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SUPERCONDUCTIVITY FROM CHARGED LOCAL BOSON EXCHANGE
IN STRONG COUPLING APPROXIMATION

Charles P. Enz
Département de Physique théorique, Université de Geneve
CH-1211 Geneéve 4, Switzerland
(29,VII.1988, revised 23.X.1988)
To the Memory of Max Robert Schafroth

Abstract. A model Hamiltonian describing the charge fluctuations in the
Cu — O subsystem of the new high-T, superconductors is discussed and
used in a strong-coupling calculation of hole pairing. The resulting T,
has the form of a Bose-condensation temperature, which suggests that the
holes form real-space Schafroth pairs instead of Cooper pairs. This con-
clusion is substantiated by the existence at T of a finite coherence length,
which is obtained by identifying an appropriate correlation function. How-
ever, no indication of pairing beyond T, is seen in the thermodynamic

potential, and the gap is found to vanish as (T, — T)I/Z.

1 - Introduction

One of the key features of the new high-T, superconductors are the fluctuating
valences on the copper and oxygen sites which result from doping by metal impurities or
by oxygen. More explicitly, in the undoped ”groundstate” the Cu — O subsystem forms
regular square lattices of Cu’" ions in thea — b planes with 0*” located midway between
nearest neighbour Cu-sites. Doping then introduces holes which nominally form Cu’t-
ions. However, these holes may move to the neighbouring O-ions according to one of the
two reactions '

Cust0?™ — Cut O~ (1)
or

Cu*t0*~Cu®*t - Cu?to°Cu’t. (2)

The questions whether Cu’" is present and if not, which of the two reactions (1)
or (2) actually takes place, are experimentally still not decided 2. An important empirical
fact in favour of the formation of neutral oxygen, that is of reaction (2), is the instability
against loss of oxygen, well known in the quaternary new superconductors La,_, M, CuO,
and Y Ba,Cu;0q, . but apparently not found in the more recent quinary compounds.

While many theoretical papers based on reaction (1), so-called ”super-exchange”
models, have recently been published >'*° the similar reaction (2) ® has met with less in-
terest "*°. In this paper the interaction mechanism resulting from reaction (2) will be
discussed in Section 2. The details of the strong coupling calculation leading to supercon-
ductivity, which were summarized in ref.8, are presented in Section 3 and 4 while in Section
5 the finer features of pair correlation, thermodynamics and gap near T, are analysed, fur-
ther details being discussed in the Appendix. For a short review of the experimental and
theoretical situation see Ref.9. '
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The purpose of this paper is not only to propose a possible mechanism explain-
ing the high-T, phenomenon but also to show that in the extreme strong-coupling limit
the model discussed here yields a transition temperature T, of the form found in Bose
condensation, that is, not bounded by the exponential with negative argument typical of
weak-coupling theories. Because of this feature the model is of intrinsic interest, particu-
larly in rela.t1on with the question of a continuous transition, as function of the coupling
constant '°, between weakly coupled Cooper pairs, for which pairing and condensation
is sunultanous, and strongly bound Schafroth pairs which exist as bosons before they
condense '

In order to see more clearly the difference between the two pairing mechanisms,
a pair correlation function is defined in Section 5 by identifying appropriate diagrams.
With this object, a general definition of a coherence length £ is attempted as function
both, of temperature and of coupling strength. The fact that £ is found to be finite at T,
sheds some light on the mentioned formal similarity of 7, with the temperature of Bose
condensation, although no trace of this behaviour is found in the thermodynamic potential,
and the gap vanishes as (T, — — TP

2 - Charged Local Boson Exchange Model

Reaction (2) moves two holes with opposite spin from nearest-neighbour copper
sites i, j to the same oxygen site situated half-way in between (see Fig.2 of Ref.12), which
is legltlma.te since the cost in Hund’s rule energy is compensated by Jahn-Teller distortion
energy 13 In this model the two holes on the O-site also have opposite spin; moreover,
these holes are approximated by a doubly charged local boson. Taking the direction -7
along the z-axis and writing the creation operators of the holes at ¢ and j as Fourier series,
this leads to an interaction Hamiltonian **

