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1. INTRODUCTION
1.1. Interplay of Physics and Mathematics

Many physicists hope that the superstring model [1,2] will yield a unified quan-
tum theory of all fundamental interactions, including gravitation. Several difficult
physical and mathematical problems must be solved before this hope will be sub-
stantiated. However it is already clear that the very rich mathematical structure of
the model has significantly stimulated the collaboration between mathematicians
and physicists. Here we are interested in the contributions to algebra.

In 1968 the Veneziano [3,4,1] or dual resonance model was invented. One year
later two important tools for the understanding of the model were introduced :
vertex operators and the Virasoro algebra. The latter is an extension of the infinite
dimensional conformal algebra acting on a space of two dimensions. On the other
hand, in 1967, Kac [5] and Moody [6] introduced the infinite dimensional affine
Lie algebras, which turned out to be a discrete version of the current algebras
considered by physicists in the early sixties. In 1980, Frenkel, Kac [7] and Segal (8]
(FKS) constructed highest weight representations of the Kac-Moody algebras using
the vertex operators of the dual model. The Virasoro operators provide labels for
these representations. In 1985, the FKS [7,8] construction served to compactify the
bosonic part of the heterotic string [9] from 26 to 10 dimensions and to display gauge
groups of rank 26 — 10 = 16. In 1969, the bosonic string provided a Lagrangian
formulation of the dual model [10]. Together with the fermionic string it gave
one of the first physical models of supersymmetry. Superalgebras were studied by
Berezin and Kac in 1970 [11].

The dual model and its string and superstring versions failed to explain the
phenomenology of strong interactions. Interest was revived after it was shown that
gravitation could be included and that anomalies could be cancelled in a seemingly
miraculous way for the gauge groups E; x E; and SO(32) [12]. One of the main
problems is now to compactify the superstring from 10 to the physical 4 dimensions.
One possible relatively easy way is to replace in the compactification procedure
tori by orbifolds, which differ from the former by ”twisted” boundary conditions
[2]. Here again work was greatly stimulated by discussions between physicists and
mathematicians, the latter being able to provide "twisted” constructions of Kac-
Moody algebras [13,14]. The main tool are now "twisted” vertex operators. They
play an important role in symmetry breaking. One can also speculate that they
could be used to describe emission of "twisted” strings [15].

The aim of these lectures is to give a self-contained unified description of
untwisted and twisted vertex operators and the corresponding constructions of
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Kac-Moody algebras. We use materials from mathematicians [13,14,16] and recent
preprints of mathematical physicists [17,18,19] but try to be comprehensible to the
average physicist.

1.2. Summary

The main ideas are the following : 1) For a string moving on a torus T in
d dimensions, the eigenvalues of the center of mass (¢cm) momentum operators p
are discrete. They can be identified with the pomts of 2 rank d weight lattice of
a finite, simply-laced Lie algebra g, provided T¢ = R* /Q, where Q is the root
lattice, and the set of components of p forms the Cartan subalgebra (CSA) of g.
For a closed string, the vertex operator U is perlodlc in the string variable o. The
Laurent coeflicients of U together with the set {p } and the harmonic oscillators
entering in the definition of U are the generators of the infinite-dimensional Kac-
Moody algebra in the level 1 highest weight representations.
2) This construction has been generalized in several directions. a) Consider a string
moving on an orbifold. Construct a new vertex operator U which is periodic up to
an automorphism w of the root lattice. The Laurent coefficients of U, acting on
a different Hilbert space, will be generators of a twisted Kac-Moody algebra. For
w = 1 we recover the previous construction. This approach will be followed here.
b) Replace the simply-laced Lie algebra g by a non simply-laced algebra [20].
c) Introduce fermionic instead of bosonic oscillators {20]. In this case one finds an
interesting connection with octonions [21].

2. LIE ALGEBRAS AND KAC-MOODY ALGEBRAS
2.1. Simple Finite Dimensional Lie Algebras [22]

The hermitean generators T, of a simple compact Lie algebra g satisfy the
commutation relations

[Ta’Tb] =1 a.bcTc - (211)

The adjoint representation is defined on the vector space g spanned by the gener-
ators. The Killing form defines the scalar product

(T,,T,) = const Tr(Ad T, Ad T}) (2.1.2)

Ad T,(T,) = [T, T (2.1.3)

By a clever choice of the basis g can be divided into an abelian Cartan subalgebra
(CSA) h spanned by the generators H' such that (H',H I ) = &, ; and the step
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operators E_, where a € b’ (the dual of h) is a root; (2.1.1) gives then

[Hi,Hjl =0
{H‘l’Ea] = G(Hi)Ea = aiEa
{ e(2,B)Eoyg Hfa+BEA (2.1.4)
[E’Eﬁ]z ‘Ha? ifa+ﬂ:_-0
0, otherwise.

where A the set of roots. Here, to any root a € k' we have associated a generator
H_ € h such that
(H,H)=a(H) VHER (2.1.5)

Identifying h with its dual k', we can define also the scalar product on &' by
(a,8) = (H,,Hg) . (2.1.6)

One calls £ = dim h the rank of g. The set A of the roots can be divided into two
equal sets of positive and negative roots. A simple root «; is a positive root which
cannot be written as a sum of positive roots. The £ simple roots «; form a basis

of h'.

We shall limit ourselves in the future to simply-laced Lie algebras for which
all the roots have same length. It can be normalized to 2 : (@,a) = a® = 2. The
Cartan matrix is then defined by

A =(aya;) . (2.1.7)

L&) J

The factor {a, 3) is called a 2-cocycle and obeys

(e, B+ 7)e(B,7) = e(a, B)e(a + B,7) (2.1.8)
(e, B) = (-1)(*F¢(B, a) (2.1.9)

One obtains a representation of g by acting on vectors |A) :
H,|A) = (o, A)]A) (2.1.10)

XA € k' is called a weight. For compact simple Lie algebras all representations
possess a highest weight A such that (A,a;) > 0¢=1,...l and

Ea|A)=0 a>0

H,JA) = (a, A)[A) (2.11)
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The whole representation space is then obtained from |A) by repeatedly acting on
it with various E__ (a > 0).

