,5].
Taking the logarithm of (3.9) one obtains with (3.10) and (3.3)

— ig log (Y, Uy(, —x)) = f: (E(s’) — E)ds' + ex + O(&?) (3.11)

this is the G-L result for the phase; it has been derived here for the general form
(1.3) of the switching factor.

For the particular switching factor f(s) =e™"' one can proceed further. We
replace V by AV where 4 is a coupling constant. The hamiltonian H(s | A) and the
eigenvalue E(s | A) depend on s and A through the combination & = Ae™*!. Using

oL E =e""8§E
and

S

5.E =
|s]

Ae_lslagE
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we have
)
A E= ——0o,E
|s|
so that

Aahrm(E(sl/l)—l:?)ds: —fwﬁasE(sM)ds: —2E0|A) - E)

Together with (3.11) we have (writing also the dependence on &)
iA3; lim € log (, Uy(=, —; € | ))§) =2(EO | 4) - E)

This is the usual G-L result for the difference of the eigenvalues of H(0|A) and
H.

Appendix

In this appendix we prove the adiabatic theorem. We first define H° by

H(s, s0; €) = H(s)
The spectral projection of H° corresponding to of we call P{(s, so; £). Actually
H° and P} do not depend on s, and £. We now define following (2.7)

K(s, s0; €)= —i 2, PJ(s, s0; £)3,P}(s, s0; €) (A.1)

j=1

K® is mo— 1 times differentiable and also actually does not depend on s, and .
We then define (following (2.9)) M(s, s,; €) by

i3, M°(s, so; €) = K°(s,50; €)M°(s, 50; €);  M°(so, S0; €)= 1 (A.2)

M° actually does not depend on £ As a transformation function it has the
following crucial property (see (2.10)):

PY(s, so; €) = M°(s, so; €)P{(s0, So; €)M°*(s, 50; ) (A.3)
We now define the family of self-adjoint operators
H'(s, 50; €) = M®*(s, 5¢; €)(H (s, 50; €) — €K°(s, 50; £))M (s, 50; €)

If € is sufficiently small, more exactly if
e sup || K°(s)|| < d/4,
by perturbation theory the spectrum of H' still consists for all s of n disconnected

pieces 0j(s, so; €), separated by intervals of length>d/2. The corresponding
spectral projections we call P}(s, 5o; £).
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We can now repeat the whole construction starting from H' instead of H°.
One can continue this process defining H*, H?, . . ., H™. The reason is that if H*
is constructed for k <m,, then for

k—1 -1
0<s<gk=d/4(z sup || K'(s, so; s)ll) (A.4)
1=0 s
its spectrum is still well separated in n pieces Gf(s, So; €) with lim,_,, a,’-‘(s, So; €) =
0(s) and moreover (H*(s, so; €) +i)™" is differentiable for k =mq,— 1.

Starting with £k =0 and ending with kK = m, — 1 we thus have:

Kk(S, Sos €)= —1I 2 P;C(S» 505 E)QSP]’-‘(s, 50; €) (A.5)
j=1 ,
id,MX (s, so; €) = K*(s, 50; €)M*(s, 50; €); M*(sq, sp; €) =1 (A.6)

H**!(s, 50 €) = M**(s, 503 €)(H"(s, 505 €) — €K*(5, 505 €))M*(s5, 505 €) (A7)

From these quantities we define the unitary operators Z,, I',, U and Q, for
k=0,1,...,my—1 via:

Z,(s, So; £) = M°(s, 50, )M'(s, 505 €) - - - - M*(s, 5¢; €) (A.8)
i3,Ls(s, so; €) = M**(s, so; €)H (s, So; £)M" (s, 50; )T4(s, 505 €)

(A.9)
(50, So; €)= 1

Ui(s, so; €) = Z(s, so; €)Tk(s, So; €) (A.10)
Qi (s, 50 €) = U™ (s, 503 €)U(5, 505 €) (A.11)

Uy is the k’th adiabatic approximation to the Schrédinger evolution operator U.
Having written out in the appendix all arguments up to now, we will suppress
them from now on in the spirit of the remark in section I1.
We first show by induction, that

i8(ZxU)=H*"*"(Z;U) (A.12)
(A.12) is certainly true for kK =0, because
i8,(ZsU)
=i3,(M°*U) = M°*(H° — eK")U = M**(H" — eK)M°M**U=H'Z}U

We now assume that (A.12) is true for Kk =/ —1 and prove that it is true for
k=1

i0(ZFU)=id,(M"*Z}_ \U)=i(dM'"*)(Z}_,U) + M"*H'Z} U
= M™*(H' — eK")Z} U = M"*(H' - eK"YM'M'*Z}_\U = H"*Y(Z} U)
From (A.12) it follows that
i8,Z,=(H-ZH"""'Z})Z, (A.13)
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We can now prove by induction

Lemma 2
H, = Zk—lHkZ;:-—l
Pk,j= Zk—IP]kZ;:—l }
where H, and P, ; have been defined in (2.1).
Proof. (A.14) is true for k =1, because

(A.14)