WZakTap bei(katka)d/2 4 b o (3)
PR

where af is the creation operator of a band hole with spin o, b is the annihilation operator
of the doubly charged boson on the O-site and d the nearest-neighbour copper distance.
The coupling constant W may be expressed in terms of an extended Hubbard model for
the Cu — O subsystem 2

In principle, the interaction (3) should be used to calculate the self-energy *in
a strong-coupling procedure; this calculation is sketched in the Appendix. The important
point is that, since superconductivity is a condensation into the zero-momentum state,
only the zero-momentum projection of Eq.(3),

WZG,..T —k1b+hc’ _ (4)

is of direct physical relevance. Therefore, the Hamiltonian considered here is 8

H=) ea} ag, + Q676+ H', (5)

k,o
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Fig.1: The vertices of interaction (4).

where ¢, and 1, are, respectively, the unperturbed electron and boson energies measured
from the Fermi level, the filled portion of the band being —ep < ¢, < 0.

The interaction (4) is represented by the vertices of Fig.1 where oriented single
and double lines stand, respectively, for the hole and the charged boson propagators. With
this coupling, an effective nearest-neighbour hole-hole interaction

H; ;= Wz aETa“:mb'(b)t:O + h.c. (6)
E
may be constructed. Making use of linear response theory 15,

=i [ a(EE 0, Do, (7

where H'(t) is the interaction representation and € = 07. Evaluation of Eq.(7) and inser-
tion into (6) leads to ™'

1 + +
By =W Z: {2:-:,e —Q, +ie + 2e, — N, — 1€ } e Tk R %R (8)

This expression shows that only for Q, > 0 the effective interaction is purely attractive
and, therefore, only then superconductivity is guaranteed. In a similar way we may also
construct an effective nearest-neighbour boson hopping term from the original interaction
(3) (see Appendix) which then may allow Bose condensation to occur. This is another
possible explanation of high-T, superconductivity ! which, however, is distinct from the
holon condensation discussed in the literature °

3 - Gap Equation and Renormalization Condition
We first calculate the self-energy due to the interaction (4), making use of the
Nambu representation and of the Matsubara formalism *°. The Nambu-form of Eq.(4) is
H' =3 UIWP.b+W* P50, 9)
k
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- Fig.2: The self-energy matrix of Eqs.(20),(21).

where

awa

Ve = ( +’°T ) (10)
-k

We also define the matrices

1 ) 1
P:I: = 5(7’1 = ”'2); Qi = 5(1 - "'3)7 (11)

where 7, 7,,7; are the Pauli matrices.
The self-energy is obtained by calculating the hole propagator matrix X8

Gk; 7) = —(T{¥(~ir) ® L (0)}), (12)

where T is the time-ordering operator. To second order in H' one finds
= = 'B ﬂ » =
G(k;7) - G°(k;7) = / df'f dr G°(k; 1)
0 0
& {Eno‘l‘m(g; T' - T”) + Ea,w.on"l.(q'-" T”)} ga(g; T”)’ (13)
where the upper index o designates the free propagator and

Berm(Bs7) = — WP { DG P + D-DP_GEDP,),  (14)
ﬁ —
onom(TT) = |W|? Z/ dr’ {'D(T — f")P+Tr[P_g(k;0)]
= Jo

+D(r" — T)P_T+[P, G(k; 0)]} §(r — ). (15)

Here
D(7) = —(T{b(~i7)b*(0)}) (16)

is the charged local boson propagator. X ..., and X,,, ., constitute respectively the diag-
onal and off-diagonal elements of the self-energy matrix, as shown in Fig.2.