2.2. Untwisted Affine Simply Laced Kac-Moody Algebra [23,24]

To each finite Lie algebra g one assigns an infinite Lie algebra § or Kac-Moody
algebra. The generators are T, @ t", T, € g, t € C, with the commutation relations

[T, ® ", T, ® 1" | = if,, . T. ® "™ + n(T,,T})5, _ .k (2.2.1)
where n,n' € Z ; a,b,c = 1,...dim g and k is the central term
[k, T, ®1t"| =0 (2.2.2)
One identifies T, ® t° with T,, the generators of g, satisfying (2.1.1).

It is useful to introduce a dilation or derivation operator d, (which we will in
the following identify with the Virasoro operator —L,)

d,T,t"|=nT,@t" (2.2.3)
[d,k] =0 (2.2.4)

Corresponding to the basis (2.1.4), one writes
[Hi®t", HI @ t"]=n6"5, _ k (2.2.5)

n

For n # 0, one gets an infinite set of harmonic oscillators (also called a Heisen-
berg algebra).

The other commutations relations are
[Ho ® 1", Byy @ "] = (e, 8)Eyp @ " (2.2.6)

’ (0, B)E 5@ "™, ifa+BeA
Ba @t Eg®t =0 g @™+ 4 ns, .k, fatf=0
0 otherwise.

(2.2.7)

If rank g = ¢, § has £+ 1 simple roots, namely those of g (a;,i =1,...,£) and
a, =610 (2.2.8)
6 is the highest root of g and § the "imaginary root” with zero length
(6,6) =0=(6,a;) i=0,...,L . (2.2.9)



96 J. Lacki and H. Ruegg  H. P. A.

This shows that the metric in root space &' is not euclidean. Correspondigly
the Cartan matrix

A=(a;a;) i,j=0,1,.. (2.2.10)
is degenerate.
Example : for g = A, = su(2), g = A(ll) has the Cartan matrix

A= (32 ;2) (2.2.11)

with det A = 0. Here § = o, and one verifies that §° = (ay + o;)’ = 0.
The root system of gis givenby A = {jé+~v|je Z,ve AYyu{jé|je Z"}.

One can again identify k and fz_'_ with the correspondence : H,, « «a; (i =
0,...,8); k & é;d & A,. The dimension of his £+ 2 and A, satisfies : (Ay, A,)
(a;540)=0(i=1,...,€) and (Ay,8) = (Ag,0p) = 1.

I

There exist highest weight representations (HWR), but for instance the adjoint
representation is not a HWR. We shall consider HWR with the highest weight
vector |A) satisfying -

(A,a;) >0, i=0,1,..,1 (2.2.12)

E @A) =0 (2.2.13)
for either n > 0 and (or) a > 0, and
H ®t"|A)=0 Vn>0 . (2.2.14)
The weights of a HWR have the general form [23]
A=+ (X, 8)A, + (X, Ag)é (2.2.15)

where A is a weight of a HWR of g- (A,A,) is arbitrary and corresponds to a
choice of zero-point for the gradation of the corresponding HWR (it is usually set

to zero). (A,8) = k is the level of a HWR
k|A) = (A,8)|A) . (2.2.16)

Since [k, §] = 0, the central term acts as a scalar and the level has the same value
on the whole (irreducible) representation. One can show that it has to be a positive
integer for unitarity to be satisfied. From (2.2.12) and (2.2.8) it follows then that
(A,8) < k, where A is the projection of A on the root space of g. We shall be
interested in level 1 representation for which

A=A+A4, (2.2.17)
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One can show [23] that |A]* > |A|>. Using (2.2.14)-(2.2.16) this implies that all
weights of a HWR Lie inside the paraboloid
A2 4+ 2k(AA,) < A . (2.2.18)

According to (2.2.15), § is the axis of the paraboloid. Orthogonal to § are the
weights A of the finite Lie algebra g.

2.3. Twisted Affine Kac-Moody Algebras [24,23]

We start again with the compact Lie algebra g with commutation relations
(2.1.1). An automorphism 7 of g leaves (2.1.1) unchanged

[7(Ta)s (Ty)] = ifape7(T) - (2.3.1)

Suppose 7 is of order m

™1, (2.3.2)
In a complex basis one can divide g into eigenspaces g, of T
m—1
=@y, (2.3.3)
k=0
such that "
7(T)=r"T ifTE€
@ = (2.3.4)
r = exp (—27i/m)
This introduces a grading in g :
7 L ]
[T’T]E-g-j+k xfTEgj, T'egy, (2.3.5)

For the (non hermitean) T, € g, one defines a twisted Kac-Moody algebra §_ with
generators labelled by fractional indices of the form :

n/m , = of i
T,®t"™; n=jm+(n) ifT, €9, - (2.3.6)
Jj€Z, 0<(n)<m-—1

Apart from the range of the indices, the commutation relations are the same as
before :

[T, ® t*/™, T, ® /™) = if,, T. @ " T)/™ 4 —(T,, T,)8, _ .k

n

m

[d,T, ® t"/™] = %Ta ® t"/™ (2.3.7)
[d, k] =0
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For r =1, m = 1 and one recovers the untwisted algebra, for which the grading is
the same for all elements of g. For this reason this is also called the homogeneous
construction.

When 7 is an inner automorphism, one gets in this way a Kac-Moody algebra
isomorphic to the untwisted algebra [24]. In this case 7(T,) = 7T¢'y~1, v € G, the

Lie group of g. Since automorphisms produced by conjugate elements v' = v,v7, !

give isomorphic twisted algebras, one can choose v = exp (ipiHi), such that, acting
on the Cartan subalgebra and the step operators

T(Hy) = H,
7(E,) = exp i(p,a)E, (2:38)

If » has order m, then
m(p,a)=2nn, Va€A neZ (2.3.9)

To show that we reobtain in such a way a Kac-Moody algebra isomorphic to the
untwisted one, let us redefine the generators in the following way :

E; @ =E_® tpt(pa)/2x= ,
H, @t =H,@t"+k(p,a)s, /27 (2.3.10)
d=d-—(p,H)/2nm

which satisfy the untwisted commutation relations.

However, in a highest weight representation, the spectrum will look differently,
because the derivation operator d (d = —L,) is different. For example, the highest
weight state (lowest energy state) will transform under a representation of g , the
subspace of g invariant under 7. Hence one gets symmetry breaking.