Z(}leg =MOH1M0* =M()M0*(H0__ EKU)MOMO* =H()+i 2 P}’@,P})=H1
=1

J

as defined in (2.1). Note that H° = H = H,,
We now assume that (A.14) is true for kK =/ and prove it for k =1+ 1:

ZH"ZF = ZM*(H'— eK'YM'Z} = Z,_,(H'— eK"Z},

=H,—¢Z,,K'Z}", = H, + ieZ,_, 2, P{3.P)Z},

j=1

= H, + i€ D, P,;Z,_(8,P)Z},
j=1

=H,+ie >, P,;{3,P; —(8,Z,_)P'Z} . — Z,_,P!3,Z} \}
j=1

=H,+ >, P, {ied,P,;— (H—Z,_H'Z} )Z, \P'Z}
j=1
+Z,\P;Z{\(H—Z,_,H'Z}_,)}

= H,+ Y, P, {i3,P,;— (H — H))P,;+ P, (H — H,))

j=1
=H,+ >, P, {ied,P,;+ [P, H]} = H,,,
j=1

In the calculation we have used (A.7), (A.8), (A.5) and (A.13).
With (A.14) we can write (A.13) in the form

i8,Z,=(H — Hy41)Zy (A.15)
We now prove (2.3)
i8,U¢ = (Hy— Hy1 + H) U7 (A.16)

To this end we calculate
i3, U =i8,Z, T =i(8,Z,)Ty + Z,id,T,
= (H - Hk+1)Zkrk + ZkMk*HkM'Tk
=(H—-H)Z Ty + Z \H*M*Z;Z, T,
=(H—-Hy1 +H)Z Ty = (H—Hy + H)UZ
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where we have used (A.13), (A.9) and (A.14).

Lemma 3
i8,Q,= — elTM**K*M*T', Q, (A.17)
To prove this we calculate
i8,Q; =idTiZiU= —TiM"*H*M*Z;U + T H*"'Z{U
where use has been made by (A.9) and (A.12). Using (A.10), (A.11) and (A.7)
we get
i8,Q, =(-TiM**H*M*T, + T H*"'T',)Q,
=T (-M*"*H*M* + H*")[,Q, = — eT;M**K*M* T Q,.
We can now calculate, using (A.14), (A.7) and (A.8)
Hy.,—H,= ZkaHZ;: - Zk—lHkZ:—l
=ZM"*(H* — eKYM*Z} — Z,_\H*Z}_,
= Zk—l(Hk - EKk)Z;:—l - Zk—lHkth—l = —Ezk—lKkZz—l (A.18)
and, using (A.18) together with (A.14), (A.5) and P(3,P)P =0
Pk——l.j(Hk - Hk—-1)Pk—l,j = SPk—l,jZk—ZKk_lz;:—ZPk—l,j
= — eZ, LPFTIKFTI P ZE = ieZ, LPFTV (O PF TP ZE_2 =0 (A.19)
In the following we have to write the arguments s, and s explicitly, but we still

suppress €, which is kept fixed.
We can now calculate, using (2.10) for A = M*

M**(s, so)H" (s, s0)M*(s, 50) P} (50, So) = M**(s, sq)H*(s, s0) P} (s, s0)M"*(s, 50)
= M**(s, s0)P(s, so)H* (s, s0)M*(s, o)
= Pj(so, s))M**(s, so)H (s, 50)M*(s, o)
so that
[M**(s, sQ)H (s, 5)M* (s, 50), PX(s0 50)] = 0 (A.20)

Now, according to (A.9), M*“*H*M* is the generator for [(s, s). Since Pf(so, o)
commutes with the generator, it also commutes with I';(s, s,):

[Ti(s, s0), P (s0, 50)] =0 (A.21)
We now prove (2.4). To this end we calculate
UL, to)Pf (S0, S0) = Zi(s, 50)Tk(s, $0)P; (S0, o)
= Z(s, SO)PJIF((S()J so)Lk(s, 50) = Zy_1(s, 50) My (s, S())Pf(so, so)Tk (s, 5o)
=Zi (8, S())P;k(sy So)M (s, sa)Tk (s, 80)
= Zi_1(s, SO)P;'((S’ S0)Zi-1(8, $0)Zi—1(s, So)Mk(S’ so)Tk(s, s0)
= P (8)Z (s, s0)Tk(s, s0) = P ;,(s)UR (1, 1o).
Now P#(sq, So) = Py (S¢), so that (2.4) follows at once.
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The following is the main (and only) estimate in the proof of the adiabatic
theorem. '

Lemma 4. For each j=1,2,...,n—1 let C; be a contour (of finite length)
surrounding o] such that |

dist(C;, 0;) =d/2 for all I, §
Then there exist |

0<b, i(s)<o», k=0,1,...,myg; m=1,...,mo—k
and

0=d,, 1(s) <o, k=0,1,..., mg m=01,..., my—k

such that
+oc
sup bm,k(s) = Bm,k; f bm,k(s) ds = Bm,k <L (A22)
SUP dp, 1 (5) =< Dypy o < - , (A.23)

and for 0 < ¢ < g, as defined in (A.4)

max || 37P(s, 5o; €)I| = by, i(s)e" | (A.24)

j=1,...
sup || (H" (s, 50 €) = 2) ' [| < dp i (5) (A.25)

n—1

where the supremum is taken with respect to all z € | C;.

j=1

The proof of the lemma is by induction over k. For k=0 (A.25) is almost
evident, using repeatedly (1.4) and the Leibniz rule. To verify (A.24) for
j=1,...,n—1 one has to use (1.10) and take into account that the
differentiation with respect to s and the integral over z can be interchanged. For
P! one has to use (1.11). The integrability of b,, ,(s) comes from the fact that all
terms appearing contain at least one derivative of f(s) as a factor.