126 C. P. Enz H. P. A.

Fourier transformation of Eq.(13) according to the identity

- B .
Bivs)= [ drg(r)e, )
0
where v, = (4n — 1 & 1)7/28 are bosonic/fermionic Matsubara frequencies, yields
G(kyiv) - Go(F; i) = G(k; ) { S porm (B3 ) + Sgnom(iv) | §°(Riv), (18)

where we have generalized the formula by replacing one of the free hole propagators to

the right by a renormalized one. In this equation the Fourier-transformed self-energies are
defined as

- B B . o
E___(iu)ﬁy’yf zﬁ_l‘/ d'r/ dr'e®”"S (m,7)e™ ™" (19)
0 0
and are found to be
S norm(F3iv) = =B WP Y Div, ) {P+§(E; iv —iv,)P_ + P_G(k;iv +iv, )P +} (20)
vy
and

Banom = B WPD(O) 33 {PoTr[P_G(R;iv )| + P_Tr[P 6B )]} - (21)

k | .

Writing now
G(k;iv) =a, P, +a_P_+7,Q, +7_Q_ (22)

and
Gl (kjiv)=AL P, +A_P_+Z,Q,. +2Z_Q_ (23)

where P, and @ are defined in Eq.(11), the relations

Al Z

'I'(—; '7;{::_'_:F (24)

hold with
K=AA_—Z.Z_. (25)

Making use of Eqs.(10),(12) and (22) one easily finds for the free hole propagator (upper

index o)
1

w F g,

al =0; 4% = (26)

and with Eqs.(24),(25)
$=0; Z3 =ivFe,. (27)
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Multiplying Eq.(18) from the left by G ™' and from the right by (G°) ™", inserting
the self-energies from Eqs.(20),(21) and the expressions (22) and (23) one obtains an
equation in which both sides are expressed in terms of the matrices P, and Q. Making
use of the algebra of these matrices defined in Eq.(11) and of relation (24), comparison of
the coefficients of these matrices finally yields four equations, namely the gap equations

A {Briv) = ﬂ“IWPD(O)ZZA* (Ksiv. ) (28)

o K (k’ w_)
and the renormalization conditions
- » VA (k i Fiv )
Z,(k;iv) — Z%(k;iv) = -8B LW |? D(iv, )= + 29
alfsin) = 23(Fir) = - WP DB ) LT 09
These are Eqgs.(5) and (6) of Ref.8 where, however, the obvious solution
Ai(fz; w) = A = const. (30)

of Eqs.(28) had been inserted. Note also that our definitions (12) and (16) of the propa-
gators have the opposite sign of those used in Ref.8.

4 - Solutions of Gap and Renormalization Equations

In the approximation of an unrenormalized charged local boson propagator (16),

~ 1
) = 31
D(ZV) ?:V _ Qo’ ( )
and with Eq.(30) the gap equation (28) becomes
+er
=Y F(e,) = / deN(e)F(e), (32)
3 —er

where N(e) is the density of states and the integral extends over the whole band (which
is assumed to be half filled),

F(ey) =71 Y K '(kyiv_) (33)
and 3
A= I?;l (34)

In weak-coupling approximation, A < ¢, the solution of Eqs.(29),(32) is ob-
tained with the values (27),(30) so that, according to the definition (25),

K. =E:+17 B =62 + A% (35)

wea
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The renormalization conditions then are fulfilled to zeroth order in W while Eq.(33) takes
the form

Foear(er) = —tanh—=, (36)

w

which is obtained by the usual contour integration around the imaginary frequency axis
and deformation of this path around the poles at +FE,. Note that with (36) the gap
‘equation (32) requires A to be positive or I, > 0, in agreement with the comment after

Eq.(8). The zero-temperature gap now becomes

A 2e e /AN (37

~J
weak —

where N(0) is the density of states at the Fermi level.

We now analyse Eq.(29) in the strong-coupling limit A > ep. Inserting the
boson propagator (31) and replacing the bosonic summation variable v, by the fermionic
one, ¥_ = v F v, the renormalization coefficients

ry =2y — 2% (38)
satisfy the conditions

1 Zi(z; w_)

wE T P
ry(k;iv) = 287 |W| Z w_—iv 0, K(E; iv_)

Vo

1 Zi(g;z)
— 'I:V:}:Qo K(E;z) ’

= ¢|W122_11r_i /; dzf(z)~ (39)

where I' surrounds the imaginary z-axis in the positive sense and f(e) = (6’6 *4+1)7!is the
Fermi distribution function.
Inserting (27),(38) into Eq.(25) one finds the expression