If the automorphism 7 is outer, the twisted Kac-Moody algebra g, # g will
be a subalgebra of g [23]: even more symmetry breaking.

3. VERTEX OPERATORS
3.1. Untwisted, Frenkel-Kac-Segal, Or Homogeneous Construction

The treatment of Kac-Moody algebras in Chapter 2 was abstract in the sense
that it was based only on the commutation relations and the action on weight
states. The aim of the present paragraph is to give a concrete realization of the
generators as functions of harmonic oscillator operators acting on a Fock space,
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which will be identified with the Heisenberg generators, and momentum operators
corresponding to the CSA of the underlying Lie algebra. This construction uses as
an intermediate step the vertex operator of string theory, the moments of which
yield the remaining step generators of the untwisted (homogeneous) Kac-Moody
algebra.

We already noticed that the Kac-Moody algebra is equivalent to a current
algebra with discrete momenta. In the context of string theory, this means that
one compactifies the string on a torus. This happens for example for the bosonic
part of the heterotic string for which 16 out of 26 dimensions are compactified. The
Kac-Moody algebra in the Frenkel-Kac-Segal construction (FKS) then corresponds
to the gauge algebra.

A torus T is a circle which has the same topology as a finite segment of the
real axis R with ends identified. Equivalently, 7" = R/Q, where Q is the set of
points nf, n € Z and £ some real number. In general, T% is the product of d copies

d
of T'. A lattice Q in d dimensions is the set of points Y nl

=1

i n; € Z, £, some

hasis vectors of R®. Then '
T¢ =R%/Q (3.1.1)
Q could be the root lattice of the finite Lie algebra g of rank d.

For a closed string on a torus the vertex operator obeys periodic boundary
conditions. In the next paragraph, we shall consider twisted vertex operators. In
this case, the torus is replaced by an orbifold. The vertex operator will only be
periodic up to an automorphism of the lattice Q. Our orbifold O is defined as

O = T?/action of w, w € Aut Q (3.1.2)

We now recall the construction of the vertex operator of a string moving on a torus
T = R* /Q, where Q will be the root (or weight) lattice of a simply-laced finite,
simple Lie algebra g of rank d.

The components of the Fubini-Veneziano operator are

TN — o _and : hfz_—: 3.1.3
X0 =o' i e 3 WS (313)

where z = expi(T £ ¢), 7 and o are the string variables. The hermitean operators
q and p are the position and momentum operators of the cm of the string (also

called "zero modes”), and h, (h:'1 = h_,, hy = p) are the harmonic oscillators,
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with the usual commutation relations (compare with (2.2.5))

[qI,PJ] = 551,.1 (3-1-4)
(Rl k] =n6; ;6 ILJ=1,.d nn'e€Z (3.1.5)

n!'''n n,—n'

A closed string is unchanged when ¢ — o + 2. Hence X is unchanged up to an
arbitrary vector in Q

X(2e*™) = X(z) mod Q (3.1.6)

In the FKS construction, the operators pI satisfying [pI,pJ] =0, I,J =
1,...,d, generate the CSA. This relation, together with (3.1.5) corresponds to
Eq. (2.2.5), and the oscillators h (n # 0) form the Heisenberg algebra. We shall
clearly identify (h,, a) = hiaI =H, @t".

The vertex operator is then

U(a,z) = 2207, e'.(""‘lr(’))cOr - |

3.1.7
= 25200 (@p) X (),0) i X (2)0) (3-1.7)

where a is a root of g and

Xy(z)=1i ) hni;- (3.1.8)

+n>0

The operator ¢, is needed to get the right commutation relations, as explained
in Ref.[24] and in Paragraph 3.4. .

The Hilbert space on which the vertex operator acts is
H=FQ®|P) (3.1.9)
F is the Fock space of the oscillators h,, with a ground state satisfying
ALl y=0 =>0 (3.1.10)

| P) is an oo dimensional space of states with momenta on the lattice P, caracterized
by following considerations : The action of p and ¢ on |)) € |P) is

pT|A) = AT|A) (3.1.11)



Vol. 62, 1989  Representations of Kac—-Moody algebras 101

X)) = |a + )) (3.1.12)
In accordance with (3.1.6) we require the boundary condition
U(a, ze?™) = U(e, 2) (3.1.13)

which is obviously satisfied by the oscillator part. To satisfy it for states |A) in |P)
it is necessary that

(M a)+a?/2e Z (3.1.14)
Suppose the ground state of p satisfies
?'p) = 7'I) (3.1.15)
If a € Q, (3.1.14) implies
pPeEQ” | (3.1.16)

so that P ~ @ consists of all the points of the root lattice Q of g shifted by p.

We now use one instance of the Quantum equivalence theorem (Q.E.T) of
Goddard and Olive [24] : the Virasoro and Sugawara constructions (see below) are
equivalent only if A = P+ A, is the highest weight of a level one representation (see
Eq. (2.2.17)). This strongly suggests that the construction of KM currents out of
free bosonic fields (3.1.3) and their exponentials is only possible for such weights.
Higher level vertex constructions have been considered in [16]. For the heterotic
string, p = 0 and A = A, belongs to the trivial representatién of g. The general
expression for ¢, is [24]

Cq = Z (e, B)|B+ P >< B + p| (3.1.17)
BEQ

where €(a, 8) is the cocycle entering the commutation relations (2.1.4).

One also defines the Klein factor e,

¢, =0 (3.1.18)
f:aéﬁ = €(a,ﬂ)&a+ﬁ (3.1.19)
— (_)(a.ﬂ)aﬁea (3.1.20)

Finally, the generators of the untwisted (or homogeneous), affine simply-laced
Kac-Moody algebra in a level one representation are given by

Ut(a) = -;Tiféiin(a,z) (3.1.21)

z
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together with the momentum operators pI and the generators hi of the Heisenberg
algebra. Indeed, it will be shown in Paragraph 3.5 that U'(a) have the same
commutation relations (2.2.7) as E, ® t', for k = 1.