Assume now that (A.22-A.25) are true for 0,1, ...,k — 1. From

(A+B-2z)'=(A-2)"'1+BA—-z)"H)™! (A.26)
and (A.7) one gets:
(Hk _ z)—l — Mk—l(Hk—l _Z)—l(l _ EKk—l(Hk—l _ Z)—l)—le—l

From this, taking the derivatives and using (A.5) as well as the induction
hypothesis (A.25) follows.
Now, using (A.26) and (1.10) we have (suppressing the dependence on ¢ in
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the arguments of the operators again!):

P¥(s, s0) — PF~'(s0, So)

= i,M"“*(s, so)§ dz(H*7'(s, so) — z) {1 — eK*7'(s, s0) ¥
27 G

X (H*"'(s, o) —2) ™"} 'K (s, so)(H* (s, 50) —2) "'M*7 (s, 50) (A.27)

Differentiating (A.27) with respect to s one finds that all terms contain either
K*! or its derivatives and therefore by (A.5) the derivatives of Pf~'. From this
one obtains (A.24) by the induction hypothesis.

As a consequence of Lemma 4 and (A.5) we have the following inequalities:

1K (s, so)|| < €*gi(s) with sup g.(s) < G, and J g(8)ds =G, <o (A.28)

To get an estimate for [|Q, — 1| we can convert (A.17) into the equivalent
integral equation and use the unitarity of I',, M* and Q;:

194(5, 50) = 111= | KA, soll ds” = 4G, (A.29)

The last thing we have to do is to improve (A.29) so that (2.5) holds. We assume
that Q**! exists, i.e. that k =m,— 2. Then

192 = T = 121 = T+ 1R +1 — Rl = 1192441 = T + 1192411k — 1|

(A.30)
We will now estimate the last term in (A.30) using (A.11).
190418 = 1= | 2 Pedlsa) (Uit UL* = 1)Py (50) (A.31)
jil=1
With (2.4) we get for the off diagonal terms j #[:
| Pe.i(50) UR+1(2, to) U * (4, to) P j(s0)ll
= || Pe,(50) = Pes1.4s0)l
+ || U+ (8, to)Pk+1,t(S)Pk,j(S)Uf*(t, to)ll
= [|Pr,i(80) = Prewr. (50l + || Prev1.45) = Preu(5)| (A.32)
Now from (A.18) and (A.28)
| H1(5) — Hi ()|l = £ 'gi(s) (A.33)
and then by perturbation theory [13]
max sup || Py /(s) — Py (s)|| = const €*'G, (A.34)
J s

We now treat the diagonal part. To this end we use (2.3) to derive the equation
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of motion for U, U*:
18Uz 1 UZ™)) = Ugsr(Hiyo — Hyoy + Hy — Hy ) UR® (A.35)

and to write it in its integral form
'3
U U 1= —i f U r(Hiso = Hor + Hi — Heo)UR* dt!
Iy

This gives the estimate
1P j(50)(Uz+1 U™ = )P (o)

t
= I ||Pk.j(so)Uf+1(Hk+2 — Hlyqq + Hyp— Hk+1)U}?*Pk,j(so)|| dt',
Lo

Now, using again (A.33), (A.34), (2.4) and (A.19) we get for the integrand
1Py, (50) Ui s1(Hiv2 — Hisr + (Hy — Hi 1)) UR*Pe j(50) |
= || Py, j(50) = Ps1,;(So)|(I| Hxv2 — Hi 1l + | Hx — Hy4l])
+ |IU£+1Pk+1,j(S,)(Hk+2 — Hppy+ (Hy — Hk+1))Pk,j(s')U'l?*||
= const g (s")e* 2 + || Pe (s Y (Hy 42 — Hics 1) P (57|
< const £¥*? max {g,(s"), gx+1(s")} = € %bi(s") (A.36)
so that

+oc

”Pk'j(S())(Ul]:_FlUﬁ* = ﬂ)Pk,j(SO)ll = €k+2f bk(Et’) dt' = 8k+l bk(sf) ds'

(A.37)

(A.32), (A.34) and (A.37) show, that the norm of each term in the sum of (A.31)
is of order £“*', uniformly in ¢ and ¢,. This completes the proof.

One of us (G. N.) wishes to thank the Swiss National Foundation for financial
support during his stay in Ziirich.
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