—K=22+(ry +r_)z—E} t+ep(ry —r_)+ryr_

= [z — ¢, (ks 2)][z — ¢_(k; 2)], (40)
where the second equality defines the zeros of the denominator K formally as
=0 (F8,) 5 £ = _(Be) (41)

and where it is understood that these zeros may be multiple. With this notation, defor-
mation of the path I in Eq.(39) formally yields

[iv F 9, F ey + ro(k;iv 7 Q,)n(F92,)
[iv +Q, — (L (k;iv FQ,)][iv F Q, — (_(k;iv F Q)]

ry(k;iv) = £|W]? {
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_ Z ( (£ Fep+ re +1F (&) (€ Fep +re 1F(E) )} . ¥ (42)

(6, —iv Q)¢ —n)] " [E- — v £Q,][E. —ny]
Here n(w) = —f(iv_ + w) is the Bose distribution function, the sum runs over all zeros

iy and g = (k584 ), ry y = ro(ki€L)

Since large Matsubara frequencies v_ are essential for the convergence of the
sum in the gap equation (32), Eq.(42) must first be solved asymptotically for 8|v| > 1.
One finds with Eq.(40)

ry = ry(kjiv) = O(v™1) ; K = K(k;iv) = 2 + O(u°). o (43)

Even with these estimates Eq.(42) is not of much use, except in the extreme strong-coupling
limit where 8.0, < 1, 87 U= T, being the transition temperature. In this case the first
term in the outer bracket of Eq.(42) dominates and [v| > 78, > Q. Hence, for T ~ T,

{1, may be neglected and Eq.(42) becomes

Zy
K’
where Eqs.(27),(33),(38) and (40) have been used. Solving for Z, and inserting into
Eq.(25) this yields a cubic equation for K,

Zy— 23 ~B71A (44)

(K — A%)(K —D*? - (v +€2)K? =0, (45)

where

D? = g7A. (46)
Near T, where A ~ 0, the solution of Eq.(45) with the asymptotic behaviour (43) then is

1 2
K, o= Z(\/v2+ei+\/uz+ei+4D2) . (47)

An extension of this formula to second order in A is given in the Appendix.
Insertion of the expression (47) into the function (33) yields, after transforming
the Matsubara sum into the contour integral over the path I,

B i Jom =gl Gialis - (48)

2t Iy (\/ei — 22 4 \/n‘-lD2 + E’i = z2)

Multiplying numerator and denominator by (/e — 22 — \/4D? + &2 — z%)?, Eq.(48) be-

coies

F(en) =~ g L 851(2)

X (2D2+si—z2+ zz——si\/z2—4D2—si). (49)
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Re z

Fig.3: Cuts and integration path C in Eq.(50).

Here the sign of the square-root term is determined by the cuts which are
chosen as indicated in Fig.3. Convergence of the integral in Eq.(49) being guaranteed by
the asymptotic form (43) of K, the contour I' may be deformed into the path C encircling
these cuts in the negative sense, as shown in Fig.3. It is then evident that only the
square-root term in Eq.(49) contributes to the integral along C so that

Fe) =~ gmip [T @VE - oV =, (50)

" 4miD*t

where ¢ = v/e%2 + 4D?. A careful examination of the cuts of Fig.3 yields for the last

integral

1 8' .
F (e) = mjl;l dz\/z? — €2/ — z2 tanh ﬁ% (51)

We are not interested in an exact evaluation of the integral (51) but rather
give the following estimates, valid when tanh(Bxz/2) may be approximated, respectively,
by Bz/2 and by 1: 0 < F(e) < 2/7D and

| FO(E)ﬁg;ﬂD<1;

4
F (0)~ — ;8D 1. ' 52
Insertion of the last two expressions with 371 = T, into the gap equation (32) finally yields

HE fr 2 g

it {(81@/3%)2 in<gl,

(53)

where n = fch N{(e)de is the number of holes per unit cell. This result, which up to minor
factors is that of Ref.8, has the form of a Bose-condensation temperature for a boson mass
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proportional to A™' but with an n-dependence different from the well-known n** law.
Remarkably, T, is not exponentially bounded for large A-values.