The Q.E.T. implies that the generators of a Virasoro algebra are either given
by

rankg

Z > chl_ Rl (3.1.22)

I=1 n'eZ

or, for a level 1 representation of the Kac-Moody algebra § (g simple, simply-laced)
via the Sugawara form

dimg

>N up UL (3.1.23)

a=1 mexX

Ln 2+Qe

Here U, include all the generators of the Kac-Moody algebra.

@, is the eigenvalue of the Casimir operator in the adjoint representation of ¢
(with highest weight 8) and a normal ordering is necessary according to which U,
with positive m are moved to the right of those with negative m.

3.2. Automorphisms of the Root Lattice

As a preparation for the twisted vertex operator we consider automorphisms
w of the root lattice @ which satisfy

a — wa

(we, wB) = (e, B) (3.2.1)

This induces an automorphism on the CSA, since k and k' are isomorphic (see
Paragraph 2.1)

wH, =H,, (3.2.2)

Let the order of w be m
w™ =1 (3.2.3)

We divide the complexified vector spaces h ~ L' into eigenspaces of w

3

=@ h, (3.2.4)

n=0
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The spaces h, and b ,, orthogonal if n + n' # 0 mod m, correspond to the eigen-
values r",

r = exp(—2mi/m) (3.2.5)
Call p_(«) the projection of a on A/,

m—1
a= Z pnla) (3.2.6)

wpn(a) = r“pu(a) (327)

The inner automorphisms of Q form the Weyl group W(g) generated by the Weyl
reflections about simple roots a; of g :

w;B =B~ (B,0q;)a; (3.2.8)

The quotient Aut Q/W(g) is then equal to the automorphism group D of the
Dynkin diagram. D = Z, = {1,—1} for the simple Lie algebras A,(¢{ > 1),
D,(t > 4) and E,. D = §,, the permutation group of 3 elements, for the algebra
D,. D is trivial for the algebras A,, E;, E;, B,, C,, G,, F,.

There is a close, although not a one to one relation between w € Aut @ and
T € Aut g (see Paragraph 2.3). If we set

T(H,) = wH, (3.2.9)
it follows from [E_,E__| = H, that

TE, =¢_E

with 1, some phase.
If a + B is a root, the Eq. (2.1.4), [E,, Eg] = e(a, B)E,, g, requires

Ya¥s _ e(a, B)
Yorg lwe,wf)

(3.2.10)

One easily sees that 1,[:; = o[, is also a solution provided f,fs = fa4p-
For w-invariant roots a,8 € AN _i_z_:,, Ya¥s = Yatrp- With ¢|Anh3 = % and

$oBs = P, everywhere, Y, = P b defines a r such that r(E)) = E_ if
wa = a. Consider & = 3" ' w™(a). Then 7™(E,) = $L ¥ 0. Pigm-1oBao-
Since wé& = &, ¥y =1 and 7™(E,) = (—)(a’a)Ea. Hence, if w has order m, 7 has
order m or 2m depending on whether (&,a) € 2Z, V a € A or not [25].
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3.3. Automorphisms : Example of su(3)

The impatient reader can go to paragraph 3.4. The finite Lie algebra su(3) =
A, has the Dynkin diagram

a,0———oa, (3.3.1)

A= (_21 ‘;) (3.3.2)

The automorphism w leaves A invariant. The Weyl group W(g) of inner automor-
phisms is generated by the reflections w; about the simple roots a; (i = 1,2). Con-
jugate elements of W correspond to equivalent constructions. W has six elements
which fall into 3 conjugacy classes which we denote H (homogeneous, untwisted),
M (mixed, twisted), P (principal, twisted)

and the Cartan matrix

H={1}
M = {w,,w,,w,w,w, } (3.3.3)
P= {w,w,,w,w,} '

w, w, is also called the Coxeter element. In each class pick a representative.

Outer automorphisms are generated by the automorphism D of the Dynkin
diagram
D: o ea (3.3.4)

or by a reflection
R: a, — —a;
! ! (3.3.5)
R = w,w,w, D
We give some details for the principal automorphism P. We choose for w, the
Coxeter element, defined by

Wy =y jW,0, =~y = —a — O (3.3.6)

This is a rotation of 120° of the root diagram. In the space spanned by o, and a,,
w, is the matrix
0 -1
w, = (1 _1) (3.3.7)

P
Notice
det (1 —w,) =det A (3.3.8)

This is a general property of the Coxeter element.
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Obviously
Ry =0 (3.3.9)
R} =C(~r "oy + a,) (3.3.10)
by, = C(~r'2oz1 + a,) (3.3.11)
—2xi/3

Weusedr = e and 14+74r = 0. From (3.3.9) also follows that 1+w+tw? = 0,
in agreement with (3.3.6).

The projections on h!, are :

piley) =(r =) (=r ey +ay)

pa(ey) = —(r — %) (—r 20, + @)

, (3.3.12)
py(a;) =77"py(ay)
Pa(@z) = 7 py(ey)
For the outer automorphism R
-1 0
wp = ( 0 _1) ydet(l —wp) =4 (3.3.14)
hy =0, hy="h (3.3.15)
The mixed case w,,, way = 1 is defined by
wylay) = —a; swpa, = ag (3.3.16)
The matrix representation is
-1 1
wy = ( 0 1) ; det (1 —wy.) =0 (3.3.17)
The eigenspaces are
hy = C(a, + 2a,) ; by =Ca, (3.3.18)
The projection are
Polay) =0 I ACHEEH
(3.3.19)

1 1
polay) = 5(“1 +2a,) ; pifay) = —50‘1
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3.4. Twisted Vertex Operator

When a closed string moves on an orbifold (see eq.(3.1.2)), the boundary
condition for the (modified) Fubini-Veneziano operator will be

X(zez"i) =wX(z)+ a (3.4.1)
where w is an automorphism of @ of order m
w™ =1 (3.4.2)
The corresponding condition on the (twisted) vertex operator requires
a) oscillators with fractional indices
b) generalization of the Klein factor é(a)

c) generalization of the Hilbert space.

