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Sur les déterminants des matrices
quaternioniennes

par Paul Van Praag

Université de I’Etat a Mons, Faculté des Sciences, Avenue Maistriau, 15,
7000 Mons, Belgique.

(24. VI. 1988, revised 26. VIII. 1988)

Résumé: le déterminant de Moore d’une matrice presque hermitienne quaternionienne est

un représentant du déterminant de Dieudonne de cette matrice. Ceci répond a une question de
Freeman Dyson ([1], conclusions, question 2).

1. Terminologie, notations et résultats utilisés

Dans cette note, C est un corps commutatif et H est un corps de rang
4 sur C.

H' est le groupe multiplicatif de H et [H', H'] est le sous-groupe des
commutateurs aba”'b™' de H'. Si ge H', on note g 'élément g[H', H'] du
groupe quotient H'/[H", H']. Si A est une matrice n X n a coefficients dans H, on
note det A le déterminant de Dieudonne de A défini par exemple dans [1].

Ce déterminant prend ses valeurs dans H'/[H", H]U {0}, ot 0 est un zéro
adjoint a H'/[H", H'].

det A = 0 si et seulement si A est non inversible.

On utilisera les propriétés suivantes de ce déterminant, prouvées par exemple
dans [2]:

det (AA;) =det A det A, lorsque les deux membres ont un sens (1)
Si A, est la matrice obtenue a partir de A en permutant deux lignes et
les colonnes correspondantes, alors det A, =det A. (2)

Si A, est la matrice obtenue a partir de A en additionnant a une ligne

de A un multiple & gauche dans H d’une autre ligne de A, alors
det A, = det A. (3)
Si o € H, alors

a W
= @ det A
det(o A) a de

quelle que soit la ligne W e H'*". 4)

On note * Iinvolution canonique de H et A* la matrice définie par (A™); = A}.
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On dit que A est hermitienne si et seulement si A=A", et quelle est
presque hermitienne si elle ne différe d’'une matrice hermitienne que par une
ligne et la colonne correspondante.

Jusqu’a la fin de cette note, 7 est une matrice hermitienne n Xn a
coefficients dans H.

Eliakim H. Moore a défini [3] un déterminant que nous noterons ici m(7T)
qui est une expression polyndmiale en les 7;; et qui prend ses valeurs dans C. On
prouve dans [4] les résultats suivants:

m(T) =0 si et seulement si T est non inversible (5)
Si T, est la matrice obtenue a partir de 7 en permutant deux lignes et

les colonnes correspondantes, alors m(7T,) = m(T). (6)

Si T*% est la matrice adjointe de T([3], 16.4), alors

(aT)=a"""T*siaeC (7)
TT*Y = m(T)1, = T*IT (8)
m(T + WW*)=m(T)+ W*T*IW pour toute

colonne W € H™™ (9)
Le rang de T*Y est n si et seulement si T est inversible, il est 1 si le

rang de T est n — 1,il est nul si celui de T est inférieur a n — 1. (10)

On étend ([4], 18.1) la définition de m aux matrices presque hermitiennes: soit A
une telle matrice.
On ne nuit pas a la généralité de ce qui suit en écrivant:

(s

ol weC, Ue H" et V € H™". On pose alors
m(A)=am(T)—-VT*U.

Si V. =U", on retrouve la définition initiale de m(A). Soit T, la j*-colonne de T,
on pose

T/ =T+T,T} (12)

qui est aussi une matrice hermitienne.

2. Proposition. Le déterminant de Moore d’une matrice presque hermitienne
est un représentant du déterminant de Dieudonne de cette matrice.

Lemme. m(T) =det T.

Preuve du lemme. Par induction. On peut supposer que T est inversible. Si
n =1, il n’y a rien a prouver. Soit n > 1. On peut supposer que T}, #(:
1°) si I'un des éléments de la diagonale de T n’est pas
nul, on applique (3) et (5).
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2°) Si tous les T;; sont nuls, soit T;; #0. Des lors:
m(T)=m(T) + T3T*IT,

=m(T)+(m(T)T); (par (12) et (9))
=m(T), (par (8))
d’autre part,
det (T')=detT  (par (3))
Soit donc

T, J"
=7 8)
J B

ou0# Ty, e C. Dés lors

detT—det(T” I ) 3
0 B-JT;U* (par (3))
=T, det (B —JT7J*) (par (4))
=T, m(B—JT;\J*) (induction)
mais
m(B—=JT Y)Y =m(B)— T J*B“J  (par (9) et (7))
= Tl_llm(T)

H.

P. A.

Remarque [H', H'|NC={x1}, donc le déterminant de Moore d’une
matrice hermitienne peut étre défini comme le représentant central du
déterminant de Dieudonne de cette matrice qui attribue la valeur 1 a toute

matrice unité. Des conséquences sont écrites dans [5]

Preuve de la proposition. Soit donc A définie par (11).
1. Soit m(T)+0. On a:

o Ay 0)-("" 7

donc

(detAym(T)=m(A)det T,
mais
m(T)=detT (lemme),

donc

m(A) = det A.
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2. Le rang de T est n — 1, on distingue trois cas:
2.1. Soit UTT*¥U #0, dés lors

(a V)( 0 U*)___(m(A) aU* +V

: 13
U T/\-T* . 1, 0 T+UU+) (13)

mais

0  UYN . (1, —TU
det(—T“‘”U 1n)“det(u+ 0 )

1, -T‘“”U)

= det (0 UrT U

=U*T* U (#0)
=m(T + UU") (par (9))
=det(T+UU") (lemme)

(13) implique alors det A =m(A)
22. U'T*U=0et UTT* #0.
Il existe alors 8 € H tel que
VT = U T,
puisque le rang de T*% est 1 (10). Donc
—m(A)=VT*U
= pUT*U
=0
Mais

o vy Y

est la ligne nulle de H'*"~", donc det A = 0.
2.3. Soit UTT*¥ =0(. Des lors T*4U =0 et donc m(A) = 0. Mais

ch)

est la matrice nulle de H"*"**1, donc det A = 0.
3. Lerang de T est inférieur a n — 1, donc T“d’_= 0 (10), donc m(A)=0. Sin =2,
il n’y a rien a prouver. Si n =3, alors det A = 0.

Corollaire 1 (conjecture 2 de [1] pour les corps de quaternions). Si A est une
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matrice presque hermitienne a coefficients dans H, alors m(A) = 0 si et seulement si
il existe 0 v e H"*V*! pour lequel Av = 0.

Preuve. Cette derniere relation se traduit par la nullit¢ d’'une combinaison
linéaire a droite non triviale des colonnes de A, ce qui est équivalent, comme
pour les matrices a coefficients dans un corps commutatif (voir par exemple [2],
chapitre 1) a la non inversibilit¢é de A. La définition du déterminant det et la
proposition permettent de conclure.

Corollaire 2 (énoncé 4.14 de la conjecture 2 de [1] pour les corps de
quaternions): Sous la méme hypothése que le corollaire 1: m(AA)* =

m(A)m(A™).

Preuve. On peut supposer A inversible. La proposition et (1) impliquent
alors que m(AA™) et m(A)m(A™) different multiplicativement par un élément de
CN[H', H]={£1}. La définition du déterminant m permet alors de conclure.

3. Je remercie le Dr. Pasquale Mammone pour m’avoir appris I’existence de [1],
et le Professeur Freeman Dyson pour m’avoir précis€ dans une premiére
correspondance mes erreurs relatives a sa présentation du déterminant de Moore
et aux conjectures 1 et 2 mentionnées plus haut.
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