5 - Pair Correlation, Thermodynamics and Gap near T,

An analogous but much simpler calculation as the one leading to Eqs.(20),(21)
yields for the boson self-energy

(iv,) = 67 WY Y Tr (G(R; iv_ )P, G (R iv_ — iv +)P_) , (54)
E V-

where, in view of Egs.(11) and (22) the trace is simply 7+(I:; iv_)y_(kjiv_ — iv, ). Since

according to Egs.(10),(12) and (22), 7:&(1;; i) is the hole propagator of momentum +k

and spin 4, II is a sum of zero-momentum singlet hole pairs as shown in Fig.4. Using
Eqs.(24),(25),(30) and (33) one finds

k¢

-k

Fig.4: Boson self-energy of Eq.(54).

11(0) = —[W? 3 (Rl - 2%8(2), (55)

k

where

B(ey) =p71 Z m ‘ (56)

Now, the term Az‘ﬁ(sk) in Eq.(55) vanishes both, at T, and also in the weak-
coupling approximation (35) where it is easy to see by transforming the v-sum into an
integral around the poles at +E, that ® = 0. Therefore, in both situations examined in

this paper, II(0) is given as k-sum of the function F (e1), so that this function may be
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interpreted as the Fourier transform of the correlation function of zero-momentum singlet
pairs,

F(7) = Y F(e,)e"*Fn)7 (57)
k

(we neglect the dependence on the direction of I_c'F) This correlation function may thus
also be considered as a generalisation of the square modulus of Cooper’s ground-state wave
function x,(r,0) 1,

F may now be used to define the coherence length { quite generally as

2 o (RN szp(ﬂdsr
E=0= [F(®d3r

Inserting Eq.(57), expressing 7 as (8/ iafé)" acting on the exponential in (57) and trans-
ferring the derivatives to F(e;) by partial summation (integration) one finds

(58)

o _ SHO AP i, L F(0) )
2 Flen)dz z, Ve F(0)’
where vy is the Fermi velocity. Applied to the weak-coupling expression (36) this gives
2
2 g ﬂAweak
_ Bweak 60
E weak A2weak (1 SlnhﬁAweak) ( )

which in the limit T — 0 yields correctly ¢ = vp/A,, ;- The limit T — T, however,
becomes ¢ = vy /+/6T. instead of co. But the cancellation of the infinity in Eq. (60) is very
subtle; it suffices in fact to modify slightly the definition (58) which, anyhow, is not well
adapted to finite temperatures.

The obvious modification is to substitute in Eq.(59) é; z by —f '(¢; ), neglecting
anisotropy effects. Introducing the density of states N(e) a.nd usmg a Taylor expansion
for F(e), F"(e) and N(e) one obtains the modified expression

F”(O)—I—- -Ks_sz [FIV(O) —!—,(LF"]

€=4Fﬂm+§wwwm+MWH’

(61)

where u = N"(0)/N(0). With this modified definition, ¢ is found to diverge as AJ2,,
(T. - T) .

The point of interest now is a comparison with the result obtained with the
strong-coupling expression (51). The derivatives needed in Eq.(61) are obtained by ob-
serving that the integration limits in (51) do not contribute and that the integrand depends
on ¢ in the form ¢® — %, Therefore /8¢ = —(¢/2)d/dz and one obtains

2 R ayy/F =P [1+ 2020+ 5 &1 tanhy
4T? f dyy/ A% — y? [1 + Z T2 "—481;—’] tanh y

&=
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where A = D and y = Bz/2. It is easy to verify that all integrals in Eq.(62) are finite
(except for particular values of p for which the denominator vanishes). Therefore ¢ is finite

at T_, indicating that the pairs are of the Schafroth-type **.