We immediately give the resulting vertex operator, which generalizes (3.1.7)

py(a) is the projection of the root a on the w-invariant subspace hy. p is the
momentum operator, and

™ m
Xy(a,2) =i 3 hy(m) ™

+n>0 n (3.4.4)
ho(n) = py(H,) @ /™, (n) =1 mod m

so that the h_(n) obey the commutation relations

(ha(n), ha(n)] = =(Pa() P (8))p, i (3.45)

We could also have started from a CSA basis { h£| hi € h,}, such that (AL A }=

n) *n’

o, +n.‘m6r"f ; one would then consider the twisted Heisenberg algebra generators
Rl an@t™=h! (3.4.6)
and

ha(n) = pey(@) R (3.4.7)
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Thus defined, X, (a, z) satisfies the boundary condition (3.4.1), since

—n/m
wX,(a,2) =1 Z whm(n)f—;—E
>0 (3.4.8)

—2xi—n/m
) m

—i 3 Ay (m)

+n>0

It is also clear that for w =1, (3.4.3) reduces to the homogeneous, untwisted,
F.K.S. construction (3.1.7), with py(a) = a and

o(a) =&, = e@¢,
ho(n) = (h,, @)

Another interesting case is the principal, twisted construction, when w is the Cox-
eter element

(3.4.9)

w=]]w (3.4.10)

where w; is a Weyl reflection about the simple root a; of the Lie algebra g with
rank £. Then p;(a) = 0 and o(a) is no longer necessary (this will be justified in
his general setting later, paragraph 3.6). In this case

U(a,z) = V(a, z) = eX-(a2)¢iX+(a2) (3.4.11)

Going back to the general case, our plan will be to show first what are the
algebraic properties of the operators o(a) necessary to get the commutation rela-
tions of the twisted Kac-Moody algebra. The next point will be to describe the
Hilbert space on which o(a) acts. It is clear that the oscillators will act on a Fock
space.

It is convenient to change the variables :
M™M=z . (3.4.12)

The Laurent coefficients of the twisted vertex operator

. 1 dz .
U™ (@) = s— {-z‘U(a,zm) (3.4.13)

will realize the generators p(,,(E,) ® £*/™ of the twisted Kac-Moody algebra.
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A problem arises when we try to calculate the commutator [U'(a),U’(8)]
because, as is well known the product U(a,z" )U(B,y") is singular for z = y.
This is specially true for the oscillator part V(a,z™). The cure is to introduce the
non singular normal ordered product, using the Baker-Hausdorff formula

V(a,z™)V(B,y™) =: V(a,z™)V(B,y™) :

3.4.14
X exp [iX+(a,zm),z'X__(ﬂ,y"‘)] ( )
Lemma [16]
m~-1 T.y (a,w*B)
Kooz, X Byml= Dma (1-22) 7 i< (3.4.15)

=0

One knows [24] that in the F.K.S. construction (w = 1) the products
U(a,z™)U(B,y™)and U(B,y™ )U(a,z™) differ only by the range of z and y. Hence
we shall choose o(a) in such a way that the same is true in our general case.

Using (3.4.3), (3.4.11), (3.4.14) and (3.4.15) we get for |z| > |y| :

8

m-—1 r'y (a,w’B)
U@V = Zean ) [] (1-5F)  Banpy) (a0
a=0

-
with . . - ,
Z(a,z,B,y) = z T Po(@)l” o Fpo(BI” V(a,z™)V(8,y™) : (3.417)
=Z(B,y,,2)
Z(a,2,B,y) = o(a)e™ PP g(B)ym(r(R)P) (3.4.18)

For |z| < |y| we get similar expressions after the change a « 3, z & y. We want
to symmetrize the last two factors on the R.H.S. of (3.4.16). Notice that

m—1 r'y (a,w*B3) m—1 i
H (1 B ) _ (2 — r*y)(@" B g —m(po(a).po(8)) . (3.4.19)
s=0 z s=0
This follows from )
Z w'a = mpy(a) (3.4.20)
8=0

Indeed, the L.H.S. is invariant under w and hence is proportional to pya. The
factor m results from counting. Compare the example su(3) in Paragraph 3.3. .
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Next one finds, using (3, wa) = (w_lﬂ,a),

m-—1 . m—1 m—1 ,
H (y _ T'a:)(ﬂ'w C!) - H (__TJ)(ﬂnw a) H (:B _ r—ty)(ﬁaw q)
8=0 a=0 =0

. (3.4.21)
= S(e, ) [[ (= = r*y) >
s=0
where the so-called symmetry factor S(a, ) is given by
m-—1
S(e,8) = J[ (=r*) P (3.4.22)
8=0
m-—1 .
= I[ (=r—)=? (3.4.23)
=0
= (—1)™Po(@po(8) = DT, sl B) (3.4.24)
(3.4.23) shows that
S(a,8) = $7(B,a) (3.4.25)
In analogy with the relation, true in F.K.S. construction :
z(c‘ip)ei(Q!ﬁ) = ei(QI'B)z(atp)z(avﬂ) (3.4_26)
we require
z™(Po(@)P) 5 (B) = g(B)z™(Po(2):P) zPo()p0())
y™(P(BP) (o) = g a)y™ Po(B)ip)ym(po(B).polc)) B4R
Hence, with (3.4.18)
(a,z,8,y) = o(a)a()z™Po(@):p) ym(po(8):p) ym(po(a),po(B))
(3.4.28)

2(8,y,a,2) = a(ﬂ)a(a)ym(po(ﬁ),p)zm(po(a),p) y™(Po(B).po(e))

Putting (3.4.19) and (3.4.28) into (3.4.16), we see that the factor g™ (Po(@).po(8))
cancels.

Taking (3.4.21) into account, it follows that (3.4.16) becomes completely sym-
metric provided

o(a)o(B) = S(a,B)o(B)o(a) (3.4.29)
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This is the fundamental relation which together with the condition (3.4.27) and the
expression of S given by (3.4.22) specifies the algebraic properties of o(a), which
will be used in the discussion of the Hilbert space on which o(a) acts.

We now can write the commutator for the Kac-Moody generators in the fol-
lowing way

da: dy

lvl<|z| lz|< !yl (3.4.30)
xziyj C(aaz aﬁ’ym)

(U (), U (B))

where

Cla,z,B,y) = Z(a,z,B,y) H (2 —ry) P (3.4.31)

It is also interesting to apply formulas (3.4.22) to (3.4.24) for S(a,f) in several
cases. Forw =1, m=r=1so

S(a,B) = (-1)=*P (3.4.32)
Using (3.4.9) this agrees with (3.1.20) and (3.4.29).

For hy = 0 (no w-invariant subspace of h) (3.4.24) gives :

S(a, B) = #~ usmo *iw"5) (3.4.33)

If w is the Coxeter element Eq. (3.4.10), hy = 0. In addition det(1 — w) = detA
(see Eq. (3.3.8)) where A is the Cartan matrix of g. Then one can show [18] that

m—1
s(a,w’8) =0 mod m (3.4.34)
=0
Hence
S(e,8)=1 Vo, €Q (3.4.35)

In this case, o(a) is not necessary and the vertex operator is U(a,z™) =
V(a,z™) (cf Eq. (3.4.11)).
Example : ¢ = su(m) = A,,_;. There are m — 1 simple roots a;. The Coxeter
element is realized by wa; = a;,,,1=1,...,m—2and we,,_, = — E:’:{l a; = —46.
One verifies that w(—0) = a, so that w™ = 1. Putting o} = 2, it follows that
(a;,a;4,) = —1 and (@;,a;) =0 for i # j, £ 1. Then one easﬂy venfies (3.4.34).
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3.5. The States and the Commutation Relations

Recall Eqs (3.4.3), (3.4.4), (3.4.13), to write the generators of the twisted
Kac-Moody algebra as

i/m 1 dz ; m
Ui/ (a) = ng o~ U(a,z™) (3.5.1)

U(a,z) = :cmp"(“)z/za(a):cm(m(“)"’)eix’(""m}eix+(°‘”m) (3.5.2)

Acting on the vacuum (with $ = 0) one sees that the residum in (3.5.1) will be non
zero for a positive n' such that

i+ g—lpo(aﬂz +n'=0 (3.5.3)
Since m(py(a),py(a)) = Z;Tf__';] (w'a,a) € Z, it follows that [17)

1
i€Z orieZ+; (3.5.4)

To study the spectrum created by U/ ™(a) acting on the vacuum, consider the
derivation operator d equal to minus the Virasoro operator L, :

rankg

1
Ly = ;lpo(a)l + o> Rl R (3.5.5)
I=1 n'eXZ
then one finds n
[d, U™ ()] = ZUm/m(a) (3.5.6)

Starting with d = 0, Ui/m(a) creates states with d = i/m. From (3.5.3) it follows
that i + (m/2)|py(a)|® < 0 so that the states are limited by the paraboloid

d=~3lpo(a)l | (3.5.7)

To compute the commutation relation (3.4.30) one has to look for poles. The
behaviour of the integrand is dictated by the factor

m-—1

I] (@ - ry)e® (3.5.8)

=0
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If a and B are roots of a simply-laced finite Lie algebra, (a, w™3) can take the only
values £2, +1, 0. Hence (3.5.8) can have simple and double poles for z = r"y.
Then, by deforming integration contours

d
[Ul/m UJ/m(ﬁ 2 1)2 Zf y — z y’C(a T )ﬂs )

(3.5.9)
I(-1,-2) = {n| (e, w" )E{“lr”z}a 0<n<m-1}
Example : For su(3) and the principal construction, wa;, = a,, wa, = —a; — a,.
Hence, for a = 3 one gets simple poles for n = 1,2 and for a = —f a double pole
for n = 0.
After a lengthy calculation one finds [17],
i/ i/ k33 (a.w*+‘ﬁ)
U™ @), U™ (B = 3. e —s)eu(w e p)r* [] (1
s€l(-1) k=1
+ Z n(a,—s)e,(a, —a)r H (1- _(aw i
s€l(-2)
x [i8; ;0 — mhg(i + 7))
(3.5.10)

where we have used (a,w’8) = —2 implies w’8 = —a ; ¢ (a, 8) will be defined in
Eq. (3.6.2), and (e, s) in Eq. (3.6.8)

To this one should add the commutator
(AL, U ()] = p_y()'U = (a) (3.5.11)

For the w-invariant subalgebra g, see Refs [17],(26],(25]. See also the example su(3)
(paragraphe 3.8).

3.6. Extension of the Lattice Q and the Hilbert Space

Taking into account the algebraic properties of 0(a), we can discuss the Hilbert
space on which it acts. But first we need the two notions of central extension Q
and group algebra |@Q). Recall Eq. (3.4.29), with S given by (3.4.22)

o(a)o(B) = S(a, B)o(B)o(a) (3.6.1)
In analogy with (3.1.19) we write
o(a)o(B) = e, (a,B)o(a + B) (3.6.2)



Vol. 62, 1989  Representations of Kac—Moody algebras 113

where ¢, (a, 8) satisifes the cocycle condition (2.1.8), but (2.1.9) corresponds now
to

eu(@,B) = S(a, B)e (B, ) (3.6.3)

(3.6.2) can be considered as a projective representation of the abelian group Q.
Call Q the extension of Q by the cyclic group T generated by (=)"r,r= P L
An element of @ is denoted by the pair (aya), @ € @, a € T. Multiplication is
defined as

(1,8, )@z, 85) = () + 03,8, (@1, @3) 2,05) (3.6.4)

The extension @ is actually uniquely fixed by a choice of S, which in turn, in our
context, depends on the automorphism w of Q. On the other hand, if ¢, satisifies
(3.6.3), and f is some map f : Q — T, then e, = swfafﬁf;_,l_ﬁ = e, cp(e, B)
also satisfies (3.6.3), so that, for a given extension, one gets a class of 2-cocycles,
differing by the (exact) 2-cocycles ¢ generated by f. This allows to normalize ¢,,
to

£,(0,0) =€, (a,—a)=1 (3.6.5)

The group algebra |@) was already introduced in Eq. (3.1.9) : it is an infinite-
dimensional vector space spanned by elements a € @ such that |a) € |Q). Similarly
one defines |a,a) € |@). Let ¢ be a map which associates to each @ € Q a
representative in Q : o(a) =(a,f,), fy €T; then

|, a) = o(a)|0) (3.6.6)
Then, with (3.6.2) and (3.6.4)

a(a1)|a27fa2) = sw(al’az)falfag ;11+agla1 + a27fa1+a3)

6.7
g o eyt o (o -0 (36.7)

in accordance with (3.6.2). One can also check that (3.6.1) is valid. This slightly
more abstract but equivalent language avoids the explicit use of the position oper-
ator ¢ which is ill defined when, for instance, by = 0 (no w-invariant subspace).