In view of this rather surprising result it is of interest to see how the thermo-
dynamic potential behaves at T,. The contribution of the interaction (4) to the grand-
canomca.l potential is given, to second order, by the Hartree- and exchange-type contribu-
tions *° of Fig.5,

AQy =YW / dr / dr'D(r — ) Tr[G(k; 0)P+]Tr[g(k’ 0)P_]

E,k
= —AB~? Z Za (k; zv)a+(k iv') ((63)
ke viv'

and

B B . -
AQ,, = -7 \W]? Z/ d‘r/ dr'D(r — ")T'r (g(k;r —7YP_G(k; 7' — T)P+)
- Jo 0

=—[W872 33 D' — vy (ks i)y, (ks i), (64)
kv
respectively. Comparison of Figs.4 and 5 shows that Eq.(64) may be obtained from the
boson self-energy (54) while (63) has no counterpart because the corresponding diagram
would be disconnected.

AN

==

Fig.5: The Hartree- and exchange-type diagrams of Eqs. (63)
and (64), respectively.

It is clear that AQ,, vanishes in the normal phase; applying Egs. (24),(30),(32)
and (33) one finds in the superconducting phase

AZ

E . = 65
AQ T (65)
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On the other hand, the renormalization conditions (29) may be used to simplify Eq.(64),
the result being

a0, =g Yy BT, (66)
4 v

which vanishes in the weak coupling limit. We are interested, however, in the strong
coupling limit near T, where we may insert the approximate expression (44) and obtain

Z. 7Z_
ey

AQ,, ~ D*g! Xk: Z =

(67)

So far the gap equation (32) has not been used in the evaluation of AQ2,, so
that Eq.(67) is valid both, in the normal and the superconducting phases. In the normal
phase where K = —Z_ Z_ we obtain in view of definition (33)

AQY, ~ —D*) F,(e), (68)
E

where F, is the zero-gap approximation (51). In the superconducting phase, use of
Eqgs.(25),(32),(33) and of definition (56) allows to evaluate Eq.(67) as follows:

AQS ~ —B71 + A’D? ) B(e,,). (69)
R

Thus the total potential difference between the superconducting and normal
phases near T, obtained from Eqs.(65),(68) and (69) is

Q5 —QN ~ D2 F,(e,) — 71 — A %: —D*> %, (sh) |, (70)
5 i

where @, is the function (56) obtained with K, from Eq.(47). In close analogy with the
procedure leading to Eq.(51) one finds the expression

1 sl gt gl Bz
® (e) = T [el dz 5 — 2% | Va2 —e24/e’?2 — 22 tanh > (71)

for which the following estimates are found under the same conditions as those used to
derive Eqs.(52):
b ()~0;8D<1;

8
@0(0) o~ ]_STD? ;ﬂ.D > 1: (72)
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Inserted into Eq.(70), making use of (53), this leads to

oV (AR + T -T/T.) ;n > 2;
O - = { _(3A%/5A) + (T./2)(1 — T/T.) jn <1 . (73)

In order for the last expressions to have a definite sign, we must know the
temperature dependence of the gap A near T,. This may be obtained from the result
(A15) derived for the denominator function K in the Appendix where t* = & — z* has to
be used here; one finds

F(e) = F,(¢) + A’F(¢) + O(A*%) (74)
with

1 1 et —&? 2 Bz
FI(E) = W . dm\/zz g 52\/512 — x2 ( D + - 32) tanh _é— (75)

Estimates analogous to those made for obtaining Eqs.(52) and (72) yield

ﬁ3

Fy(0) = D> 1, (76)

“157D°
where in the first expression only the second term in the development tanh(fz/2) =
(Bz/2) — (8°2%/24) + ... contributes. Inserting the estimates (52),(76) with (74) into the
gap equation (32) one finds
96T>(1 — T/T.) jn > 2;
A? ~ £ g 4 ! (i
{ 10(37/8n)°T?(1 - T/T,) ;n < 1, (1)

where use was made of Eq.(53).
Finally, inserting the last result into Eq.(73) we obtain

—(48n - 1)T.1-T/T,) ;n > 2;
2° - 0% =~ { —§11/2)Tc)(1 E T/Tc/) ;r); <1. (78)