The automorphism w : Q — Q can be ”lifted” to an automorphism of Q [17]
such that wa =a,a € T and

W"((o()) = n(a,n)o(w"a) neT (3.6.8)

The boundary condition X (ze*™)

ator :

= wX(z) mod @ becomes, for the vertex oper-

U(a,ze*™) = wU(a, 2) (3.6.9)
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and, using (3.4.3) and (3.6.8)
n(c, n)o(w™a) = aa)r=(/DmIpo(@) ~nm(po(a) ) (3.6.10)
This relation is usefull in expressing the commutation relations (3.5.10).

We also need a feature which was trivial in the F.K.S. construction : the subset
L C @ which is not invariant under the automorphism w

L=hyNQ
VL e , (3.6.11)
f}n = L
i=1

Call L the image of L by o. Now we are in a position to discuss the Hilbert space
‘H on which the twisted vertex operator acts. This difficult problem was solved by
Kac and Peterson [13] and independently by Lepowsky [14]. We give here without
proof a simplified version [17,18]. The result is

H=FQ|Q)®;V (3.6.12)

F is the Fock space of the oscillators (3.4.6). Q has been defined previously and V
is a new space yet to be defined. The meaning of the tensor product in (3.6.12) is
the following [17]

o(a)|0) ® 1y £ = 10)®zyp(0(a))f Va€eL, {€V (3.6.13)

¢ is a projective representation of L or a linear representation of L (so that V is
its carrier space), and will be explicited in Paragraph 3.7. This amounts in fact
to induce a representation of Q from that of L, ¢, on V. One can show [18] that
Q/L ~ Q,, the projection of Q on hy so that, in view of (3.6.13),

|Q) ) Y= @ V;2(Q,) 8V (3.6.14)
i€$
One can interpret it considering that shifts in momentum along the invariant hy-

direction change the state in |Q,) (see (3.1.12)), whereas those corresponding to L
act on V through ¢. In order to further characterize ¢, introduce [14]

R={a€ L] S(a,f)=1VB€ L} (3.6.15)

R is a subgroup of L such that S(a, ) is non degenerate on the quotient N = L/R.
Since S = 1 on R, R is an abelian subgroup of L and hence its irreducible repre-
sentations are one-dimensional. The order of L/R can be shown (see paragraph
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3.7) to be a square |L/R| = ci.

The dimension of the representation ¢ has then to be equal to ¢,, and to solve the
problem one has to find the projective representations of N. The reader will find a
complete justification of this statement in [18] while we will give in paragraph 3.7
only the final result.

One can also show [18] that if A, = 0, det(1 — w) = |L/R| detA, A the
Cartan matrix. If det(1 — w) = detA, as is for example the case for the Coxeter
element (see Eq. (3.3.8)), then |L/R| = 1 and V is trivial, in accordance with

S(a,3) = 1. Hence o(a) is not necessary (see Eq. (3.4.35) and the example su(m)
which follows). '

3.7. Projective Representations of N = L/R

Altschiiler et al.[18] have given an algorithm which allows to calculate the
irreducible representation of the finite abelian group N. We consider N, a finite
abelian group with a bilinear form § : N x N — C* such that S is alternating,
ie. S(z,9) = S™(y,z) (see Eq. (3.4.25)) and non degenerate : if S(z,y) = 1,
Vz € N then y = 0 (see comment after Eq. (3.6.15)). S is bimultiplicative, that
is S(z + y,2) = S(z,2)8(y,2) and S(z,y + z) = S(z,y)S(z, z) (this follows from
formula (3.4.22)).

Theorem 1 : For such an N we have the structure of a direct product
N, x N, x..xN, (3.7.1)

Each factor N; is the product of two cyclic groups ZZ; and Z'J of the same order
n.
i
_ 1

Nj = Zj X Zj (3.7.2)
such that

S(zj, x;) = Ej (3.73)
is a primitive n; — th. root of unity where z; resp. :c'j is a generator of Z ;, resp.
Z'J and

. : .2
It follows that the order of NV is a square since the order of N ; is nj.

Theorem 2 : For each j =1,...,r, let the n; X n; matrices be defined by

01 0 O 0
0 010 ... 0
Pp=|i i i i (3.7.5)
0 0 0 O 1
1 0 0 O 0
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0 e 0 0 0
0 0 & 0 ... 0
Q=1: : : 1 -, (3.7.6)
0 0 0 0 £y
1 0 0 O 0
if n; is odd
( 0 6 0 ... 0 \
0 0 & ... O
Q;= : I B (3.7.7)
o 0 o0 .. &M
\6?""“ 0 0 0o )
if n; is even, where §; is a primitive 2n; — th. root of unity such that
85=¢; . (3.7.8)
Then the map ¢ : N - GL_(C) defined by
o(z;) = p; 7 o(z;) = g; (3.7.9)
where
p=5L®L® -, ,®P,®I,,--®I (3.7.10)
=5L®L® I, ,®Q;®L,, -]
I; = unit n; x n; matrix (3.7.11)

is the unique, up to equivalence, projective, irreducible representation of N (with
respect to the extension of N defined by S).

Theorem 2 is a consequence of Theorem 1 and a theorem of Morris [27] about
projective representations of direct products of cyclic groups of the same order.

Example :
a) N =2, x Z,,n=2, N has 4 elements

‘P(z)=p=((1) ;);v(z')zq=(6q; g) =4 (3.7.12)
and
P(2)p(2') = in(z + 2') (3.1.13)

¢(a) are the Pauli matrices.
D) N=Z,xZ,,n=3

010 0 ¢ 0 |
p(z)=p=10 0 1] ;0(z)=qg=[0 0 & | e=e/? (3.7.14)
1 00 1 0 0
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3.8. Example of su(3)

For various automorphisms w of the root lattice Q we list a few useful prop-
erties

1) w =1 (untwisted, homogeneous) S(a, 8) = (—)(“"6); Q= k=0 N =1
no V;

2) w:ey = —ay; @, = @ +ay; w =1 (twisted, mixed) S(a,B) = (—)(a’ﬁ)
which is a general result for automorphism of order 2 ; L = {na, }; n € Z;
R=L;N=1;noV;

3) wioy ooy a, > —ay — ay; w' =1 (twisted, principal) S =1; Q = L = R;
N =1, no |Q,), no V, no o(a);

4) w : @ — —o; w = 1 (twisted, outer automorphism) $(e,8) = (—-)(“‘p);
Q=L; R=2Q; N =Q/2Q : 4 elements. V has dimension 2.