This result shows that below T, the superconducting phase is indeed stable. However, there
is no sign of a possible persistence of the pairing to T' > T, as could have been suspected
from the finite expression (62) for the coherence length £. Comparison of Eq.(53) with Fig.8
of Ref.10 would suggest that our coupling is still too weak to form bound pairs. However,
in Ref.10 the pair mass is constant whereas Eq.(53) suggests a pair mass proportional to
|W|_2, from which one might conclude that our pairs still keep together above T,. This
conclusion is physically not unreasonable since our basic interaction (3) is a lattice model,
in which case Ref.10 is totally unreliable at and above T,.
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Appendix

1 - Self-energy due to interaction (3)

Formally, the self-energy due to interaction (3) is again given by Eqgs.(20), (21),
the difference being contained in the hole propagator G. In a site representation, Eq.(12)
is replaced by

Gi;(r) = —(T®,;(—ir) ® 8%,;(0)), (A1)
where 1 and j are nearest-neighbour copper sites,
_ (G

%, = (c + ) (A2)
il

and c;, is the Fourier-transform of a;_ in Eq.(10). The question now is, how to determine
the time dependence. In a strongly localized narrow-band situation the dominant term in
the Hamiltonian is an on-site Hubbard term

H, = UZniTnil’ (A3)

which was also the assumption used for the determination of the coupling constant W in

Ref.12. With this H ,

t—0o “i0)?

so that the free propagator becomes

G°,s(7) = 8, (G°,~T(:) ,0), (45)

0 ? Gjl(f)
where U
. — , 14+e 7
Gy(r) = —(e7Uma Ci1Cip) = T34 AU
e 1 +eU(T_ﬁ)
G;l('r) = '—(E+U it c:‘l*chl) = —W (Aﬁ)
Fourier transformation according to the identity (17) then yields
-BU
- 2 1+e _ -1 ..
G:a(“’)=—(:;+m) (B+ePY) s=i,j;0==. (AT)

Making use of Eqgs.(22)-(25) a strong-coupling formalism based on the purely repulsive
free Hamiltonian (A3) may be developed, from which it is not unreasonable to expect
superconductivity to emerge
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ii - Boson hopping term due to interaction (3)

The boson hopping term due to interaction (3) may be obtained with the
method used to derive Eq.(8) 18, Labelling the oxygen site of the boson operator by
an index [, we may write

H .= Wzb gilkatk)d/25 g +T -l:'i)*z" + h.c., (A8)
ke, k!
where from linear response theory
t
6<a}el'-ra;'cl’-yl)t = 'i/:c’o dt’([‘H;j(t t)’ kT k' )holesetet' (Ag)

Here H ; is the interaction (3) with the boson operator on a nearest-neighbour site {' of /,
which is only possible if ' is nearest to one of the copper sites i or j and hence, if the line
I' —iorl' — j is along the y-direction. Evaluation of Eq.(A9) and insertion into (A8) leads
to the hopping term

H)_, = (Wb, 3 elketkiby—k,)i/2 L= flew) — flew) | g0 (410)
e Ep + Epr
k, k"
which in the case of the interaction (4), where k' = —k, simplifies to
—2f(e
Hy_, = Wb Z S (411)
i1 - Denominator function K to second order in A
In powers of A’ the solution of Eq.(45) is
K,- D’
K=K, +A*=—2—— + O(AY). Al2
S+ AT+ 0(AY) (412)

Inserting K, from Eq.(47) one obtains
2(K,+ D*)K = t* + t*(5D* + A®) + 4D*
+(2 4+ 3D? 4+ A%)t\/12 4+ 4D? + O(AY), (A13)
where the abbreviation t* = v + si is used. Multiplying numerator and denominator

of Eq.(A13) by the right-hand side of this equation but with the opposite sign of the
square-root term, one arrives after some algebra at the following expression:

1 +2D% — /2 £ 4D?[1 + 2A%(# + 4D*) ']+ 0(AY)

—_ = Al4
K 2D*% — 2A282 + O(A*) ’ A
which may finally be written in the form
sp* ., R A%

A4 2A2
2 4+4D2 (1
& ( + D4 * 12 +4D2

) + 0(AY). (A15)
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