5) w: a; < a,; w =1 (twisted, outer automorphism) S(a,8) = (_-)("“8);
L={n(a,—-a,)};n€eZ; R=L;N=1;n0V.

We next discuss the commutation relations of the twisted constructions of the
Kac-Moody algebra based on the principal and an outer automorphism.
w principal : For the vertex operator we have U(a,z’) = V(a,2*) (Eq.(3.4.11))
and from Egs. (3.4.14-15)

V(a, 2*)V(B, y3) =t V(a,zs)V(B,ys) g

2 s\ (a,w0’B) 3.8.1)
ry ( .0.
x — —
I(-=)
=0
For 8 = a, one gets two simple poles when z = ry and z = r’y. For B = —a,

there is one double pole for z = y. The contribution of the simple poles to the
commutator (Eq. (3.5.10)) is
[Vi/s(a),vj/.’:(a)] — 1"(1 _ r)(a,w’a)(l _ rz)(a.a)v(i*l*i)/m(w*la +a)

. L (3.8.2)
+ rz;(l _ ,’,)(a,a)(l _ rZ)(a,wa)V(:+J)/m(,ww2a + a)

Using a + wa + w’a = 0, and V‘la(w"a) = r™V*/%(a), with n = 1, 2, one finds

(V3 (a), VI3 (a)] = —(r**9(2r® + 1) + P25 (2r 4 1))

V(g (3.8.3)
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The contribution of the double pole is
[Vi/%(e), VI3 (—a)] = 3(i8;4 ;0 + 3ha(i + 7)) (3.8.4)

It is instructive to compare this commutators with the abstract relations Eq. (2.3.7)
Now, according to (2.3.10), the structure realized by the principal construction
should be isomorphic to the untwisted affine algebra; in particular, we should be
able to exhibit the finite Lie algebra su(3) which is not explicit in the commutation
relations above because of the change of Z-gradation produced by the twisted
realization (see Chapter 7 of [23]). Notice that this problem, the solution of which
will be outlined in the following, can be entirely investigated at the abstract level.
The lifting of the automorphism w is easy because A, = 0 : we can choose all
phases 1, = 1. Acting on the generators H_ and E_ one gets

tH, =H,;7H, =H__ _,;7H_ , ., =H,
(3.8.5)
TE,, =E,i7E,, =E_, _o,;TE_o _a, = Eq4,
Hence su(3) can be divided into 3 eigenspaces. We give the eigenvectors
Eﬂ:a]_ + E:tag + EIF(a1+ag) = 3p0(:hEa‘) E go (3'8'6)
so that
go Zu(l) ®u(1) (3.8.7)
-r "H, +H,, € g,
n=1,2 (3.8.8)

Eiou + r_nE:Eaz + T_an¥(a1+ag) € 9.

Recalling the correspondance V(a,z) « Y. p,(E,) ® t*/™2"", we shall identify
VO(:ta) with the generators of g, and choose them as the new basis vectors for
the C.S.A. of su(3), say H, and H,. This is of course consistent with (3.8.4) for
1,0 = 0

V@), V'(-a)] =0 (3.8.9)

The next task is to identify the new step operators Eia.-- To achieve that, one
should somehow ”diagonalize” the commutators (3.8.3) to (3.8.4) with respect to
the new C.S.A. : [H,, E,] = o(H,)E,. The closure of the algebra constitutes here
an important constraint guiding the actual identification: the powers of ¢ have to be

matched carefully. For instance, E__, _, should be chosen as some combination

of operators corresponding to t—z/s, E‘_a‘, as some combinations with t_1/3, E

would be expressed in term of operators v/ 3(04) etc. The commutation relations
of su(3) ensure then that we do not ”propagate” indefinitely with powers of ¢.

(=21
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QOuter automorphism a — —«

We can again set all the phases ¢, = 1 so that 7E_, = E_ . The 3 eigenvectors
in the subspace g, are then,

Ea,_ + E—al’ Eag + E—a;’ Ea,_-l-ag + E—-oq—ag (3'8'10)
This is isomorphic to the algebra su(2). The 5 eigenvectorsin g , are:
Hers Hawr Box = o s = Hhcar (3.8.11)
qu-{»-a;; - E~a1«-ag

They form a representation of su(2). The vertex operator is
U(a,z?) = V(e, z2)p(a) (3.8.12)

V(a,zz) acts on the Fock space and ¢(a) on the 2 dimensional space V on which
the Pauli matrices o; together with the unit matrix form a projective representation
of the group N = Q/2Q (see Paragraph 3.7.). A natural choice of representatives
for the cosets of Q mod 2Q is {0,a,,a,,a; + a,} and we assign ¢(a;) = o;.

The generators U*/ ?(c) of the twisted Kac-Moody algebra obey

UF?(—a) = (=) U¥%(a) (3.8.13)
To get the commutation relations, one looks at the pole structure of
(z — y)(“"a)(m + y)"(""ﬁ) (3.8.14)
Since (ay,a,) = (ay,—a; — ;) = (—a; — ay,a;) = —1 all these pairs will yield
simple poles. Hence one sees that, for example,
[U%eay),U%a,)] = 2iU°%a; + o) (3.8.15)

This and the other commutators build up a structure isomorphic to g, = su(2).
On the other hand, g, forms a representation 5 of su(2) and one can see that there
is no way to get su(3) as a subalgebra. Hence, the operators Uklz(a) belong to
a twisted Kac-Moody algebra different from the affine su(3) = Agl). This one is

called Agz). The lower index 2 means that one started with A,. The upper means
that the Dynkin automorphism is of order 2.
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